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It is important to assess the nutritional concentrations of forage before it can be used for tremendous improvements in the dairy
industry. Tis improvement requires a rapid, accurate, and portable method for detecting nutrient values, instead of traditional
laboratory analysis. Fourier-transform infrared (ATR-FTIR) spectroscopy technology was applied, and partial least squares
regression (PLSR) and backpropagation artifcial neural network (BP-ANN) algorithms were used in the current study. Te
objective of this study was to estimate the discrepancy in nutritional content and rumen degradation in WPCS grown in various
regions and to propose a novel analytical method for predicting the nutrient content of whole plant corn silage (WPCS). Te
Zhengdan 958 cultivar of WPCS was selected from eight diferent sites to compare the discrepancies in nutrients and rumen
degradation. A total of 974 WPCS samples from 235 dairy farms scattered across fve Chinese regions were collected, and
nutritional indicators were modeled. As a result, substantial discrepancies in nutritional concentrations and rumen degradation of
WPCS were found when they were cultivated in diferent growing regions. Te WPCS in Wuxi showed 1.14% higher dry matter
(DM) content than that in Jinan. Lanzhou had 11.57% and 8.25% lower neutral detergent fber (NDF) and acid detergent fber
(ADF) concentrations than Jinan, respectively.Te DM degradability ofWPCS planted in Bayannur was considerably higher than
that in Jinan (6 h degradability: Bayannur vs. Jinan� 49.85% vs. 33.96%), and the starch of WPCS from Bayannur (71.79%) was
also the highest after 6 h in the rumen. Te results indicated that the contents of NDF, ADF, and starch were estimated precisely
based on ATR-FTIR combined with PLSR or the BP-ANN algorithm (R2≥ 0.91). Tis was followed by crude protein (CP), DM
(0.82≤R2≤ 0.90), ether extract (EE), and ash (0.66≤R2≤ 0.81).Te BP-ANN algorithm had a higher prediction performance than
PLSR (R2

PLSR≤R2
BP-ANN; RMSEPLSR≥RMSEBP-ANN). Te same WPCS cultivar grown in diferent regions had various nutrient

concentrations and rumen degradation. ATR-FTIR technology combined with the BP-ANN algorithm could efectively evaluate
the CP, NDF, ADF, and starch contents of WPCS.

1. Introduction

Te Chinese dairy industry has developed rapidly over the
recent decades and needs to provide milk products for
a quarter of the world’s population. To adapt to intensive
systems, it further requires sustainable supplementation of

feedstufs. A sequence of studies indicates that the nutrient
variation of feedstufs contributes to variation in dairy
production [1, 2]. For example, a 13.1% crude protein (CP)
diet signifcantly reduced milk yield to 16.2% CP of the total
mixed ration (TMR) in dairy cows [3]. Te increase in ether
extract (EE) improved the milk fat percentage of dairy cows
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[4]. Te content of starch (28.5%) owned higher dry matter
intake (DMI) and milk yield (MY) than 24% [5]. Tus, it is
truly important to detect the nutrient composition before
they are utilized.

Whole plant corn silage (WPCS) is the main ingredient
in dairy TMR under most dietary regimes, especially for
high-yield cows. Te corn silage percentage utilized in TMR
has contributed to 42% [6]. Te extensive use of it could
attribute to a high and stable production in conjunction with
high contents of total digestible nutrients and metabolizable
energy [6–9]. With the exception of genotype and harvest
maturity, the yield and nutritional quality of WPSC are
highly infuenced by environmental conditions [10–12]. For
example, high growing temperatures can reduce the di-
gestibility of corn silage because of a substantial increase in
lignin content in stovers and a decrease in starch content in
the cobs [13, 14]. Moreover, previous studies have reported
that precipitation was one of the most infuential abiotic
factors for plant productivity [15], and drought stress
generally contributed to delays in plant growth and devel-
opment by decreasing cell elongation and reducing pho-
tosynthesis [16]. Furthermore, soil moisture and growing
temperature were highly related to DM yields because they
afected the canopy and anatomical development of maize
crops [17]. Above all, it is necessary for dairy farms to detect
the nutritional quality of roughage delivered from diferent
frown regions before they are formulated and fed, which
provides fundamental information to satisfy the exact nu-
trient requirements.

Traditional wet chemical analysis requires considerable
human, material, and fnancial resources, and the reagents
used would result in environmental pollution [18]. Tere-
fore, the exploration of real-time, efcient, and environ-
mentally friendly techniques has attracted a widespread
interest. As a fast, simple, noninvasive, and economical
technology, Fourier-transform infrared (ATR-FTIR) spec-
troscopy can complement or replace existing techniques
[19–22]. Using the ATR-FTIR technique, previous studies
[23, 24] constructed prediction models for dry matter (DM),
CP, neutral detergent fber (NDF), and acid detergent fber
(ADF) contents in plants. Tese experiments have pre-
dominantly implemented traditional linear regression
methods, such as partial least squares regression (PLSR), to
build a prediction model between the nutrient contents and
spectroscopy information of feedstufs. But nowadays, the
application of artifcial neural networks (ANNs) could bring
signifcant improvements in the development of models
because of their ability to build complicated and potentially
nonlinear relations without any prior assumptions about the
underlying data-generating process [25]. A backpropagation
artifcial neural network (BP-ANN) is the most represen-
tative and extensively exploited ANN using the error
backpropagation algorithm [26–29]. However, to the au-
thors’ knowledge, there is limited information on the ap-
plication of ATR-FTIR spectroscopy along with PLS and
BP-ANN methods to predict the nutrient content of WPCS
collected from various grown regions in China.

Te objective of this study was to evaluate the between-
region diferences in nutritive components and rumen

degradation of WPCS and to develop rapid and efcient
models for predicting nutritional concentrations of WPCS
based on ATR-FTIR spectroscopy technology combined
with PLSR and BP-ANN algorithms. Simultaneously,
a better prediction performance model was selected for
further applications.

2. Materials and Methods

2.1. Sample Preparation and Chemical Measurements. Te
Zhengdan 958 cultivar of WPCS was selected for this study
from eight diferent areas of China, and the location in-
formation is shown in Table 1. In each area, three plots were
selected, and 20 plants from each plot, 10–15 cm above the
ground, were harvested at the kernel maturity stage of the
half milk line. Te exterior 1m area of each plot was ex-
cluded from sampling to ensure uniformity in the plants
being sampled. After harvesting, the corn material from the
entire plant was chopped into 2 cm sections and immediately
transported to the laboratory. Here, they were prepared by
vacuum sealing the inoculated plant material into poly-
ethylene bags (25× 30 cm).Tey were then stored in the dark
at an ambient temperature until analysis. Te flling, com-
pression, and sealing processes were the same for all twenty-
four bags.

After 60 d of fermentation, the polyethylene bags were
opened, and the samples were collected for the measurement
of nutrient concentrations and digestibility. A total of
twenty-four subsamples from all the individual bags were
dried in a forced-air oven at 65°C for 48 h to determine DM.
Tey were then ground in a Wiley mill (Model no. 2; Arthur
H. Tomas Co., Philadelphia, PA) to pass through a 1mm
screen to analyze the chemical composition or through
a 4mm screen to detect the in situ nutritive disappearance.
Te crude protein (CP) was measured using the 988.05
method of the Association of Ofcial Analytical Chemists
[30]. Neutral detergent fber (NDF) and acid detergent fber
(ADF) analyses were performed in an ANKOM 200 fber
analyzer (ANKOM Technologies, Macedon, USA) using
thermostable α-amylase [31]. EE was obtained using an
automatic extractor (ANKOM XT101; ANKOM Technology
Corp., Macedon, NY, USA). Ash was determined by com-
bustion at 600°C for 6 h in a furnace according to method no.
924.05 [32]. Te starch content was analyzed using a total
starch assay kit (Megazyme, Bray, Ireland; method no.
996.11) based on the AOAC method [32].

2.2. Animals and Digestible Measurements. Tree healthy
Holstein dairy cows (139± 15 days in milk, 2.50± 0.50
parity) fxed with permanent rumen fstula from the ex-
perimental base of China Agricultural University were used
for the in situ incubation study. Te trial procedure was
submitted to the Experimental Animal Welfare and Animal
Ethics Committee of China Agricultural University (ap-
proval no. CAU2021009−2).Te animals were fed TMRwith
a forage-to-concentrate ratio of 60: 40, twice daily at 07:00 h
and 21:00 h. Te TMR components and nutrient levels are
shown in Table 2. Subsamples (ca.7 g) were randomly
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incubated in sealed nylon bags (10× 20 cm, pore size 40 μm)
in the rumen of fstulated cows for 6, 24, 30, and 48 h, using
the “gradual in/all out” schedule. Starch digestibility after 6 h
of incubation and NDF digestibility after 30 h of incubation
were associated with the value and quality of feedstuf
[33, 34]. Tree replicate bags per sample from individual
cows were used at each incubation time point. After in-
cubation, all the nylon bags were removed from the rumen,

washed with cold running tap water six times, and then dried
to constant weight in forced air at 65°C.Te dried residues of
the replicate bags of each sample were pooled and mixed
according to the incubation time, ground, and stored in
sealed plastic bags for further analysis. Te rumen degra-
dation characteristics were calculated using the following
formula [35, 36]:

Degradation rate �
nutrient content × sample weight − nutrient content × residueweight

nutrient content × sample weight
× 100%. (1)

2.3. Sample Preparation, ATR-FTIR Spectra Analysis, and
Model Building. To establish stable and precious predictive
models of nutritional components (DM, CP, EE, ash, NDF,
ADF, starch, Ca, and P), 974 WPCS samples (43 cultivars)
were collected from more than 200 dairy farms located in
Beijing, Tianjin, Ningxia, Inner Mongolia, Shandong,

Heilongjiang, and some other sites. Te relative information
of these samples is shown in Table 3.Te physical parameters
of fresh plants, including whole-plant height and weight,
kernel number, ear number, and weight, were measured
immediately at harvest, and the emergence rate was cal-
culated later. All the samples selected were chopped into

Table 1: Planting region information of corn silage from the entire plant.

Site grown Longitude and latitude Sample number Sample time
Jinan E 117°01′; N 36°65′ 60 2018.08.01–2019.08.02
Liaoning E 123°25′; N 41°48′ 60 2018.08.04–2019.08.05
Lanzhou E 103°40′; N 36°03′ 60 2018.08.08–2019.08.09
Ningxia E 105°50′; N 38°17′ 60 2018.08.10–2019.08.11
Zhangjiakou E 114°52′; N 40°47′ 60 2018.08.14–2019.08.15
Bayannur E 107°6′; N 40°34′ 60 2018.08.17–2019.08.18
Durbert E 123°47′; N 45°23′ 60 2018.08.20–2019.08.22
Wuxi E 119°33′; N 31°07′ 60 2018.08.25–2019.08.26

Table 2: Composition and nutrient levels of the basal diet.

Ingredients Contents % Nutrient level Contents %
Corn silage 25.13 DM 93.9
Corn 15.53 CP 17.30
Alfalfa hay 15.08 EE 5.01
Flaked corn 7.92 NDF 32.69
Soybean meal 7.88 ADF 20.23
Beet granules 5.77 Starch 24.42
Cotton seed 4.53 Ca 0.81
Brewer’s grain 4.02 P 0.43
DDGS 3.41 NEL/(MCal/kg)2 1.75
Cotton meal 2.93
Oat hay 1.9
Extruded soybeans 1.84
NaHCO3 1.13
Limestone 0.83
Rumen-pass fatty acid 0.63
Premix1 0.41
CaHPO4 0.29
MgO 0.28
KHCO3 0.21
Salt 0.21
Yeast culture 0.07
1One kilogram of premix contained the following: VA 200kIU, VD 60kIU, VE 1400IU, Cu (as copper sulfate) 520 ppm, Mn 760 ppm, Zn 2400 ppm, I 40 ppm,
Se 15 ppm, Co 10 ppm, and Fe 400 ppm (Cargill Co., Ltd.). 2NEL, net energy of lactation, a value calculated according to NRC 2001, while the other nutrient
contents were measured values.
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small particles (1−2 cm) and transported to the laboratory,
where they were ground through a 1.0mm screen for
chemical analysis, or a 0.25mm screen formolecular spectral
analysis.

ATR-FTIR spectra were acquired using a Fourier-
transform spectrometer (FOSS-DS-2500, FOSS Analytical
SA, DK 3400 HillerØed, Denmark). Two grams of each
crushed WPCS powder was placed into a glass sample.
During each scanning procedure, the ATR-FTIR spectra
were recorded with a wavelength in the range of
800–2500 nm at 1 nm intervals, and 32 scans at a resolution
of 8 cm−1 were taken per side and averaged into a single
spectrum. Each sample was scanned three times, and the
average value was used for spectrum analysis. Te spectral
absorbance values were obtained as log 1/R, where R is the
sample refectance. Te raw ATR-FTIR spectra of the 974
samples are shown in Figure 1.

Raw spectra measured using the ATR-FTIR spectrom-
eter included noise and extra background information in
addition to sample information. Terefore, preprocessing of
spectral data before calibration of a reliable, accurate, and
stable model was necessary. In the current study, mean
centering was applied to the spectral preprocess. A principal
component analysis (PCA) model was used to detect outliers
and reduce the dimensions of spectral data in the WPCS
samples through principal components and scores
(PCs) [27].

Te PLSR algorithm implemented in Unscrambler X
10.4 software (CAMO Software AS, Oslo, Norway) was used
to establish a predictable model. A three-layer structure
(input, hidden, and output layers) BP-ANN implemented in
MATLAB R2019a (MathWorks Inc., Natick, MA, USA) was
used as another predictable model [37]. To assess the ef-
ciency of the multivariate calibration models, two statistical
parameters, root mean square error of calibration (RMSEC)
and root mean square error of prediction (RMSEP), were
calculated according to the following equations (27):

RMSEC �
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where yi and y􏽢i are the predicted and measured values
(nutrient content of the WPCS), respectively.

Te correlation coefcients for calibration (R2c) and
prediction (R2p) are generally used to evaluate the corre-
lation between the results:

R2
� 1 −

􏽐
n
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2

􏽐
n
i�1(yi − y)

2􏼢 􏼣 × 100%, (3)

where y is the average measurement of the WPCS samples
and n denotes the number of WPCS samples in the dataset.
A model with high R2 and low RMSEC demonstrated su-
perior performance [30]. Te model may be used for crude
prediction if 0.66≤R2≤ 0.81, more accurate prediction if
0.82≤R2≤ 0.90, or normal analysis if R2≥ 0.91 [31].

2.4. Statistical Analysis. Data on nutritional components
and rumen degradation kinetic parameters were analyzed
using one-way ANOVA in SAS 9.2 software (SAS Institute,
Cary, NC, USA). Te Duncan method was used to analyze
the multiple comparisons based on the following model:

Yijk � μ + Ti + Dj + eijk, (4)

where Yijk represents the nutritional components and real-
time degradable rate, μ is the overall average, and Ti rep-
resents the diferent growing regions of alfalfa hay, Dj is the
random efect, and eijk is the model error.

For all the statistical analyses, a signifcant diference was
declared at P< 0.05, whereas a tendency was identifed at
0.05≤P≤ 0.1.

3. Results and Discussion

3.1. Efects of Nutritional Contents and RumenDegradation of
WPCS Grown in Diferent Regions. As the main roughage
source of ruminant feedstufs, nutritional content and ru-
men degradability have attracted widespread attention.
According to Table 4, except for CP, the nutrient compo-
nents of WPCS, including DM, NDF, ADF, EE, ash, and
starch of WPCS, varied considerably in diferent regions.
WPCS grown in Wuxi had the highest DM content
(93.89%), whereas Jinan (92.48%) had the lowest. Mean-
while, the highest NDF (47.19%) and ADF (26.77%) con-
centrations of WPCS were observed when they were
cultivated in Jinan. Te city of Ningxia had the highest EE

Table 3: Planting region information of samples for prediction.

Area grown City (sample number) Total number Sample time

Northeast region Harbin (196) 287 2019.08.12–2019.08.20Shenyang (191)

Northwest region Yinchuan (65) 138 2019.09.02–2019.09.07Lanzhou (73)

North China
Beijing (99)

265 2019.09.21–2019.09.30Tianjin (81)
Baotou (85)

East China Jinan (121) 198 2019.10.23–2019.10.29Nanjing (77)
Southwest region Chengdu (86) 86 2019.11.11–2019.11.13
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(3.32%), while Liaoning represented the opposite condition
(2.33%). Tese results imply that climate conditions such as
precipitation and growing temperature can afect internal
nutrient accumulation in WPSC [38]. Higher soil
pH accelerates the deposition of fatty acids in plants [39].
Tis means that the diferent EE contents of WPCS may be
the result of soil salinity.

Te WPCS from Jinan and Ningxia had higher ash
content than that from Lanzhou and Durbert. Tis result
may have contributed to the discrepancy in smooth har-
vesting ground. More soil was taken into the feedstufs, and
higher ash content was detected when ground fatness was
poor. Starch is one of the main factors that infuence cow
milking performance [40–42]. Te results related to starch
content in our study have verifed that alfalfa hay grown in
northeast China may have a greater milking quality.

Figure 2 shows that the DM degradability of WPCS
planted in Bayannur was substantially higher than that in
Jinan. Te starch content of WPCS from Bayannur was
also the highest after 6 h in the rumen. Te diference in
rumen degradation among various regions could be
explained by the efective area of rumen microbial in-
vasion to feed and the protein structure [36, 37]. Te
passage rate of digestation through the foreign stomachs is
triggered by particle size, rumen washout, rumen wall
distension, or papillae tactile signals that also occur in the
diferent results [43]. Sugar digestibility may be another
reason that led to the discrepancy [44], and it is worth
investigating in the future. In the current study, the 6 h
and 48 h rumen degradation of NDF and ADF in WPCS
from diferent regions refected their various nutritional
uses [45].
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Figure 1: Original spectrum of whole plant corn silage.

Table 4: Te nutritional contents of whole plant corn silage (DM basis) %.

Items DM CP NDF ADF EE Ash Starch
Jinan 92.48± 0.14c 7.81± 0.52 47.19± 0.92a 26.77± 0.13a 3.10± 0.10ab 4.44± 0.12a 28.15± 0.84a
Liaoning 93.78± 0.01ab 6.94± 1.96 35.49± 0.98c 18.5± 0.79e 2.33± 0.61c 3.96± 0.05b 28.58± 0.59a
Lanzhou 93.64± 0.45ab 7.77± 0.62 35.62± 0.47c 18.52± 0.30e 3.05± 0.08abc 3.37± 0.03d 27.99± 0.43ab
Ningxia 93.48± 0.02ab 7.73± 1.58 40.6± 2.22b 21.87± 1.39c 3.32± 0.03a 4.41± 0.03a 27.81± 0.46ab
Zhangjiakou 93.37± 0.06b 7.99± 0.36 34.52± 0.88c 24.87± 0.49b 2.78± 0.04abc 3.99± 0.05b 26.79± 0.12bc
Bayannur 93.4± 0.06b 7.19± 0.56 36.7± 1.00c 20.65± 0.62cd 3.17± 0.52ab 3.6± 0.03c 27.8± 0.49ab
Durbert 93.48± 0.12ab 7.05± 0.66 33.62± 2.42c 19.94± 0.59de 2.83± 0.13abc 3.25± 0.06d 26.27± 0.83cd
Wuxi 93.89± 0.03a 6.77± 0.62 35.76± 0.83c 19.4± 0.41de 2.55± 0.08bc 4.08± 0.01b 25.17± 0.39d
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3.2. Establishment and Validation of the PLSR Model. Te
substantial variation in nutritional indices and rumen
degradation indicated that it was necessary to evaluate the
nutrients in roughage before they were priced, formulated,
and used. However, traditional chemical methods not only
consume human, material, and fnancial resources but also
contribute to a potential environmental pollution caused by
reagents [18], which deviates from dairy farming profts and
is inconsistent with sustainable development. Te conven-
tional method resulted in some errors owing to diferent
experimenters and instruments. Terefore, a rapid, efcient,
and environment-friendly technique needs to be explored.
ATR-FTIR technology has expanded considerably world-
wide because of its ability for feld or online applications and
its simultaneous evaluation of large amounts of samples over
relatively short timescales. Terefore, 43 WPCS cultivars
from over 200 dairy farms located in fve Chinese regions
were collected to establish a model for predicting nutrients.

As shown in Table S1, a high variable coefcient (CV)
was calculated, especially the contents of Ca (33.58%), ash
(24.08%), and starch (23.64%), which were followed by ADF
(16.25%), EE (16.07%), P (15.74%), NDF (14.41%), CP
(12.62%), and DM (1.83%). Tis substantial range of

variation demonstrated that the WPCS samples (n� 974)
were broadly representative. Te variations in rumen deg-
radation and morphological characteristics are shown in
Tables S2 and S3.

PLSR is the most commonly used regression method for
quantitative analysis of the ATR-FTIR spectrum [46]. In this
study, cross-validation was performed on the calibration set
to select the optimal factors for the PLSR model [22]. With
the growth of the factors, the ascensional range of the
explained variance becomes relatively small. Te closer the
explained value is to 1, the higher the accuracy of the
constructed model. However, a wide gap between the cal-
ibration and prediction sets would be observed if many
factors contributed to overftting [25]. Terefore, the se-
lection of a strategic number of factors is more conducive to
the establishment of an optimum model. All the WPCS was
sorted randomly into N counterparts. Each part had similar
numbers and accounted for approximately 5% of the total
samples. Subsequently, one out of N was removed as the
prediction set, and the remaining samples were used as the
calibration set (for more details on the PLSR models, please
refer to Xing et al. [47]). RMSE and R2 were used as pa-
rameters to select the optimal calibration model, which was

0

20

40

60

80

100

D
M

 d
eg

ra
da

tio
n 

(%
)

24 h 30 h 48 h6 h

Jinan
Liaoning
Lanzhou
Ningxia

Zhangjiakou
Bayannur
Durbert
Wuxi

(a)

6 h
0

50

100

150

St
ar

ch
 d

eg
ra

da
tio

n 
(%

)

Jinan
Liaoning
Lanzhou
Ningxia

Zhangjiakou
Bayannur
Durbert
Wuxi

(b)

0

10

20

30

40

50

N
D

F 
de

gr
ad

at
io

n 
(%

)

24 h 30 h 48 h6 h

Jinan
Liaoning
Lanzhou
Ningxia

Zhangjiakou
Bayannur
Durbert
Wuxi

(c)

0

20

40

60

80

A
D

F 
de

gr
ad

at
io

n 
(%

)

24 h 30 h 48 h6 h

Jinan
Liaoning
Lanzhou
Ningxia

Zhangjiakou
Bayannur
Durbert
Wuxi

(d)

Figure 2: Rumen degradable characteristics of nutrients in whole plant corn silage: (a) DM degradation; (b) starch degradation; (c) NDF
degradation; (d) ADF degradation.
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then applied to the prediction set.Te smaller the RMSE and
the bigger the R2, the greater the prediction performance of
the model [48].

A summary of the optional factor number of diferent
nutrients in WPCS, in conjunction with the calibration and
prediction results, is shown in Table 5 and Figure S1. Te
PLSR model developed showed excellent prediction perfor-
mance for NDF, ADF, and starch of WPCS samples, with R2c
of 0.910, 0.921, and 0.933 and R2p of 0.904, 0.916, and 0.929,
respectively. Our results were partially similar to those of
Werbos et al.[49], who constructed optimal predictionmodels
for NDF and ADF. Te reason for this similar phenomenon
may be explained by the high contents of NDF and ADF.Te
existence of hydrogen-containing groups in them produced
pronounced absorption peaks in the near-infrared region.
ANKOM2000i (ANKOMTechnology, USA) was used for the
measurement of NDF and ADF, and six parallel replicates
ensured the accuracy of the analysis. However, He et al. [24]
reported that the predictive performance of NDF and ADF
contents was lower than that of other nutritional items. Tis
may be related to the source and number of samples, in
conjunction with the ATR-FTIR sensitivity as well as the
chemical determination accuracy [50].

A strong performance for predicting DM and CP was
displayed with R2c values of 0.836 and 0.903 and R2p values of
0.823 and 0.900, respectively. Ten, EE and ash were tested
according to values of R2c of 0.788 and 0.795, and R2p of 0.763
and 0.799, respectively. Anyway, the value ofR2 obtained in the
current study is usable for screening and most applications
according to Williams [51]. However, neither Ca nor P could
be forecasted based on the available data because of the low
values of R2. A likely explanation for this is the lack of
ATR-FTIR absorption features for minerals which may be
related to water absorption bands [22]. It means that the
potential limitations and drawbacks of ATR-FTIR technology,
such as its inability to accurately assess certain nutrients, are
not adequately addressed, and it is worth searching further.

3.3. Establishment and Validation of the BP-ANN Model.
TeBP algorithmwas initially proposed byWerbos [52], and
its application for the training of ANN was popularized by
Niu et al. [53]. Working as neurons in the brain, the
BP-ANN model is a powerful intelligent chemometric
method for data processing [28]. Te working principle of
BP-ANN was introduced by Pérez−Maŕın et al. [29]. In this
study, 974 WPCS samples were classifed into calibration
and prediction sets according to a ratio of 9:1. A total of 877
calibrations and 97 prediction set samples were obtained.
Before BP training, some parameters were set as follows: 20
principal components were used as input layers because they
explained more than 99% and close to 100% of the pop-
ulation variability. Te transfer function of the hidden layer
was transient, and the node number of the hidden layer was
6.Te transfer function of the output layer used purelin, and
the note number of the output layer was 1. Te algorithm of
LM (Levenberg–Marquardt) and ADAPT gradient descent
momentum learning function were employed for model
training; the training speed was 0.001.

Te measured and predicted values of the nutrient
content in the WPCS are shown in Figure S2. Table 6 shows
the evaluation parameters of the BP-ANN model. Tese
results indicate that the BP-ANN model exhibited excellent
prediction performance for CP (R2c� 0.945; R2p� 0.927),
NDF (R2c� 0.965; R2p� 0.935), ADF (R2c� 0.991;
R2p� 0.975), and starch (R2c� 0.972; R2p� 0.944). Te in-
dicators of DM (R2c� 0.900; R2p� 0.845), EE (R2c� 0.886;
R2p� 0.853), and ash (R2c� 0.902; R2p� 0.847) were also
well predicted. However, poor prediction performance was
observed for Ca (R2c� 0.730; R2p� 0.509) and P (R2c� 0.615;
R2p� 0.453). Te acquisition of successful prediction
models, especially NDF, ADF, and starch, may be a result of
large samples obtained from fve Chinese regions that
expressed an extensive geographical span. ATR-FTIR is
a typical indirect analytical technique, and its veracity is
strongly associated with the precision and accuracy of
conventional chemical measurements. In addition, we need
to continuously enlarge samples and upload data in the
system to guarantee predictive accuracy.

3.4. Performance Evaluation of the PLSR and BP-ANN
Multivariate Calibration Methods. Te evaluation parame-
ters for the comparison of the PLSR and BP-ANN models
are shown in Table 7. Te BP-ANN model exhibited more
efective prediction performance for the nutrient content of

Table 5: Performance of the PLSR model for prediction of nutrient
contents in whole plant corn silage.

Nutrition index Factors
Calibration set Prediction set
R2c RMSEC R2p RMSEP

DM 12 0.836 0.675 0.823 0.701
CP 11 0.903 0.407 0.900 0.418
EE 13 0.788 0.261 0.763 0.276
Ash 14 0.795 0.543 0.779 0.564
NDF 13 0.921 1.756 0.916 1.813
ADF 13 0.910 1.281 0.904 1.321
Starch 13 0.933 1.952 0.929 2.004
Ca 7 0.418 0.0615 0.376 0.064
P 10 0.499 0.029 0.477 0.030
1Factors: the optimal number of factors used in the PLSR model.

Table 6: Te performance of the BP-ANN model for prediction of
nutrient contents in whole plant corn silage.

Nutrition index Factors
Calibration set Prediction set
R2c RMSEC R2p RMSEP

DM 20 0.900 0.550 0.845 0.642
CP 20 0.945 0.293 0.927 0.519
EE 20 0.886 0.420 0.853 0.579
Ash 20 0.902 0.806 0.847 0.792
NDF 20 0.965 0.650 0.935 0.627
ADF 20 0.991 0.667 0.975 0.993
Starch 20 0.972 0.763 0.944 0.761
Ca 20 0.730 0.806 0.509 0.792
P 20 0.615 0.806 0.453 0.792
1Factors: the optimal number of factors used in the BP-ANN model.
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WPCS than the PLSR model because of the higher R2c and
R2p in conjunction with lower RMSEC and RMESP values.
Tese were strongly infuenced by the fexibility of the
BP-ANN method. BP-ANN could determine the linear and
nonlinear relationships between the ATR-FTIR spectrum
data and the corresponding physicochemical attributes [28].
Te use of BP-ANN reduced the training time and provided
higher computational efciency than the PLSR method.

4. Conclusions

In conclusion, the nutrient composition and rumen deg-
radation of WPCS grown in diferent regions showed
substantial discrepancies. Based on the representative data,
ATR-FTIR technology is utilized and considered as an ef-
fcient and simple tool for predicting nutritional compo-
nents of WPCS, which not only quickly optimizes feed
formulation but also improves the productivity of the dairy
industry. Furthermore, the application of the BP-ANN al-
gorithm could contribute to marked improvements in the
models developed and fnally can supply a more rapid and
reliable model because of its self-learning, self-organizing,
strong fault-tolerating, and adapting high nonlinear com-
puting abilities. Finally, extensive samples of WPCS were
collected from diferent regions and dairy farms to improve
the robustness and universality of the present study, which
also enhanced the practical applicability of the models we
explored.
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[29] D. Pérez-Maŕın, A. Garrido-Varo, J. E. Guerrero, and
J. C. Gutiérrez-Estrada, “Use of artifcial neural networks in
near-infrared refectance spectroscopy calibrations for pre-
dicting the inclusion percentages of wheat and sunfower meal
in compound feedingstufs,” Applied Spectroscopy, vol. 60,
no. 9, pp. 1062–1069, 2006.

[30] Association of Ofcial Analytical Chemists (Aoac), Ofcial
Methods of Analysis, Association of Ofcial Analytical
Chemists, Arlington, VA, USA, 20th edition, 2016.

[31] P. J. Van Soest, J. B. Robertson, and B. A. Lewis, “Methods for
dietary fber, neutral detergent fber, and nonstarch poly-
saccharides in relation to animal nutrition,” Journal of Dairy
Science, vol. 74, no. 10, pp. 3583–3597, 1991.

[32] Association of Ofcial Analytical Chemists (Aoac), Ofcial
Methods of Analysis, Association of Ofcial Analytical
Chemists, Arlington, VA, USA, 17th edition, 2000.

[33] A. Hristov, M. Harper, G. Roth et al., “Efects of ensiling time
on corn silage neutral detergent fber degradability and re-
lationship between laboratory fber analyses and in vivo di-
gestibility,” Journal of Dairy Science, vol. 103, no. 3,
pp. 2333–2346, 2020.

[34] C. J. Richards, J. F. Pedersen, R. A. Britton, R. A. Stock, and
C. R. Krehbiel, “In vitro starch disappearance procedure
modifcations,” Animal Feed Science and Technology, vol. 55,
no. 1-2, pp. 35–45, 1995.

Journal of Spectroscopy 9



[35] Y. L. Wang, W. K. Wang, Q. C. Wu et al., “In situ rumen
degradation characteristics and bacterial colonization of corn
silages difering in ferulic and p-coumaric acid contents,”
Microorganisms, vol. 10, no. 11, p. 2269, 2022.

[36] Y. Ma, M. Z. Khan, Y. Liu et al., “Analysis of nutrient
composition, rumen degradation characteristics, and feeding
value of Chinese rye grass, barley grass, and naked oat straw,”
Animals, vol. 11, no. 9, p. 2486, 2021.

[37] L. Qiu, M. Zhang, A. S. Mujumdar, and L. Chang, “Conve-
nient use of near-infrared spectroscopy to indirectly predict
the antioxidant activitiy of edible rose(Rose chinensis Jacq
“Crimsin Glory” H.T.)petals during infrared drying,” Food
Chemistry, vol. 369, Article ID 130951, 2022.

[38] A. Chebil, B. H. Hurd, N. Mtimet, B. Dhehibi, and W. Bilel,
“Economic Impact of Climate Change on Tunisian Agricul-
ture: Te Case of Wheat,” Vulnerability Of Agriculture, Water
And Fisheries To Climate Change, pp. 110–130, Springer,
Berlin, Germany, 2014.

[39] A. Jonker and P. Yu, “Te occurrence, biosynthesis, and
molecular structure of proanthocyanidins and their efects on
legume forage protein precipitation, digestion and absorption
in the ruminant digestive tract,” International Journal of
Molecular Sciences, vol. 18, no. 5, p. 1105, 2017.

[40] A. Jonker and P. Yu, “Te role of proanthocyanidins complex
in structure and nutrition interaction in alfalfa forage,” In-
ternational Journal of Molecular Sciences, vol. 17, no. 5, p. 793,
2016.

[41] L. M. E. Mammi, G. Buonaiuto, F. Ghiaccio et al., “Combined
inclusion of former foodstuf and distiller grains in dairy cows
ration: efect on milk production, rumen environment, and
fber digestibility,” Animals, vol. 12, p. 3519, 2022.

[42] G. Buonaiuto, A. Palmonari, F. Ghiaccio et al., “Efects of
complete replacement of corn four with sorghum four in
dairy cows fed Parmigiano Reggiano dry hay-based ration,”
Italian Journal of Animal Science, vol. 20, no. 1, pp. 826–833,
2021.

[43] D. Cavallini, A. Palmonari, L. Mammi, F. Ghiaccio,
G. Canestrari, and A. Formigoni, “Evaluation of fecal sam-
pling time points to estimate apparent nutrient digestibility in
lactating Holstein dairy cows,” Frontiers in Veterinary Science,
vol. 9, Article ID 1065258, 2022.

[44] A. Palmonari, D. Cavallini, C. J. Snifen et al., “In vitro
evaluation of sugar digestibility in molasses,” Italian Journal
of Animal Science, vol. 20, no. 1, pp. 571–577, 2021.

[45] P. P. Subedi and K. B. Walsh, “Assessment of sugar and starch
in intact banana and mango fruit by SWNIR spectroscopy,”
Postharvest Biology and Technology, vol. 62, no. 3, pp. 238–
245, 2011.

[46] D. F. Tang, Z. G. Chen, F. Li et al., “Construction of a near-
infrared prediction model for nutrient content in diferent
parts (tissues) of corn silage,” Pratacultural Science, vol. 38,
no. 9, pp. 1753–1761, 2021.

[47] L. Xing, L. J. Chen, and L. J. Han, “Rapid analysis of layer
manure using near-infrared refectance spectroscopy,” Poul-
try Science, vol. 87, no. 7, pp. 1281–1286, 2008.

[48] C. S. Wang, Determination and Prediction of Metabolizable
Energy Value and Amino Acids Availability of Diferent Source
Corn and Soybean Meal in Laying Hens, Sichuan Agricultural
University, Yaan, China, 2014.

[49] P. J. Werbos, Beyond Regression: New Tools for Prediction and
Analysis in the Behavioural Sciences, Harvard University,
Boston, MA, USA, 1974.

[50] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,”Nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[51] P. Williams, Near-infrared Technology  Getting the Best Out
of Light: A Short Course in the Practical Implementation of
Near-Infrared Spectroscopy for the User, Process Design Kit,
Draper, UT, USA, 2nd edition, 2004.

[52] H. Yang, J. Jin, F. Hou, X. He, and Y. Hang, “An ANN-based
method for predicting Zhundong and other Chinese coal
slagging potential,” Fuel, vol. 293, Article ID 120271, 2021.

[53] X. Niu, Z. Zhao, K. Jia, and X. Li, “A feasibility study on
quantitative analysis of glucose and fructose in lotus root
powder by FT-NIR spectroscopy and chemometrics,” Food
Chemistry, vol. 133, no. 2, pp. 592–597, 2012.

10 Journal of Spectroscopy




