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Soybean saponin is a natural antioxidant and is anti-infammatory. Hyperspectral analysis technology was applied to detect
soybean saponin content rapidly and nondestructively in this paper. Firstly, spectral preprocessing methods were studied, and
standard normal variable (SNV) was used to remove noise information. Secondly, a two-step hybrid variable selection approach
based on synergy interval partial least squares (SiPLS) and iteratively retains informative variables (IRIV) was proposed to extract
characteristic variables. Ten, the ensemble learning model was constructed by back propagation neural network (BPNN), deep
forest (DF), partial least squares regression (PLSR), and extreme gradient boosting (EXG). Finally, image information was
combined into spectral data to improve model accuracy. Te prediction coefcient of determination (R2) of the fnal model
reached 0.9216. It can provide rapid, nondestructive, and accurate detection technology of soybean saponin content. A com-
bination of spectral and image information will provide a new idea for application of hyperspectral.

1. Introduction

Soybean is a vitally economic food crop. Because of con-
taining protein, fat, saponin, and amino acid, soybean is
mainly used for oil production, edible proteins, building
materials, and cosmetics [1, 2]. Soybean saponins are
metabolic products during the growth of soybean, and their
content range from 0.6% to 6.2% [3, 4]. Soybean saponin has
multifaceted physiological functions such as anticancer,
antiaging, antiallergic, and antiviral efects [5–8]. Prolonged
consumption of soybean saponin can efectively mitigate
diseases like hypertension, hyperlipidaemia, and obesity
[9–11]. Soybean saponin content detection is important for
quality testing for soybean breeding.

Traditionally detection methods of soybean saponin
content rely on wet chemical methods, such as high-
performance liquid chromatography [12], colorimetry
[13], and liquid chromatography mass spectrometry [14].
However, these methods have shortage of cumbersome
procedure, high cost, or subjective results [15]. Terefore, it

is crucial to develop a rapid, accurate, and low-cost method
for detecting soybean saponin content.

In recent years, spectral analysis techniques have been
widely used in the detection of crop nutrient content due to
their advantages of fast analysis speed, easy operation, and
no sample damage. Compared to near-infrared technology,
hyperspectral technology ofers wider wavelength range and
higher information localization accuracy. Because of ac-
quisition of spatial distribution information of spectral data,
hyperspectral technology can collect pixel-level spectral data
of crops, so it has signifcant advantages in crop analysis.
Guo et al. [16] detected the moisture content of individual
soybeans based on the interval variable iterative space
shrinkage approach and successive projection algorithm by
using a visible-near-infrared hyperspectral imaging device.
Song et al. [17] conducted nondestructive detection of
moisture and fatty acid content in rice using a near-infrared
spectroscopic imaging device combined with PLSR. Zhang
et al. [18] detected 25 diferent nutrients in soybeans by near-
infrared refectance spectra including soybean saponin with
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R2 of 0.35. Berhow et al. [19] developed a multiple linear
regression model for detecting the content of soy isofavones
and saponins based on 3200 soybean samples. Te model
efectively detected isofavone, but R2 for the soybean sa-
ponin content detecting model was only 0.6.

Although spectral and image information combination
will bring larger amount of data, it provides higher spatial
resolution and extract light absorption and surface gray-
scale variations of measured substances. Zheng et al. [20]
detected soil total nitrogen content by combining infrared
spectrum and image information with R2 value of 0.815 and
root mean square error (RMSE) of 0.153. Wang et al. [21]
identifed damage of soybean using high-quality spatial
resolution-hyperspectral imaging images by combination
of hyperspectral imaging and RGB images with model
accuracy of 98.36%.

Compared to single-spectrum data, combination of
spectral and image information can reduce the impact of
diferent spectra from the same substance and the same
spectrum from diferent substances. Additionally, visual
characteristics would be preserved better by combining spectral
and image information because of higher spatial resolution.

Gao and Xu [22] compared single spectral information
to combination of spectral and texture colour information in
soluble solid content in red earth grapes and showed that
combination of spectral and image information efectively
improved the model’s detection capability. Xu et al. [23]
applied the spectral and image information combination
method to detect nitrogen content in rice leaves at diferent
growth stages. Te results showed that a combination of
spectral and image information reduced interference from
soil and water, and R2 increased by 0.05 to 0.09, while RMSE
decreased by 0.011 to 1 for various models.

Accuracy of soybean saponin content detection was not
high in previous studies. Tat is because the content of
saponin in soybean is small and single spectral information
is insufcient to express saponin. In this paper, spectral and
image information in hyperspectral data was combined to
improve the accuracy of the soybean saponin content de-
tection model. Spectral preprocessing and spectral data
feature band selection, ensemble leaning model with skip
connect, and multihead self-attention mechanisms were
studied to further improve model accuracy.

2. Materials and Methods

2.1. Test Materials and Data Acquisition

2.1.1. Soybean Sample. Soybean samples are provided by the
Agriculture College of Northeast Agricultural University.
Ten types of soybeans are selected including Beidou 5, Sui
03-3952, Hongfeng 3, Chundou 1, Dongnong 60, Beidou 14,
Huajiang 1, L-58Keburi, Zhongpin 03-5373, and Dongnong
50. 30 samples without defects are collected for each variety,
and total 300 soybean samples are used in this paper. All
samples are stored in a cool and well-ventilated place. Te
spectral-physicochemical value cooccurrence distance
(SPXY) algorithm is used to divide samples into the training
set and test set in ratio of 7 : 3.

2.1.2. Spectral and Image Data Acquisition. Hyperspectral
data of soybean samples are collected by Hyperspec III
hyperspectral imager form HEADWALL Company. Sam-
ples are placed on the tray of moving platform with moving
speed of 3.5mm·s−1, and camera exposure time is 38.84ms.
Refection values of soybean samples are used as spectral
information with 495 bands from 463 nm to 957 nm. Te
RGB image of soybean is output at the same time.

After collection of spectral data and image data, spectral
refectance values of each sample are extracted by ENVI 5.3
from regions of interest (ROI). Although refectance rates
may vary across diferent positions on soybean, overall trend
remains consistent, which does not afect subsequent
modelling results [24]. In this study, ROI is selected as
rectangular areas with a size of 10×10 pixels in the soybean
centre. Te obtained spectral refectance value is adjusted
using the black and white correction method to obtain
accurate spectral refectance. Te formula for black and
white correction is as follows:

R �
I − B

w − B
, (1)

in the equation, R represents soybean spectral refectance, I

represents soybean spectral refection values, w represents
the spectral refection value of the whiteboard, represents the
spectral refection value of the blackboard.

2.1.3. Determination of Soybean Saponin Content. In this
study, soybean saponin content is measured using liquid
chromatography-mass spectrometry (LC-MS). 100mg sam-
ple is placed in a 1.5mL centrifuge tube and mixed with
300 μL of 75% methanol/water mixed solvent (containing
0.1% formic acid, v/v). Te mixture is vortexed for 30 seconds
and subjected to ultrasound treatment at 20°C for 15minutes
in a water bath. After vortexing for additional 2minutes, the
sample is centrifuged at 12,000 rpm at 4°C for 20minutes.
Ten, we take the supernatant and test on the machine.
Acquired mass spectrometry raw data are processed using
Agilent Profnder software. Data processing steps include
retention time correction, peak identifcation, peak extraction,
peak integration, and peak alignment. Agilent Massive Par-
allel Processor software is used for statistical processing and
combined with the KEGG database, and substance identif-
cation is conducted to determine saponin content.

2.2. Image Processing and Feature Extraction. A fowchart of
image processing procedure is illustrated in Figure 1. Firstly,
the acquired image is converted into a grayscale image.
Subsequently, the nonlocal means denoising algorithm and
the Gaussian flter are applied to eliminate noise in the
grayscale image to facilitate subsequent edge detection re-
search. Finally, soybean contour is extracted using the
adaptive threshold algorithm [25].

After edge detection, feature information of soybean
samples is extracted including area, perimeter, major axis,
minor axis, roundness, eccentricity, aspect ratio, rectangle-area
ratio, circle-area ratio, equal-area-circle diameter, and edge
variation coefcient. Meanings of this feature information are
described in Table 1.
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2.3. Spectral Data Preprocessing. Spectral data preprocessing
is essential forminimizing errors duringmodel building. Noise
information would be included in spectral data such as sample
background, dispersive light, signal noise, and so on. To reduce
impact of abovementioned unrelated factors on the detection
model and enhance spectral characteristics, removing noise
information by spectral preprocessing is necessary. Common
preprocessing methods include Savitzky–Golay smoothing
(S-G), SNV, de-trending (DT),multiplicative scatter correction
(MSC), baseline correction (BL), frst derivative (FD), and
second derivative (SD). Tese methods efectively eliminate
noise from diferent perspectives and highlight characteristics
of spectral data [26–29]. In this study, these methods are
applied into soybean saponin detection and the selected
suitable algorithm.

2.4. Dimensionality Reduction of Spectral Features.
Full-band spectra contain a lot of redundant information,
which makes the detection model complex and inaccurate.
In order to reduce data dimension and obtain main char-
acteristic bands of the spectrum, spectral data feature band
selection should be done before model building. Because of
selecting several spectral intervals related to the tested
substance, models based on the SiPLS band selection al-
gorithm are usually with high accuracy [30]. Extracted
spectral features are stable and continuous, but there is still
some redundant spectral information. IRIV iteratively re-
duces spectral data dimensionality by iteratively building
informative variables and keeping spectral feature wave-
lengths with high weights in feature subsets. After removing

the irrelevant variables and interference variables, the last
group of variables is processed by reverse elimination to
obtain more simplifed spectral characteristic wavelength
[31]. However, due to multiple iterations, applying IRIV to
the full band spectral set needs large calculation. In this
study, method combination SiPLS and IRIV was proposed to
select the spectral data feature band. Selecting valid intervals
by SiPLS before selecting variables by IRIV can improve
model ftting ability.

2.5. Data Combination. Due to distinct feature attributes of
spectral and image information in soybeans, normalization
is necessary before using spectral and image information as
combination input for the detection model. Spectral and
image information is scaled to map both datasets to [0, 1]
interval [32]. Min-max normalization is used for data
combination processing and its formula is as follows:

x
∗

�
x − xmin

xmax − xmin
, (2)

in the equation, x∗ represents transformed data, original x

represents feature data, xmax represents maximum charac-
teristic data, and xmin represents minimum characteristic data.

2.6. Model Construction and Evaluation. Te two-layer
stacking ensemble learning framework is built to detect
soybean saponin content. Te framework consists of three
base learners including DF, PLSR, and EXG. Meta-learner is
PBT-BPNN which is the learning rate of BPNN was

Grayscale
Denoising
Processing

Contour
Extraction

Figure 1: Schematic diagram of image processing.

Table 1: Meaning of soybean image feature information.

Feature information Meaning
Area Number of pixels in the soybean outline area
Perimeter Number of pixels of the soybean contour curve

Major axis Number of pixels of the major axis of the minimum circumscribed ellipse of
soybean

Minor axis Number of pixels of the minor axis of the minimum circumscribed ellipse of
soybean

Roundness
R � 4πS/L2. Among them, R represents roundness, and it is similar to the circle if R
is closer to 1; L represents the perimeter of the soybean outline, π represents the pi

ratio, and S represents the soybean area
Eccentricity Eccentricity of the smallest circumscribed ellipse of soybean

Aspect ratio Ratio of the major axis and minor axis of the smallest circumscribed ellipse of
soybean

Rectangle-area ratio Ratio of the area of the smallest circumscribed rectangle of soybean to the area of
soybean

Circle-area ratio Ratio of the smallest circumscribed circle area to the soybean area
Equal-area-circle diameter Diameter of a circle equal to the soybean area

Edge variation coefcient Ratio of standard deviation and mean value of each pixel point from the center of
soybean image gravity to its edge
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optimized by the population-based training (PBT) method.
Efects of spectral information and combination information
are compared in this study. Te ensemble learning model
construction process is illustrated in Figure 2.

Skip connect [33] and multihead self-attention mecha-
nism [34] are introduced into BPNN in this paper, in order
to enhance generalization and the expressive ability of
BPNN, as well as prevent overftting and gradient explosion
in deep networks. BPNNwith an optimized hidden layer can
improve the detection capability of the network because of
its deeper network architecture. Te optimized structure of
the hidden layer is shown in Figure 3. Te input data se-
quence of this layer obtains a set of sequences by traditional
BPNN nonlinear computation, and element relationships of
the sequences are captured by the multihead self-attention
mechanism. Tis ensures that no information was forgotten
by the neural network after computations of multiple hidden
layers, thus preventing data loss and decline in the model
detection ability. Te original sequence is added by skip
connect to enhance the neural network’s memory of the
original input sequence. It can avoid weight reduction of
information after multiple nonlinear transformations and
solve the gradient explosion phenomenon and network
performance degradation phenomenon in deep neural
networks.

Te structure of the multihead self-attention mechanism
is shown in Figure 4. Given an input sequence, it is mul-
tiplied with three trainable parameter matrices to yield three
vectors, query, key, and value. Tree vectors are multiply
processed by parallel computations using self-attention with
distinct parameters for each computation, in order to em-
phasize diferent features of the sequence. Finally, results of
multiple computations are concatenated and linearly
transformed. Tree vectors are frst linearly transformed for
each computation. Ten, transformed query and key vectors
are multiplied to compute attention scores. Te scores are
scaled and multiplied with mask for each element to prevent
excessively attending to certain elements during training.
Te process can also enhance the generalization capability of
the model. Attention weights are obtained by inputting
processed attention scores to SoftMax and multiplied to the
corresponding value vector and summed to be output.

Model performance is evaluated based on R2, RMSE, and
ratio of prediction to deviation (RPD) of the model for test
set. R2 represents the ftness of the model and indicates
higher ftness when its value is closer to 1, i.e., independent
variables can better explain the variation of the dependent
variable. RMSE is commonly used to evaluate the model
error and represents higher model accuracy and less error
when its value is closer to 0. RPD is an academic metric that
quantifes the predictive accuracy and reliability of a model.
When the RPD is less than 2.0, the model is generally
considered incapable of reliable quantitative prediction;
when the RPD ranges between 2.0 and 2.5, the model can
make rough quantitative predictions; and when the RPD
exceeds 2.5, the model is deemed to have good predictive
accuracy.Te result takes the average value of three tests. R2,
RMSE, and RPD are mathematically formulated by equa-
tions (3)–(5).

R
2
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, (5)

in the equation, m represents the sample size, yi represents
the actual value, 􏽢y represents the model calculated value, and
y represents the average value of actual values.

3. Results and Discussion

3.1. Dataset Partitioning Results. SPXY is a kind of dataset
partitioning algorithm based on the Kennard Stone (KS)
algorithm, which is optimized by combined spectral data
(X) and chemical values (Y) in sample distance calcula-
tion. SPXY enhances model robustness and reduces re-
gression errors because of covering multidimensional
space efectively. It also mitigates the impact of imperfect
dataset partitioning on fnal results [35]. Dataset parti-
tioning results by SPXY are shown in Table 2 and Figure 5.
From Table 2 and Figure 5, it can be observed that the
soybean saponin content of the test set fell within the
range of the training set. It indicated that samples were
representative and SPXY method for dataset partitioning
was rational.

3.2. Image Information Correlation Analysis. Correlation
analysis results between soybean image feature information
and soybean saponin content are presented in Table 3.
Correlations between each image feature and soybean
saponin content were diferent. Among eleven image
features, the largest absolute correlation coefcient was
observed for rectangle-area ratio, which was 0.289. Despite
being highly signifcant, the Pearson correlation coefcient
was relatively small. Tis may be due to the fact that the
Pearson correlation coefcient measures linear relation-
ships between two variables, and a larger coefcient in-
dicates stronger linear correlation. However, if relationship
between two variables is infuenced by other variables,
there may exist a nonlinear relationship between them.
Terefore, image features such as rectangularity could
exhibit a joint nonlinear relationship with soybean saponin
content, leading to a lower Pearson correlation coefcient
despite with highly signifcant correlation.

Results in Table 3 revealed that image features were
highly signifcant related to soybean saponin content with
P< 0.01 except for area, perimeter, minor axis, and
equal-area-circle diameter. Specifcally, major axis and
rectangle-area ratio showed highly signifcant positive
correlation with soybean saponin content, while roundness,
eccentricity, aspect ratio, circle-area ratio, and edge variation
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coefcient exhibited highly signifcant negative correlation
with soybean saponin content. High signifcance with
P< 0.01 indicates that the independent variables have
a notable impact on the dependent variables, and this impact
is extremely unlikely to be explained by random errors
statistically. Terefore, seven image features, including the
major axis, roundness, eccentricity, aspect ratio, rectangle-
area ratio, circle-area ratio, and edge variation coefcient,
are closely correlated with the saponin content of soybeans.
As a result, we have chosen these seven image features for
combination with spectral information.

3.3. Spectral Refectance Extraction Results. Figure 6 shows
original spectral refectance intensities of 300 soybean
samples in 463–957 nm wavelength range. Figure 7 presents
spectral refectance values of soybean samples after black and
white correction. In these two fgures, each colour line
represents a soybean sample. Spectral data of all samples
exhibited an increasing trend in range 463–760 nm. Ab-
sorption valleys in 760–820 nm corresponded to the three
types of soybean samples including Chundou 1, L-58Keburi,
and Zhongpin 03-5373. Spectral refectance of soybean
samples gradually became stable in range 850–957 nm.

3.4. Result of Spectral Preprocessing. To reduce the infuence
of noise, stray light, and other irrelevant factors on spectral
data and improve signal-to-noise ratio, various methods
were applied to preprocess soybean spectral data in this
study. PLSR can reliably perform regression modelling even
with variables with less correlation and multicollinearity
independent variables because of combining characteristics
of principal component analysis, canonical correlation
analysis, and linear regression analysis. PLSR has been
widely used in many studies to compare the efectiveness of
diferent spectral preprocessing methods. So, S-G, SNV, DT,
MSC, BL, FD, and SD were compared for soybean saponin
detection based on the PLSR model. R2 and RMSE of the
model for the test set were used to evaluate efects. Results
are shown in Table 4.

According to Table 4, the PLSR model based on S-G, BL,
and SD had negative efects with decreased R2 and increased
RMSE compared to original data. Important information
was maybe removed with spectral preprocessing.

Te detection model based on theMSCmethod was with
higher R2, but also higher RMSE compared the detection
model by original data. Tis indicated that the model had
a stronger capability to explain the target variable after

Spectral Data Saponin
Content DF

PLSR

XGB

y1

y1 y2 y3

y3

X
Final Predicted

Value

y2
Saponin
Content

PBT-BPNN

Figure 2: Schematic diagram of the ensemble learning principle. X represents the input, and y represents the output.

Input (x)

w

Skip connect

b

F (x)

Hiddenfgure 2

Output
sigmoidMuti-Head

Attention

Figure 3: Structure of the hidden layer after optimization. W represents the weight matrix, and b represents the bias matrix. F(x) represents
the output.
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Figure 4: Structure of multihead self-attention mechanism.

Table 2: Dataset partitioning results by SPXY.

Items Number of
samples

Maximum value
(g·100 g−1)

Minimum value
(g·100 g−1)

Average value
(g·100 g−1)

Standard deviation
(g·100 g−1)

Standard error
(g·100 g−1)

Dataset 300 4.46 1.41 2.78 0.55 0.032
Training dataset 210 4.46 1.41 2.84 0.56 0.039
Test dataset 90 4.42 1.49 2.76 0.54 0.057

Dataset Training dataset Test dataset

300
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90

Number of sample

Maximum value Minimum value Average value Standard deviation
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Figure 5: Dataset partitioning results by SPXY.
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spectral data preprocessing. However, the error of the de-
tection model was increased, resulting in lower accuracy.
Tis could be attributed to loss of some important features in
spectral data after preprocessing.

Models based on SNV, DT, and FD were with higher R2

and lower RMSE. Fitting capability and accuracy of models
were optimized by three valid preprocessing methods.
Models based on the SNV preprocessing method had the
highest R2 and the lowest RMSE. Te SNV method was
chosen to preprocess spectral data in this paper. Subsequent
variable selection and modelling processes utilize spectral
data that has been preprocessed by SNV.

Te PLSR model evaluates the efcacy of spectral pre-
processing algorithms. However, the performance of these
preprocessing algorithms in ensemble learning and optimized
ensemble learning models may not align with their perfor-
mance in the PLSR model. To validate the efectiveness of the
PLSR model, we reevaluate the performance of the pre-
processing algorithms using ensemble learning and optimized
ensemble learning. If the resulting trends align with those
observed in the PLSR model, it demonstrates the validity of
the PLSRmodel in assessing the efectiveness of preprocessing
algorithms. Te ensemble learning model and optimized
ensemble learning model were used to evaluate spectral
preprocessing performance. Results are shown in Table 5.

Results based on the ensemble learning model and
optimized ensemble learning model were the same as the
PLSR model. Models based on S-G, BL, and SD exhibited
poor performance. Models based onMSC only improved the
R2 without reducing RMSE. On the other hand, models
based on SNV, DT, and FD methods enhanced model
performance comprehensively. Models based on the SNV
method achieved the highest R2 and the lowest RMSE. Tis
validation experiment demonstrated that model building
methods would not afect results of preprocessing algo-
rithms.Tat is because the purpose of spectral preprocessing
is removing noisy information. So, the PLSR model can be
used to evaluate a better spectral preprocessing method.

3.5.DimensionalityReductionof Spectral Features. SiPLS can
select spectral wavelength intervals containing spectral
features. Figure 8 shows the RMSE of models by spectral
wavelength interval combinations when SiPLS with 50 in-
terval divisions and 3 combinations. Te lowest RMSE is
obtained for the 132nd wavelength interval combination,
which was 3.2647×10−3. Spectral wavelength intervals for

Table 4: PLSR model results for diferent preprocessing methods.

Preprocessing method R2 RMSE
None 0.5456 3.7539×10−3

S-G 0.5076 3.9076×10−3

SNV 0.6392 3.4510×10−3

DT 0.5838 3.5924×10−3

MSC 0.6268 4.2473×10−3

BL 0.5384 3.7835×10−3

FD 0.5737 3.6359×10−3

SD 0.5392 3.7815×10−3

Table 3: Correlation analysis between diferent image feature
information and soybean saponin content.

Feature information Pearson
correlation

Signifcant
diferences

Area 0.058 0.319
Perimeter 0.056 0.030
Major axis 0.153∗∗ 0.008
Minor axis 0.007 0.903
Roundness −0.246∗∗ 0.000
Eccentricity −0.209∗∗ 0.000
Aspect ratio −0.205∗∗ 0.000
Rectangle-area ratio 0.289∗∗ 0.000
Circle-area ratio −0.233∗∗ 0.000
Equal-area-circle
diameter 0.077 0.183

Edge variation coefcient −0.276∗∗ 0.000
Note. ∗∗signifcantly correlated at the P< 0.01 level.
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the combination were 561∼658 nm, 708∼757 nm, and
858∼907 nm, with a total of 149 spectral wavelengths, ac-
counting for 30.1% of total wavelengths.

149 spectral wavelengths selected by SiPLS were used as
input variables for the IRIV algorithm. As shown in Figure 9,
irrelevant and interfering variables were eliminated from the
variable combinations after 4 times of iterations, resulting in
the backward elimination of 11 variables. Finally, 17 feature
spectral variables related to soybean saponin content were
selected including 562 nm, 575 nm, 579 nm, 597 nm, 606 nm,
710 nm, 737 nm, 739 nm, 743 nm, 836 nm, 842 nm, 847 nm,
851 nm, 852 nm, 853 nm, 854 nm, and 855 nm. Variables
remained were only 3.43% of the total wavelengths. Dis-
tribution of selected spectral feature wavelengths by SiPLS-
IRIV is shown in Figure 10.

3.6. Result of Ensemble Learning Modelling. Ensemble
learning can reduce the risk of model overftting and im-
prove robustness, reliability, and accuracy of the model.
Results of the detection model are shown in Table 6.

According to Table 6, six models showed a signifcant
improvement compared to previous studies. Te PLSR
model with single spectral information was with the lowest
R2 of 0.7195, the highest RMSE of 3.0639×10−3, and the
lowest RPD of 1.8881. RPD of this model was less than 2.0.
Tis indicated that the model possessed quantitative pre-
dictive ability, albeit not particularly outstanding. Te re-
sidual attention ensemble learning model by using
combined spectral image information was with the highest
R2 of 0.9216, the lowest RMSE of 1.7071× 10−3, and the
highest RPD of 3.5714. RPD of this model was higher than
2.5. Tis indicated that the model possessed exceptional
predictive ability, exhibiting stable and accurate perfor-
mance on the test dataset. Tese results indicated that single
spectral information had limitations in describing soybean
saponin content and cannot efectively detect saponin
content in soybeans. By supplementing image feature in-
formation, input dimensionality not captured by spectral
data was enriched. More comprehensive descriptions of
saponin content were enabled in the model. Te ensemble
learning model and optimized ensemble learning model

Table 5: Ensemble learning model and optimized ensemble learning model results for diferent processing methods.

Preprocessing method Ensemble learning-R2 Ensemble learning: RMSE Optimized ensemble learning:
R2

Optimized ensemble learning:
RMSE

None 0.6725 3.3917×10−3 0.7703 2.5629×10−3

S-G 0.6537 3.5021× 10−3 0.7548 2.7155×10−3

SNV 0.7428 3.2647×10−3 0.8174 2.4316×10−3

DT 0.7115 3.3879×10−3 0.8057 2.4512×10−3

MSC 0.7404 3.7659×10−3 0.7991 3.0524×10−3

BL 0.6593 3.4995×10−3 0.7686 2.7014×10−3

FD 0.7023 3.4157×10−3 0.7862 2.5261× 10−3

SD 0.6652 3.4522×10−3 0.7689 2.7013×10−3
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Figure 8: RMSE of models for diferent spectral band interval combinations.

8 Journal of Spectroscopy



have more complex structures compared to PLSR, which
allow performing more accurate nonlinear transformations
on the input information and resulting in improved saponin
detection performance. Skip connect and multihead self-
attention modules were added to optimize the ensemble
learning model. Te multihead self-attention module en-
abled a better capture of relationships between input se-
quences in each hidden layer and given more weight to
elements that were highly correlated with saponin content.
Skip connect ensured that elements with smaller forget

weights were not neglected during nonlinear trans-
formations in hidden layers. It preserved the integrity of
element information as the number of hidden layers in-
creasing, enhanced the generalization ability of the model,
and improved the accuracy of the soybean saponin content
detection model.

A scatter plot of predicted values and measured values
for test set is shown in Figure 11, with predicted values on
the vertical axis and measured values on the horizontal axis.
Te linear function expressed in the fgure is y� x, with

reverse elimination
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Figure 9: IRIV iteration process.
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Figure 10: Spectral feature wavelength distribution by SiPLS-IRIV.

Table 6: Prediction results based on diferent modelling methods.

Model Input R2 RMSE RPD
PLSR Single spectral information 0.7195 3.0639×10−3 1.8881
Ensemble learning Single spectral information 0.7942 2.5261× 10−3 2.2043
Optimized ensemble learning Single spectral information 0.8406 2.3118×10−3 2.5047
PLSR Spectral image combination information 0.7804 2.9747×10−3 2.1339
Ensemble learning Spectral image combination information 0.8483 2.1685×10−3 2.5675
Optimized ensemble learning Spectral image combination information 0.9216 1.7071× 10−3 3.5714
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Figure 11: Scatter plot of predicted and measured values for the test set. A 1 :1 line was added to the map. (a) PLSR with a single spectral
information input. (b) Ensemble learning with a single spectral information input. (c) Optimized ensemble learning with a single spectral
information input. (d) PLSR with a spectral image combination information input. (e) Ensemble learning with a spectral image combination
information input. (f ) Optimized ensemble learning with a spectral image combination information input.
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a slope of 1 and a bias of 0.Te closer the scattered point is to
the line y� x, the smaller the error between the predicted
value and the measured value. Conversely, the farther the
scattered points are from the line y� x, the greater the error
between the predicted value and the measured value. It
intuitively demonstrates that the optimized ensemble
learning model established by combined spectral image
information was better. Te frst three fgures depicted three
models that were established by single spectral information.
Te PLSR model (Figure 11(a)) exhibited poor ft for soy-
bean samples. Notably, for a sample with a measured sa-
ponin content of 2.1%, the model predicted a value of 2.6%,
indicating signifcant deviation. Overall, there was consid-
erable dispersion among the scattered points. Te ensemble
learning model (Figure 11(b)) demonstrated relatively more
concentrated scattered points compared to the PLSR model.
However, it tended to overestimate the saponin content,
with most predicted values exceeding the measured values.
Te ensemble model optimized with the residual attention
module (Figure 11(c)) performed well within the saponin
content range of 2.5% to 3.0%, where predicted values
closely aligned with measured values. Nevertheless, its
performance deteriorated when dealing with higher saponin
contents, particularly exceeding 4%. Te models presented
in the last three fgures were established by combination
information. Compared to models with single spectral in-
formation, these models demonstrated a signifcant im-
provement in the ftting ability. A scatter plot for the PLSR
model (Figure 11(d)) tended to have a relatively concen-
trated distribution around the line y� x. However, the ftting
performance was still unsatisfactory. Te ensemble learning
model’s scatter plot (Figure 11(e)) showed only a few points
with poor predictions, while the majority of the points were
scattered around the y� x line. Te scatter plot of the en-
semble model optimized with the residual attention module
(Figure 11(f )) resembled a diagonal line, indicating minimal
errors. Especially in the range of soybean saponin content
from 3.5% to 4.5%, the other fve models did not ft well and
showed signifcant deviations from the measured values.
However, the optimized ensemble learning model demon-
strated minimal errors within this range. Overall, the re-
sidual attention ensemble learning model with combined
spectral image information can accurately estimate soybean
saponin content.

Trough a comparative analysis of the results of this
experiment and those of other research methods, it can be
seen that the method employed in this research demon-
strates remarkable superiority on multiple levels. Unlike
previous methods based on near-infrared spectroscopy, our
study leverages the unique spectral-imaging capabilities of
hyperspectral technology. Tis allows us to simultaneously
capture spectral and image data for multiple soybeans,
enabling concurrent detection of multiple samples. Fur-
thermore, the integration of hyperspectral precision with the
optimized stacking ensemble learning model yields more
accurate detection of soybean saponin content than ever
before. When compared to traditional wet chemical
methods, our approach not only ensures high-precision
detection results but also excels in cost control, detection

speed, and sample preservation. Specifcally, this method is
cost-efective. It signifcantly reduces detection time. Im-
portantly, it eliminates the need to destroy soybean samples,
preserving their integrity. Additionally, it removes the in-
fuence of human profciency on test results. Tus, our
research ofers a novel approach for accurate and efcient
detection of soybean saponin content.

4. Conclusions

Te soybean saponin content detection model based on
spectroscopy and image information combination was de-
veloped in this paper. SNV was selected as the spectral
preprocessing method. SiPLS-IRIV was used to perform
dimensionality reduction. Te ensemble learning model
with skip connect and multihead self-attention modules was
built to detect soybean saponin content.R2 and RMSE values
of the model were 0.9216 and 1.7071× 10−3. Te detection
method based on hyperspectral technology reduced sample
processing time, improved detection efciency, avoided
sample damage, and minimized experimental errors caused
by human operators. Tis study provides a new method for
researchers in soybean breeding quality testing, making the
process more efcient and convenient.
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