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Soils exhibit structural heterogeneity across diverse spatio-temporal scales, yielding myriad of microhabitats, highlighting the need for
a nuanced understanding of the intricate interactions within the soil matrix. At the nanometer scale, the interplay among organic
matter (OM), mineral particles, and microbiota intricately govern the long-term destiny of soil carbon (C), nutrient cycling, and the
fate of both organic and inorganic pollutants. Notably, the sorption of soil organic matter (SOM) onto smaller clay particles and its
entrapment in microaggregates further contribute to this complex dynamic. Understanding these processes depends on recognizing
their scale-dependent nature, necessitating sophisticated techniques for investigation. Although various methods are employed across
scales, the current set of techniques still lacks the requisite sensitivity and resolution for microscale data collection. To address this
limitation, the adoption of novel microscopic and spectroscopic techniques capable of probing molecular, isotopic, and elemental
patterns at the micro to nano scale becomes imperative. Among these cutting-edge methodologies, the nano-scale secondary ion mass
spectrometer (NanoSIMS) emerges as a paradigm-shifting tool. Representing the latest evolution in ion microprobes, NanoSIMS
seamlessly integrates high-resolution microscopy and isotopic analysis, maintaining unparalleled signal transmission and spatial
resolution, reaching as fine as 50 nm. Its capabilities extend beyond conventional applications in science, as evidenced by recent
breakthroughs in utilizing NanoSIMS to study biophysical interfaces in soils. This article underscores the pressing need to advance the
incorporation of NanoSIMS as a pioneering instrumentation technique in soil studies. Furthering the implementation of this novel
instrumentation technique in soil studies will pave avenues and aid in the advancement of future research.
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1. Introduction

Soils constitute a fundamental component of the ecosystem,
embodying a complex amalgamation of organic and in-
organic constituents intricately intertwined. The organic
phase comprises partially recalcitrant substances derived
from plant litter, faunal biomass, and microbial activity [1].
Simultaneously, the major inorganic components, encom-
passing quartz, clay minerals, and oxides/hydroxides of iron
(Fe), manganese (Mn), and aluminium (Al), along with
carbonates, contribute to the soil matrix. During the process
of soil formation, these components interact, giving rise to
primary soil particles that coalesce into microaggregates.
Subsequently, these microaggregates undergo additional
stabilization through short-term binding agents such as
roots and hyphae, culminating in the formation of mac-
roaggregates [2]. Consequently, soils exhibit structural
heterogeneity across various spatial and temporal scales
[3, 4], with the processes governing the stabilization of OM
occurring at the submicron scale [5].

The distinctive binding characteristics of organic com-
ponents in soil, coupled with the adsorption capacities of soil
minerals, propel the creation of complex organo-mineral
assemblies, such as microaggregates [2]. These associations
play a pivotal role in stabilizing C against degradation,
representing a pathway for C sequestration, a critical
challenge in mitigating climate change [6]. Moreover, soils
host a vast microbial biodiversity comprising bacterial, ar-
chaeal, and fungal taxa, crucial for driving biogeochemical
cycles. The micro-level structuring of soils generates a va-
riety of microenvironments that impose selective influences
on the microbiome, playing a pivotal role in preserving and
sustaining soil microbiome diversity [7, 8].

Microbial communities mediate a myriad of soil re-
actions, and their interplay at small scale with the physical,
chemical, and biotic elements of the soil environment
regulates these reactions [9, 10]. However, understanding
the intricate biogeochemical processes in the rhizosphere
requires observations at the junction of soil, root cells, and
microorganisms, necessitating investigations at the cellular
scale [11-13].

Furthermore, the substantial hazard of heavy metal
(HM) contamination in soils extends globally, emanating
from agricultural, industrial, and mining activities [14, 15].
Excessive accumulation of HM in soils has far-reaching
consequences for food safety, human well-being, and eco-
system functioning [16, 17]. The complex nature of soils,
comprising minerals, OM, microorganisms, and other solid
components, determines the cycling activities of HMs [18].

Comprehension of the dynamics of HMs at composite
junctions is crucial for formulating ecological risk assess-
ments and effective pollution remediation [19, 20]. The
interactions among all the above mentioned components are
scale-dependent (Table 1), posing a challenge to
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understanding their behavior. The insufficiency of sensitive
techniques for data collection at the requisite scales hampers
progress in unraveling these complex interactions. There-
fore, to address these challenges, novel spectroscopic
techniques are essential for observing submicron-sized
organo-mineral associations, aggregate interiors, C trans-
fer, microbial ecology, and pollutant determination. The
advent of a new era in ion microprobes, specifically
NanoSIMS, presents a breakthrough in this regard.

NanoSIMS facilitates precise, spatially explicit analysis of
elemental and isotopic composition with a resolution
reaching 50 nm. Widely utilized in soil studies, NanoSIMS
employs a focused beam of ions to produce secondary ions
from the surface of the sample, facilitating high visualization
and isotopic characterization [21]. Its applications span
SOM dynamics, soil-root interactions, microbial ecology,
and metal behavior, providing substantial information about
the intricate associations that govern soil health, fertility, and
nutrient cycling [22-24].

The objectives of this paper were (i) to delve into the
principles and features of NanoSIMS, offering insights into
practical considerations of the instrumentation; (ii) to
provide a thorough summary of applications of NanoSIMS
in various facets of soil studies; (iii) the integration of
NanoSIMS with other techniques; (iv) review the chal-
lenges and opportunities associated with NanoSIMS, em-
phasizing its potential to propel our comprehension of soil
functioning at the sub-micron scale; (v) aims to enhance
the current understanding in the field by highlighting
recent progress and suggesting pathways for innovative
research, intending to improve our comprehension of the
complex interplay among components of soil and micro-
interface processes.

1.1. Methodology Used to Conduct Review Process. In this
study, we used a comprehensive methodology to analyze
the diverse areas of NanoSIMS research, primarily re-
volving on its employment within soil science in-
vestigations. Exploiting distinct scholarly databases
including Google Scholar, Springer Link, Web of Science,
and Scopus, we conducted a systematic search using
keywords such as “NanoSIMS,” “SIMS,” “soil science,” and
“microbiome.” Our search strategy aimed to identify peer-
reviewed literature encompassing research articles, review
papers, and book chapters pertinent to NanoSIMS appli-
cations in soil studies. A qualitative assessment was per-
formed on the acquired literature, with a focus on articles
published between 2000 and 2023, thereby capturing
contemporary development in the field while excluding
pre-2000 publications. A total of 145 relevant publications
were chosen for in-depth analysis, forming the basis of our
review. The systematic layout of subsequent sections is
delineated in Figure 1.
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TaBLE 1: Biological processes and methodologies at various spatial scales [21].
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FIGURE 1: Systematic layout of the subsequent sections.

2. Fundamental Mechanism and
Characteristics of NanoSIMS

The evolution of secondary ion mass spectrometry (SIMS)
has culminated in the development of NanoSIMS, a so-
phisticated and high-resolution spectroscopic technique
[25]. Distinguished by its ability to integrate high-resolution
microscopy and isotopic analysis, NanoSIMS delivers spa-
tially specific data pertaining to the molecular and isotopic
compositions of materials [26, 27]. This instrument deploys
a precise primary beam of ions and facilitates the efficient
extraction of secondary ions (ions extracted from the
sample), which are subsequently mass-analyzed (separation
of extracted ions based on mass to charge ratios) to yield
information with exceptional spatial resolution [26, 28]. The
optical configuration and segmentation of NanoSIMS are
illustrated in Figure 2, incorporating novel techniques that

yield significantly more data and offer spatial information in
three dimensions regarding various characteristics of the
sample. NanoSIMS analysis is inherently destructive,
wherein the sample undergoes continual bombardment with
robust ion sources (Cs* and O7), a process known as
sputtering (vaporization of solid material by ion energy). The
charge of the generated secondary ions is contingent upon
the primary ion beam used. For instance, Cs” and O~ ion
beams produce negative and positive secondary ions, re-
spectively [24, 29, 30]. Subsequently, the extracted secondary
ions are accelerated and directed to the magnetic sector mass
analyzer, where they are separated based on mass-to-charge
ratios [26]. This process generates spatially referenced
spectra, allowing the creation of maps for nearly any selected
atomic mass [25]. By employing a primary beam to bombard
the sample and examining the resultant secondary ions,
NanoSIMS has the capability to identify concentrations



ranging from trace isotopes to individual bacteria in the
order of mg/kg, facilitating the exploration of micro-site
heterogeneity within soil.

NanoSIMS possesses noteworthy attributes, including
superior lateral resolution (less than 50 and 200 nm for Cs*
and O~ ions, respectively) and remarkable sensitivity. It can
distinguish isotopes with similar atomic masses, such as "°C~
and ">C'H", as well as ">C'"°N~ and '*C'*N". The instrument
can set up to 7 signal detectors, simultaneously measuring
seven varieties of elements or isotopes with elevated ana-
Iytical accuracy, covering the elemental range from hy-
drogen to uranium [31, 32]. Consequently, scientists can
simultaneously observe various elements and isotopes in
a specimen, augmenting the understanding of the in-
teractions, makeup, and distribution of distinct soil con-
stituents. The NanoSIMS apparatus generates information
presented as 2 or 3-dimensional images, depicting the ar-
rangement of distinct sample elements [32-34]. The ad-
vancement in the field of analytical precision and improved
quality of image processing has additionally enhanced
correction, area of interest segmentation, and predictions
related to chemical composition [35, 36]. The concluding
stage in the procedure of NanoSIMS analysis encompasses
the interpretation of obtained data to derive informative
outcomes [35, 37]. Ultimately, NanoSIMS contributes in
advancing our comprehension of the 3-dimensional struc-
tural layout of the soil matrix, microbiome assemblages, and
the cycling of nutrients. The employment of techniques such
as stable isotope labeling and the NanoSIMS particle analysis
allows for the documentation of elemental and isotopic
patterns within sub-micrometer-sized soil particles, pro-
moting the investigation of the biogeochemical cycling of
SOM [38-40].

2.1. Preparation Protocols and Practical Aspects in Sample
Handling. Advancements in technology have significantly
improved our understanding of soil processes on a small
scale. However, incorporating NanoSIMS into soil studies
presents various practical challenges that must be addressed.
The initial and formidable task involves sample size and
preparation for NanoSIMS analysis. Effective preparation of
the sample is vital and encompasses methods like laser
ablation, chemical extraction, and mechanical grinding [41].
Meanwhile, the interpretation of acquired data heavily relies
on the methods of data acquisition and analytical techniques
[42, 43].

NanoSIMS analysis necessitates samples to be devoid of
moisture, possess stability, conductivity, and resilience to
high vacuum conditions (NanoSIMS operates at ultra-high
vacuum), and have a flat and highly polished surface to
minimize the charging effect that may occur during analysis
(Figure 3(a)). In order to keep high vacuum of the analysis
chamber, NanoSIMS cannot analyze liquid or volatile
samples, therefore, the sample should be nonvolatile. In
addition, previous studies have revealed that both the
precision and accuracy of SIMS were affected by smoothness
of the sample surface. Therefore, to obtain accurate results,
polishing is required. Furthermore, the charging occurs
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when an ion beam is used on non-conducive materials, thus
causing irradiation which leads to an accumulation of
electrostatic charges on the specimen’s surface. This build-
up of charge can make imaging and chemical analysis of the
sample challenging. Therefore, combining gold coating
(conductive layer on the sample surface) with an electron
flood gun can help reduce the charging effect (Figure 3(b)).
The sample must be <4 mm thick and 10 mm/13 mm/25 mm
size in a disc shape [3]. Figure 3(c) provides a visual rep-
resentation of the sample holder configuration along with
the diverse sample holders. The employment of resin-based
methods is common for exploring the intricate distribution
of microorganisms at a fine scale within soil [45-47].
NanoSIMS has the capability to simultaneously identify and
measure up to 5 or 7 ion species, enabling the concurrent
assessment of 2 to 5/7 isotopes originating from the same
analysed material. This functionality is essential, particularly
for samples vulnerable to damage from the primary ion
beam, considering the inherently destructive nature of
NanoSIMS analysis. Nevertheless, there are constraints
when simultaneously analyzing ion species, where the
separation of peaks is confined by the physical dimensions of
detectors and the magnetic field, and beyond mass 30, si-
multaneous analysis becomes challenging [3].

NanoSIMS stands out due to its capacity to function with
elevated mass resolution, all the while preserving remarkable
signal transmission and spatial resolution [26]. Optimal
adjustments are imperative to ensure effective differentiation
of isobars during the analysis. For instance, mass 26 might
encounter overlaps from 2N, B¢, and2C"”C'H, in-
troducing the possibility of interference with the targeted ion
species. This underscores the need for a substantial mass
resolving power to achieve adequate separation of peaks [3].
Furthermore, the naturally confined operational field of view
for the NanoSIMS instrument typically ranges between 5
and 50 ym. Herrmann et al. [3] found that the highest
practical field of view/ion image was about 30 x 30 um?, and
beyond this range, noticeable distortions were observed at
the edges. Consequently, meticulous techniques need to be
formulated to determine the sample position for NanoSIMS
analysis. Utilizing high-resolution microscopic visualization
enables the identification of relevant features necessary for
pinpointing regions of interest for NanoSIMS probing.
However, achieving this is especially demanding given the
minute spatial scales involved at the nano-level. The
NanoSIMS system incorporates an optical microscope
coupled with a CCD camera and a secondary electron de-
tector to aid in sample navigation (see Figure 2). Combining
NanoSIMS with other existing techniques becomes essential
to enhance the precision of the analysis.

2.2. NanoSIMS Employment in Soil Science: Exploring New
Dimensions. NanoSIMS proves to be a versatile tool in soil
science, significantly advancing our comprehension of
crucial soil processes (Table 2). Its exceptional sensitivity
enables the measurement of trace elements and isotopes,
along with the visualization of nutrient and SOM patterns at
the microscopic level. This proficiency offers novel insights



Journal of Spectroscopy 5

b ¢t
Primary —|

column ‘,:T;
] i “._._.1117 =) J
‘t, ~ f»s | @ﬁw
Coaxial opti 3 ~‘-__ Primary
oaxial optics ion beam
|
! J--S\--q
—— U |
Sample 1 F__ _:(-11]:-
Secondary ~ Secondary A |k
electron ion beam J’
detector ==

(a) (b)

FIGURE 2: (a) Diagrammatic representation of NanoSIMS ion optics of cameca NanoSIMS 50 L (b) the illustration portray a typical dynamic
SIMS apparatus, wherein energetic ions emitted from an ion gun (1 or 2) are targeted onto the sample (3), induces ionization and removal of
surface atoms through sputtering (4). Subsequently, the secondary ions are collected by ion lenses (5) filtered based on atomic mass by mass
analyzer (6), and directed towards an electron multiplier (7, upper part), a faraday cup (7, lower part), or a CCD screen (8), then generates
information as 2 or 3-dimensional images, depicting the arrangement of distinct sample elements [26, 27].
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F1GURE 3: Soil aggregates derived from a sandy soil enriched with 1*C and '°N labeled pinus ponderosa fine roots and needles [44]. In (a), a
NanoSIMS 2C™ image displays a 15 mm field of view of an uncoated soil aggregate, dried, and pressed into an aluminium stub. (b) illustrates
a NanoSIMS '*12C image of the same region, coated with gold and utilizing the electron flood gun. The image is a compilation of 50
individual 256 x 256 pixel planes (scans), with the scale on (b) indicating '*12C ratio values. Panel (c) provides information on the sample
holder configuration and various sample holders.
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into the dynamics of nutrient absorption and turnover
[31, 66]. NanoSIMS applications span a wide range, delving
into the exploration of SOM dynamics and cycling, con-
tributing innovative perspectives on the makeup, spatial
patterns, and micro-scale turnover of SOM. Furthermore,
NanoSIMS contributes to understanding nutrient cycling
and soil fertility [31, 67]. Exploring soil-root interactions,
NanoSIMS sheds light on how essential nutrients like ni-
trogen (N), phosphorus (P), and sulfur (S) are distributed
and taken up by roots, which, in turn, deepens our com-
prehension of mechanisms involved in nutrient uptake and
plant-soil interactions [68-70].

In addition, NanoSIMS serves as a valuable instrument
for evaluating the behaviour of metals in soils, sensing trace
elements even at exceedingly low concentrations. This ca-
pacity delivers crucial data for the examination of metal
distribution in soil, their accessibility to plants, and their
influence on soil fertility and plant growth [19, 24]. The
insights gained makes a substantial contribution to our
comprehension of how metals behave in soil and their
potential ecological ramifications [19, 24, 71, 72]. The po-
tential applications of NanoSIMS are individually discussed
below:

2.3. Microstructures, Mineral-Organic Matter Interactions
and Dynamics. NanoSIMS is indispensable in soil science
studies, primarily regarding micro-structure and the mineral
and organic matter interactions. This requirement rises
because of its unparalleled ability to provide high-resolution
imaging and quantitative elemental analysis at the nano-
scale. In the complex microstructure of soils, NanoSIMS
enables the visualization and characterization of individual
mineral particles, microbial cells, organic compounds, and
their spatial arrangements with outstanding detail.
NanoSIMS imaging offers a promising avenue for
studying the mechanisms governing mineral-organic matter
interactions, micro-scale soil architecture, and soil bio-
geochemistry at a scale previously unattainable with con-
ventional methods. The foundational work of Kubiena [73]
marked a systematic approach to in situ soil feature ex-
ploration. This involved the use of intact soil clods infused
with epoxy resin, allowing for thin sectioning and sub-
sequent examination via transmitted light microscopy. The
advent of analytical techniques like transmission electron
microscopy (TEM), atomic force microscopy (AFM), and
NanoSIMS has triggered a renaissance in micromorpho-
logical soil examination. Nevertheless, challenges arise as
mineral particles hinder experiments involving elemental
mapping and isotope tracing within intact soil matrices,
mainly due to difficulties in embedding, thin-sectioning, and
potential electrical charging effects [74]. Despite these
challenges, proof-of-concept studies have successfully
demonstrated the imaging of >N and *C isotope additions
in 2-dimensions using NanoSIMS within both natural or
synthetic soil matrices, providing insights into micro-scale
heterogeneities and microbial activity [3, 49, 50, 75].
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NanoSIMS has been pivotal in pushing forward our
comprehension of microscale dynamics of SOM and the
cycling of nutrients. This analytical technique has contrib-
uted significantly to unraveling the spatial arrangement,
makeup, and SOM transformation [63, 76], shedding light
on SOM formation and degradation mechanisms. Nano-
SIMS has proven instrumental in characterizing individual
molecules within SOM, discerning its origins, and eluci-
dating soil C cycling [65, 77]. The distinctive ability of the
technique in isotope imaging, exemplified by Herrmann
et al. [3], where NanoSIMS successfully identified isotope-
enriched bacterial cells in silty soil abundant in N, un-
derscores its excellence in exploring biophysical interactions
within soil on a smaller scale. Additionally, NanoSIMS
possesses the capacity to produce isotope maps, enabling the
monitoring of labeled compounds and providing un-
derstanding into the interactions among clay minerals, OM,
and Fe oxides at the nano-scale.

Explorations into mineral-organic associations have
traditionally relied on bulk analysis methods applied to
operationally defined physical fractions [78, 79]; however,
these techniques are inefficient to provide fine-scale in-
formation. In contrast, NanoSIMS presents an opportunity
to examine organo-mineral assemblages within intact spatial
structures. Leveraging stable isotope labeling experiments,
NanoSIMS images can unveil the dispersion pattern and
dilution of tracer materials as they penetrate the soil matrix
[75]. This approach also enables the investigation of whether
certain types of OM predictably associate with specific
mineral phases.

The unique capacity of NanoSIMS in achieving high
mass and lateral resolution allows the mapping of both
elemental and isotopic distributions, as demonstrated by
Heister et al. [1] in a study of artificial soil mixtures, by
studying the distinct derived ions of organic material
(2C"and2C"N")  and  minerals  (38Si",¥Al'°0",
and *°Fe’®07). In the context of this research, NanoSIMS
served as a tool for conducting microscale elemental
mapping of OM on mineral surfaces. The findings revealed
a distinct pattern where OM exhibited an inclination to
adhere to phyllosilicate clays in discrete patches, while small
ferrihydrite particles were enveloped by continuous coatings
of OM [1]. Such nuanced variations at the microscale would
have eluded detection through SEM/EDX measurements.

Another illustrative case involves the work of Mueller
et al. [49]. In their study, which employed resin-embedded
soil macroaggregates, they discerned diverse isotopic en-
richment at the microscale subsequent to application of
BBC/®N label to natural soils. Speculation arose regarding
the increased utilization of freshly added OM due to mi-
crobial activity, or the potential scenario where various soil
components exhibit distinct sorption capacities. The dis-
tinctive capability of NanoSIMS’s in identifying stable iso-
tope tracers at the microscale played a pivotal role in
confirming the anticipated physical dimensions of organo-
mineral associations in both studies.



Journal of Spectroscopy

Remusat et al. [75] employed a comparable methodology
to visualize intact soil particles that displayed minimal levels
of isotopic enrichment. These samples were collected from
a temperate forest 12 years following a °N litter labeling
experiment. Their observations delineated microenviron-
ment characterized by isotopic enrichment, referred to as
“I5N hot spots,” predominantly located on mineral surfaces.
Within one such microsite, the authors suggested a potential
association between '°N enrichment and the existence of
microbiome metabolites. This holistic strategy, amalgam-
ating NanoSIMS with alternative microscopic methods like
scanning electron microscopy-energy dispersive X-ray
spectroscopy (SEM-EDX), STXM/near edge X-ray absorp-
tion fine structure (NEXAFS) holds significant promise as
a lucrative avenue to deduce the spatial and molecular fate of
marked organic materials within a matrix. Furthermore, this
comprehensive strategy holds the promise of significantly
enhancing our understanding of the mechanisms involved
in sorption, occlusion, and decomposition processes oc-
curring at finely resolved scales.

Moreover, Kopittke et al. [80] examined the influence of
extrinsic expansion of C and N through a labeling experi-
ment in Vertisols and Alfisols. They employed NanoSIMS to
discern variations in mineral confinement between lately
introduced and the initial SOM. Over the course of 365 days,
the study revealed a preference of N-rich products to attach
themselves to mineral particles. The observation implies the
possibility that these products could give rise to novel
organo-mineral settings on the C-free mineral surfaces,
likely contributing to an enhanced storage of OC.

Numerous investigations employing NanoSIMS have
offered valuable understanding into the influence of mineral
protection on the fixation and transformation of OM at the
submicron level [40, 81-83]. Within the natural soil matrix,
NanoSIMS discoveries revealed the co-localizationof in-
digenous and recently introduced C with minerals, sup-
plying direct evidence that these minerals may act as favored
locations for preserving labile C [84]. Additionally, the in-
troduction of **Ca into soils stimulated microbiome activ-
ities and fostered connections among mineral and
byproducts of microbes, emphasizing the function of Ca as
a mediator in the intermixed biotic-abiotic soil organic
carbon (SOC) cycling [85]. While notable procedural
challenges persist, these examples underscore the potential
benefits of well-designed experiments utilizing NanoSIMS
data to unravel microbiological and chemical processes
within soil niches. Conclusively, NanoSIMS serves as
a crucial tool for advancing our understanding of soil
processes and their implications for ecosystem functioning
and environmental sustainability.

2.4. Soil Organic and Inorganic Pollutants. Soil pollution, or
contamination, arises from the inclusion of hazardous
compounds into soil ecosystem, originating from numerous
sources such as agricultural practices, improper waste dis-
posal, industrial activities, and urbanization [14]. In agri-
culture, soil functions as the cornerstone for crop
production, providing necessary nutrients, improving water

retention, and enhancing structural support for plant
growth. However, contaminated soils pose substantial harm
to crop health and productivity, leading to reduced crop
output and economic crises. Furthermore, soil pollution has
the potential to disturb soil ecosystems and biodiversity,
thereby precipitating enduring ecological deterioration. Soil
pollution, arising from both organic and inorganic pollut-
ants, poses a significant threat to global rice production in
agriculture. HM contamination, originating from industrial,
agricultural, and mining activities, stands out as a major
concern [15]. The detrimental effects of the undue accu-
mulation of HM in soils have far-reaching ramifications on
food safety, human well-being, and the ecological services
provided by the soil. Inorganic pollutants, particularly
metals and metalloids like lead (Pb) and arsenic (As), in-
cluding radioactive particles from nuclear incidents, con-
tribute to soil complexity and challenge soil scientists in
understanding their interactions [86-88]. Soils, intricate
ecosystems composed of minerals, OM, microorganisms,
and various solid components, feature inorganic and organic
clay particles critical to HM cycling activities [89]. A pro-
found comprehension of HMs at composite interfaces be-
comes imperative for conducting accurate environmental
risk assessments and implementing effective pollution re-
mediation measures [19, 20].

Notably, SIMS has been employed to scrutinize the fine-
scale patterns of metalloids, metals, halogens, and organic
pollutants in various organisms, plants, animals, and human
tissues [90-98]. The advanced analytical technique Nano-
SIMS, an extension of SIMS, proves invaluable in studying
metal behavior and distribution in soils [57, 66, 71].
NanoSIMS, with its high spatial resolution, facilitates in-situ
imaging of metals, such as plutonium, providing insights
into metal-soil component interactions and transport
mechanisms [99, 100]. The technique enables precise ob-
servations of spatial relationships between OM and in-
organic contaminants, offering the potential to assess
particle “hot spots” at micron level [101].

Studies [102-104] showcase the versatility of NanoSIMS
in exploring interactions of elements like As, Fe oxides, and
OM in different soil environments. These investigations
reveal variations in metal distributions among different
regions, emphasizing the role of specific soil components in
the availability and uptake of metals. The unique insights
provided by NanoSIMS extend to the micro-scale, revealing
variations in the metal distribution like copper (Cu), among
active soil components of different sizes, underscoring the
importance of understanding metal-soil component asso-
ciations [19, 59].

In essence, NanoSIMS stands as a potent tool, furnishing
invaluable insights into the molecular-level and nano-scale
element attributes within natural soils. Its remarkable at-
tributes, such as high spatial resolution, multi-element, and
isotope analysis capabilities, along with compatibility with
stable isotope labeling techniques, offer distinctive per-
spectives concerning interplay of nutrient cycling, SOM, and
microbiome functioning. Despite its restricted scanning area
compared to techniques like micro-XRF, NanoSIMS delivers
meticulous information about the form, distribution,
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mobility, and destiny of elements. This precision facilitates
an enhanced comprehension of soil functions in the envi-
ronment, encompassing their influence on plant growth, C
and nutrient cycles. By unveiling intricate interplay and
processes at these minute scales, NanoSIMS makes a sub-
stantial contribution to our in-depth understanding of the
ecosystem functioning.

2.5. Nano-Scale Dynamics of Plant-Soil Interactions.
Understanding root-soil interactions is critical for unveiling
the complex mechanisms governing plant growth and soil
health. The root-soil interface (rhizosphere) and the fungal
hypha-mineral interaction zone (hyphaesphere) are dy-
namic zones crucial for mineral weathering [105]. Soil-root
interactions are fundamental for plant growth, involving
intricate processes such as nutrient absorption, ion trans-
port, and microbial-root interactions [106, 107]. By in-
vestigating root-soil interactions, researchers can reveal how
plants adapt to diverse soil conditions, optimize resource
utilization, and respond to environmental extremes like
drought, salinity, and nutrient deficiency. Despite their
significance, studying these interfaces is challenging due to
soil opacity and potential disturbances affecting plant
growth and rhizospheric processes. The limitations of
conventional techniques like radiotracer imaging and
fluorescent labeling have prompted the exploration of ad-
vanced technologies such as NanoSIMS [108, 109]. Posi-
tioned between light microscopy and X-ray techniques,
NanoSIMS facilitates high-resolution, noninvasive mea-
surements, bridging the gap in understanding the transfer of
C and nutrients among soil, roots, and microbes. NanoSIMS
studies, exemplified by Clode et al. [110] and Rumpel et al.
[54], have provided submicron-level insights, detecting and
imaging N compounds within single microbes present in
both root and matrix. Rumpel et al. [54] utilized a 16 keV
primary Cs* ion beam for the acquisition of secondary ions,
specifically '>C,'*C, %0, %°CN, and CN, employing mul-
ticollection mode. Conversely, Clode et al. [110] employed
a Cs* primary ion probe with impact energy of approxi-
mately 16kV, applying a beam current ranging from 1 to 2
pA. The primary ion beam was focused to achieve a diameter
of approximately 100 nm. Concurrently, the secondary ions
12¢7,12CMN7, 2C°N, and 8Si” were  recorded  across
masses 12, 26, 27, and 28, respectively. The findings revealed
depth-dependent processes, suggesting varied interactions
between decomposed plant material, metal oxides, and OM
at different soil depths.

NanoSIMS has played a crucial role in advancing our
comprehension of soil-root interactions by enabling high
precision isotope imaging in biological specimens. Studies
by Vidal et al. [111] and Fang et al. [112] exemplify
NanoSIMS’ role in monitoring the destiny of marked root
secretions and assessing positional fluctuations in Fe/P ratios
near rice roots, respectively. The presence of roots enhances
mineral dissolution and availability, resulting in the for-
mation of minerals at the nano scale. This process also
supports the development of minerals characterized by
short-range ordering, facilitated by the secretion of
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substances from the roots [113]. Additionally, NanoSIMS
provides insights into the interplay between roots and
microbiome, the spatial nutrient arrangement, and the
absorption of nutrients. Notably, it revealed plants’ ability to
deliberately attract particular groups of microorganisms to
their roots, influencing a substantial impact on the overall
growth of plants [114, 115]. While NanoSIMS has enhanced
knowledge of specific facets concerning the interactions
between roots and soil, further research integrating Nano-
SIMS with complementary techniques like synchrotron
radiation X-ray fluorescence and X-ray absorption spec-
troscopy is crucial. This interdisciplinary approach is nec-
essary for a comprehensive understanding of the complex
dynamics involving plants, microorganisms, and soil, all of
collectively plays pivotal roles in shaping the growth of
plants. Addressing these gaps will allow for a mechanistic
understanding of physical, chemical, and biological mech-
anisms unfolding across diverse spatio-temporal scales in
the plant-microbe-soil continuum, paving the way for more
effective strategies in agriculture and environmental science
[116].

2.6. Microbial Activities in a Soil Matrix at Nano-Scale.
Microbes play important functions in numerous bio-
geochemical processes within soils, such as the de-
composition of OM, mineralization of nutrient, nitrogen
fixation, and the cycling of carbon, nitrogen, and other
essential elements. These activities are pivotal for balancing
soil fertility, supporting plant growth, and sustaining health
of ecosystem. Therefore, investigating microbial activities in
soil matrices at the nano-scale is of extreme value for
comprehending cycling of nutrients, ecosystem functioning,
and soil health. However, comprehending such dynamics
necessitate techniques capable of probing microbial in-
teractions and metabolic activities at high spatial resolutions.

NanoSIMS, a cutting-edge analytical technique, has
revolutionized the study of microbial interaction and nu-
trient cycling in various environments. The NanoSIMS
utilization in deciphering the processes of 1°N assimilation
by microbes represents a significant milestone in un-
derstanding the intricacies of the N cycle. Lechene et al. [117]
pioneered this field by employing NanoSIMS to investigate
>N uptake by Teredinibacter turnerae, shedding light on the
N-fixation characteristics of these cells. Subsequent studies
extended the scope, revealing the dynamic N flow from
symbiotic nitrifiers to the wood-eating marine bivalve
Lyrodus pedicellatus [118]. The versatility of NanoSIMS
becomes evident in complex microbial communities from
natural environments, where fluorescence in situ hybrid-
ization (FISH)-oriented technologies, coupled with Nano-
SIMS, elucidate N uptake by key players like Chlorobium
clathratiforme, Lamprocystis purpurea, and Chromatium
okenii in Lake Cadagno [119]. The ability of NanoSIMS to
offer resolution at the single-cell level proves invaluable in
visualization and quantification of N-assimilation [120].
Moreover, the technique captures the nuanced physiological
performance of organisms like Anabaena oscillarioides,
revealing heterogeneous assimilation of ®Nand!*C,
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operating not only within individual cells but also extending
to the larger intercellular landscapes [121]. The integration of
microsensors with NanoSIMS further contributes to our
understanding of significant players like Aphanizomenon
sp. and Nodularia spumigena in Baltic Sea N-fluxes
[122, 123].

Beyond N-cycling, NanoSIMS proves instrumental in
unraveling microbial interactions, unveiling the intricacies
within syntrophic and trophic connections, and the spatial
dynamics in environmental microorganisms. The study of
interplay among Anabaena and a heterotrophic epibiont,
employing '°N-dinitrogen and '*C-bicarbonate, un-
derscores the significance of diatom symbioses, influencing
N pools and the metabolism of cyanobacterial symbionts
[120, 124]. Furthermore, the real-time examination of N,
fixation activity in Elkhorn Slough filamentous
cyanobacterium-1 (ESFC-1) using NanoSIMS reveals its
status as the most dynamically engaged cyanobacterial
diazotroph within the mat of Elkhorn Slough [125]. The
comprehensive insights provided by NanoSIMS in un-
derstanding these intricate microbial processes highlight its
indispensable role in advancing our knowledge of microbial
ecology and nutrient cycling. As NanoSIMS continues to be
refined and applied in diverse environments, its contribu-
tions promise to deepen our comprehension of the com-
plexities within microbial communities and their roles in
nutrient transformations.

2.7. Integration of NanoSIMS with Diverse Analytical
Approaches. Integrating NanoSIMS with other analytical
techniques provides a powerful technique for acquiring
comprehensive insights into complex geological, biological,
and environmental systems. NanoSIMS, with its un-
paralleled spatial resolution and elemental analysis capa-
bilities, provides detailed information about isotopic
composition, elemental distribution, and molecular dy-
namics at the nano-scale. However, no single analytical
approach can comprehend the entire complexity of such
systems. Therefore, integrating NanoSIMS with comple-
mentary techniques enables researchers to leverage the
strengths of each technique and overcome their individual
limitations.

In the pursuit of enhancing the precision of NanoSIMS
analysis, various established methods, including digital
image analysis and scanning and transmission electron
microscopy, have been employed for meticulous sample
characterization. The aim is to discern areas ideal for a more
detailed NanoSIMS analysis. These imaging techniques are
seamlessly integrated with NanoSIMS, leveraging shared
sample preparation requirements. Moreover, the fusion of
NanoSIMS techniques with FISH has proven successful in
examining microbial behavior at a sub-cellular magnitude.
This approach involves the use of oligonucleotide probes
equipped with distinct elemental markers, enabling the
concurrent validation and characterization of specific mi-
crobes. The amalgamation of NanoSIMS and FISH brings
forth numerous benefits when compared to alternative
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single-cell methodologies, encompassing superior spatial
precision, the capacity for multi-element or isotope exam-
ination, and quantification. Prominent combinations of
NanoSIMS and FISH methodologies include improved el-
ement labeling-catalyzed reporter deposition fluorescence
in situ hybridization (EL-FISH) [124], catalyzed reporter
deposition-fluorescence in situ hybridization (CARD-FISH)
[126, 127], and halogen in situ hybridization (HISH) [128],
among others, present novel avenues for investigation.
Notably, Gold-ISH, a novel non-halogen technique for
phylogenetic probing, stands out as the most recent FISH-
centered method complementing NanoSIMS probing [129].

Furthermore, TEM, SEM, and scanning transmission
electron microscopy (STEM) are pivotal in pre-identifying
microorganisms. These techniques furnish information re-
garding the dimensions and structure of microbiome, aiding
in the investigation of cellular specimens and the precise
localization of individual cells. Samples prepared for TEM
imaging by embedding in paraffin or epoxy can be seam-
lessly repurposed for NanoSIMS investigations. Inductively
coupled plasma-mass spectrometry (ICP-MS) and isotope
ratio mass spectrometry (IRMS) further contribute to
comprehensive isotopic bulk analysis. They are exemplified
by their ability to identify alterations in marked substrates
and net-fixation values, ensuring accuracy in isotopic am-
plifications. X-ray and STXM absorption near-edge struc-
ture play a pivotal role in mapping the distribution of OC
and establishing the oxidation states of minerals or prevalent
organic components. The strategic combination of X-ray
analysis with NanoSIMS facilitates the mapping of essential
elements for cells, along with macro-elements of physio-
logically relevance like P, S, and silicon (Si) [130]. A note-
worthy study by Remusat et al. [75] showcased the viability
of NanoSIMS inquiries into distinct microstructures of soil
deposited on a clear surface. The synergy of NanoSIMS and
STXM-NEXAFS culminates in more resilient findings
compared to standalone NanoSIMS analysis. Additionally,
the microscopic observations facilitated by SEM and TEM
open new avenues for investigating processes in geo-
chemistry and ecology on a sub-micron scale.

Therefore, the strategic combination of NanoSIMS with
these techniques allows for a thorough comprehension of
intricate dynamics within soil ecosystems. Table 3 illustrates
the utilization of different spectroscopic and imaging
methods in combination with NanoSIMS to analyze soil
components. The collaboration across disciplines is crucial
in deciphering the complex connections existing between
microbiome and their physical and environments. The
concurrent examination of numerous elements through
NanoSIMS has yielded valuable understandings into the
spatial arrangement of elements [31, 144]. Challenges in
experimental planning, sample management, and connect-
ing nano-level observations to processes at the ecosystem
scale underscore the need for extensive investigations into
soil biogeochemical phenomena [75, 145], emphasizing the
importance of NanoSIMS integration with other techniques
in advancing soil sciences.
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2.8. Pros and Cons of NanoSIMS. NanoSIMS has established
itself as a potent instrument in soil science, offering high
spatial resolution for elemental and isotopic composition
analysis. At its core, NanoSIMS functions by bombarding
a sample surface with a primary beam of ions, primarily
consisting of Cs* ions, which results in the extraction of
secondary ions. These secondary ions are then analysed
using a mass spectrometer, allowing for the precise de-
termination of their mass-to-charge ratios and thus their
elemental and isotopic identities. Its ability to provide de-
tailed information at the microscale has led to valuable
insights into soil properties and processes. The technique
excels in visualizing microhabitats, studying microbial ac-
tivities, and exploring the interactions between OM and
minerals. By imaging the spatial distribution of elements
such as C, N, and oxygen, NanoSIMS can provide insights
into SOM dynamics, microbial activity, and nutrient cycling
processes. The NanoSIMS fusion with FISH and various
methodologies has expanded its application range, enabling
simultaneous localization and identification of microor-
ganisms with unique elemental tags. Moreover, NanoSIMS
facilitates the analysis of multiple elements, contributing to
a holistic comprehension of soil ecosystems.

Despite its strengths, NanoSIMS has notable drawbacks
and limitations that necessitate careful consideration. The
requirement for a minute specimen size may prove un-
feasible for heterogeneous samples, and the laborious na-
ture of the preparation process could pose challenges. The
preparation of samples assumes a pivotal role in NanoSIMS
analysis, particularly when dealing with intricate and di-
verse soil samples. This process can be both time-
consuming and exacting, exerting a substantial impact
on the precision of the obtained results [142]. The elevated
spatial resolution might fall short for specific soil micro-
environments characterized by diverse chemical compo-
sitions or structures. Isobaric interferences, occurring when
two ions possess identical mass-to-charge ratios, have the
potential to cause misinterpretations of data in intricate soil
samples. Accurate quantification of isotopic composition
faces challenges due to dead-time correction, matrix effects,
and surface sensitivity. Overcoming these limitations often
involves integrating NanoSIMS with complementary an-
alytical techniques to provide a detailed and accurate
specimen analysis. Overall, NanoSIMS holds potential for
advancing our understanding of soil processes at the mi-
croscale, offering unprecedented information into the
complex interactions between soil components and the
environment. However, like any analytical technique,
NanoSIMS has its pros and cons, which must be carefully
considered when interpreting the outcome and designing
experiments in soil science research.

3. Conclusive Remarks and Future Prospectus

NanoSIMS holds immense promise for advancing our un-
derstanding of soil ecosystems, offering avenues for
groundbreaking insights. To fully unlock its potential,
several key areas warrant further exploration and
development.
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(1) Integrating NanoSIMS with methodologies like
stable isotope probing is crucial to comprehensively
unravel soil microbial functions.

(2) Standardized procedures for both sample prepara-
tion and analysis are imperative for data
reproducibility.

(3) Investigating spatial and temporal scales is necessary
for reliable conclusions on soil processes. Bridging
NanoSIMS data with ecosystem function, an aspect
that often lacks clarity, necessitates further explo-
ration. Addressing these challenges has the potential
to markedly improve our comprehension of soil
systems.

(4) Field applications of NanoSIMS should be explored,
as evaluating its applicability and potential in real-
world field conditions can transition from a pre-
dominantly laboratory-based tool to a field-ready
technology.

Despite challenges in cost and technical knowhow,
NanoSIMS can significantly contribute to soil science.
Training, collaboration, and standardization efforts are vital
for overcoming NanoSIMS-associated challenges. Future
directions involve advancing imaging, refining analytics,
integrating methods, and applying NanoSIMS for bio-
geographic and metagenomic analyses. These endeavors are
expected to enhance our comprehension of soil ecology,
impacting nutrient management and sustainable agriculture.
The integration of molecular-scale technologies with com-
putational modeling is poised to open new frontiers in the
exploration of ecological functions within soils. Overall, the
future trajectory of NanoSIMS in soil science holds signif-
icant potential for transformative contributions across di-
verse areas of research and practical applications.
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