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Te hydrological cycle, surface energy balance, and the management of water resources are all signifcantly impacted by soil
moisture. Because it governs the physical processes of evapotranspiration and rainfall penetration, surface soil moisture is
a signifcant climatic variable. In this work, visible-near infrared (VIS-NIR) bands were used to compare and analyze the spectra of
loess samples with varying moisture concentrations. Te investigation looked at how changes in the soil moisture content
impacted the response of the soil spectra. Te researchers used a genetic algorithm (GA), interval combination optimization
(ICO), and competitive adaptive reweighted sampling (CARS) to flter feature variables from full-band spectral data. To forecast
the moisture content of loess on the soil surface, models like partial least squares regression (PLSR), support vector machine
(SVM), and random forest (RF) were created.Te fndings indicate that: (1) the most reliable spectrum preprocessing technique is
the frst derivative (FD), which can signifcantly enhance the model’s prediction power and spectral characteristic information. (2)
Te feature band selectionmethod’s prediction efect of soil moisture content is typically superior to that of full-spectrum data. (3)
Te random forest (RF) prediction model for soil moisture content with the highest accuracy was built by combining the genetic
algorithm (GA) with the FD preprocessed spectra. Te results may provide a new understanding on how to use VIS-NIR to
measure soil moisture content.

1. Introduction

Soil moisture content (SMC) plays a crucial role in de-
termining the physical characteristics of soil [1, 2]. Te
soil moisture content impacts the physical and chemical
processes within the soil, as well as the overall ecological
environment, hydrology, and patterns of climate change
[3]. Soil moisture content monitoring plays a crucial role
in ensuring the protection of crop growth, mitigating
geological calamities, and averting soil desertifcation
[4, 5].

Remote sensing is widely regarded as a valuable
technique for monitoring soil characteristics across ex-
tensive regions, proving to be a more economical al-
ternative to in situ measurements [6]. Remote sensing
relies on the physical correlation between the soil
moisture content and the particular refectance
spectrum.

Traditional SMC monitoring is based on the drying
method, neutron meter determination method, c-ray
method, etc. [7], which have high accuracy in single-point
determination but require a large amount of human and
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material resources and time resources, and are unable to
provide continuous spatial surface information of SMC.
Due to the characteristics of real-time, nondestructive,
and noncontact, visible-near-infrared remote sensing [8]
and microwave remote sensing [9] provide efective
means for SMC monitoring. Hyperspectral data are rich
in band information and can provide more detailed
spectral information to refect geophysical properties,
but at the same time there are problems such as noise,
high redundancy of information, and overlapping ab-
sorption features. Investigating whether selecting feature
variables or sensitive bands from the original spectrum
can replace the full band is highly important. Tis can
lead to improved prediction accuracy, reduced model
workload, and enhanced model efciency [10]. Scholars
have examined diferent algorithms to enhance the ef-
fectiveness and precision of soil property prediction
through VIS-NIR spectroscopy by eliminating noise and
extracting bands with distinctive features. Te accuracy
of the model is afected by the fact that various algo-
rithms for selecting variables do not choose the same
feature variables [11]. Many prior research studies have
utilized linear models in conjunction with multiple
variable selection techniques, whereas the utilization of
support vector machine (SVM), random forest (RF), and
other models in combination has been observed in a few
less studies [12–14]. Combining diferent variable se-
lection methods with regression methods to predict soil
properties can provide a theoretical basis for remote
sensing means to obtain information about the target
object.

Spectral technology has improved models for specifc
soil properties. Tis greatly improves the accuracy and
efciency of soil moisture content detection, which
signifcantly enhances the efectiveness of soil property
evaluation. Te current methods for establishing soil
moisture detection models based on soil spectral features
mainly include univariate linear models, multivariate
linear models, and other nonlinear models. Te linear
model is efcient and simple, with high accuracy, while
the nonlinear model is more complex but has better
generalization performance. Appropriate models can
accurately predict various soil parameters, such as soil
organic matter [15], salinity [16], and texture [17], as
indicated by previous research. Researchers have ob-
tained favorable forecast outcomes by employing various
models, including stepwise multiple linear regression
[18], multivariate adaptive regression splines [19],
memory-based learning [20], partial least squares re-
gression (PLSR) [21], cubist [22], support vector ma-
chines (SVMs) [23], and random forests (RFs) [24, 25].
Nevertheless, there is a scarcity of research that has
integrated diverse feature selection algorithms with
various machine-learning models to identify SMCs.
Hence, in this research, we merged three feature selection
techniques (CARS, ICO, and GA) with three common
machine-learning models (PLSR, SVM, and RF) to
identify the best prediction model for SMC in the des-
ignated region.

2. Methods and Materials

2.1. Soil Sampling and Laboratory Sample Preparation.
Te research site is situated in the Qinzhou District of
Tianshui City, in the southeastern part of Gansu Province.
It is in a loess hilly area with complex geological structures
and a poor geological environment. Moreover, it is part of
the transition zone between the Qinling Mountains and the
Longshan Mountains. Adjacent to the loess plateau, the
area is situated within the latitude range of 34°05′–34°40′N
and the longitude range of 105°13′–106°01′E, as depicted in
Figure 1. Te elevation ranges from 1,107 to 2,707meters.
Situated in the southern vicinity of the Wei River and to the
west of the Jialing River, this region serves as the dividing
line for the water systems of both the Yellow River and the
Yangtze River [26]. In terms of climate, it falls within the
warm temperate humid and semihumid climate region,
experiencing an average yearly temperature ranging from 9
to 13 degrees Celsius and an annual rainfall of 420 to
660mm. Te distribution of annual rainfall is not uniform,
with June through September making up 81.6% of the total
precipitation. Te terrain consists primarily of moun-
tainous brown soil, while the plant life predominantly
consists of warm temperate mixed coniferous broad-leaved
forest [27].

In July of 2022, a total of fve sampling locations were
chosen at random within the designated region to collect
undisturbed soil samples from a depth of 0-20 cm. Each
black dot in Figure 1 represents a sampling area. Te
sampling technique used in each sampling area was the
“fve-point” method [28, 29]. In our study, we considered
the efect of soil particle size on spectral refectance found
in previous studies, and in order to exclude this in-
terference, we decided to standardise the size of the soil
particles after mixing the soil from all the collected areas.
Taking into account the fact that temperature, humidity,
and degree of weathering all impact the soil formation
process, soil samples were gathered from various locations
within the target area during the search so as to preserve
the natural environment’s similarity and reduce the ex-
perimental impact of variables [30, 31]. In each black dot
area, a square area (1m2) was randomly selected and equal
amounts of soil were collected at fve locations (the
square’s four corners and the centre) and the fve samples
were combined to create a representative sample. Te
laboratory received all the samples for the purpose of air-
drying, eliminating impurities, grinding, and sieving (less
than 2mm). Before rehydrating the samples, the soil
samples were subjected to a constant temperature of 105°C
in an oven for 24 hours to fully eliminate the moisture
content [32, 33]. Transparent petri dishes measuring
15 cm in diameter and 2 cm in depth were flled exces-
sively with soil samples and make its surface even and fat
through treatment. Each sample was saturated by slowly
adding pure water using a spray bottle, and then imme-
diately sealed with plastic wrap for 24 hours to prevent
evaporation. Tis technique ensured that the water in the
samples was spread uniformly. Te identical process was
used to prepare 70 samples.
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2.2. Soil Spectral Acquisition. We utilized a FieldSpec Pro 4
spectroradiometer to measure the soil samples’ spectra
(Analytical Spectral Devices, Inc. USA). In a dark room, the
spectral refectance of every soil sample was measured while
being positioned on a black absorbent fabric. A 200W
tungsten halogen lamp, positioned at a zenith angle of 40°,
served as the light source. Te gun head of the analytical
spectral devices was securely positioned on the holder, with
a zenith angle of 0°, at a distance of 15 cm from the soil
sample’s surface.Te probe had a signifcantly narrower feld
of vision compared to the size of the Petri dish, as depicted in
Figure 2(a) and 2(b). To enhance measurement accuracy and
reduce instrument noise, the soil’s spectral refectance was
measured at a perpendicular angle to the soil sample. After
performing arithmetic averaging, the soil samples in the area
yielded average spectral refectance. Prior to conducting the
soil spectral measurement, the instrument underwent a 15-
minute preheating process. Spectral measurements involved
sampling the spectral range of the soil sample at its centre. A
total of 10 spectral curves were collected for each soil sample,
with a sampling interval of 1 nm. Te spectral value of the
soil sample was considered as the average spectral re-
fectance. Refectance was calibrated by a standard white-
board with a refectance of 99% prior to each soil spectrum
measurement [34]. Te refectance measurement of one

sample is completed every hour according to the uniform
procedure. Te precise values of the soil spectral refectance
that were collected are depicted in Figure 3.

2.3. Partitioning of the Training and Validation Sets.
Methods for partitioning the datasets include the method of
concentration gradient, method of random sampling,
Kennard-Stone method (KS), and partitioning of sample sets
based on joint x-Y distances (SPXY). Te SPXY algorithm
was used to divide 70 soil samples that had been prepared
beforehand into the training and validation sets. Training
utilized 70% of the soil moisture content measurement data,
with the remaining 30% allocated for validation. Tere were
50 samples in the training set and 20 samples in the vali-
dation set, with a ratio of 7 to 3. Te training dataset should
include a diverse and extensive range of moisture content for
the samples, ensuring it is both a broad and evenly spread
[35]. Alternatively, there will be the emergence of systematic
forecasting mistakes.

Te SPXY technique originated from the Kennard-Stone
approach. Te Kennard-Stone technique divides the dataset
by considering the Euclidean distances of various samples in
the x-vector direction (also referred to as the feature di-
mension direction of the dataset). Euclidean distances were
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Figure 1: Sampling area.
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Figure 2: Spectral acquisition equipment. (a) shows the actual instruments required for soil spectrum acquisition, and (b) is a plane diagram
of the instruments required for this experiment.

0.6

0.7

0.5

0.4

0.3

0.2

0.1

0

Wavelength (nm)

Re
fa

ct
an

ce

600 800 1000 1200 1400 1600 1800 2000 2200 2400

(a)

0.6

0.5

0.4

0.3

0.2

0.1

0

Re
fa

ct
an

ce

Wavelength (nm)
600 800 1000 1200 1400 1600 1800 2000 2200 2400

44.9%
38.2%
31.9%
22.7%
21.6%

16.0%
6.9%
2.9%
2.5%
0.7%

(b)

0.6

0.5

0.4

0.3

0.2

0.1

0

Re
fa

ct
an

ce

Wavelength (nm)
600 800 1000 1200 1400 1600 1800 2000 2200 2400

44.9%
38.2%
31.9%
22.7%
21.6%

16.0%
6.9%
2.9%
2.5%
0.7%

(c)

6 × 10-3

4

2

0

-2

-4

-6

-8

Re
fe

ct
an

ce

Wavelength (nm)
600 800 1000 1200 1400 1600 1800 2000 2200 2400

(d)

Figure 3: Spectral curves of soil with varying levels of soil moisture contents. (a) Original refectance curve; (b) randomly selected original
refectance curve; (c) Savitzky–Golay (SG); (d) frst derivative (FD).

4 Journal of Spectroscopy



calculated for various samples in the Y-vector direction,
which corresponds to the true value dimension of the
dataset. To achieve a more thorough assessment and division
of the dataset, regularization was employed to merge the
distances in both the x and Y directions. In order to give
equal signifcance to the allocation of samples in both x and
Y spaces, the normalized xY distance can be computed
[36]. dxY can be done in a manner similar to the Kennard-
Stone algorithm, rather than using the stepwise selection
process alone. Instead of solely relying on K-S, this approach
utilizes both independent and response variables to choose
a representative sample. It combines the independent var-
iable (x) and the dependent variable (Y). Te target
composition distance DxY(m, n) can be calculated for every
pair of (m, n) samples. Te distances between Dx(m, n) and
DY(m, n) are normalized by dividing them by the highest
value in the dataset they belong to. Equation (1) can be used
to calculate the normalized xY distance:

DxY(m, n) �
Dx(m, n)

maxm,n∈[1,N]Dx(m, n)
+

DY(m, n)

maxm,n∈[1,N]DY(m, n)
,

(1)

where Dx(m, n) and DY(m, n) are the Euclidean distances
of samples m and n, maxm,n∈[1,N] Dx(m, n) and
maxm,n∈[1,N] DY(m, n) denote the maximum distances in the
X and Y directions, respectively. Te total number of
samples is denoted by the symbol N.

3. Key Techniques in Predicting Soil Moisture
Content by Spectral Analysis

It is necessary to understand the key techniques in spectral
soil moisture detection and to explore in depth the feasibility
of spectral technology in soil moisture content detection.
First, the original spectral data were preprocessed. Second,
the spectral features sensitive to soil moisture were extracted.
Tird, a soil moisture content detection model was con-
structed and then validated.

3.1. Spectral Data Preprocessing Method. Experimental er-
rors are caused by diferent factors in the process of spectral
data acquisition and modeling. To establish a more stable
and accurate spectral detection model of soil moisture, it is
necessary to preprocess the data, eliminate interference
information, highlight the absorption and refectance peaks
of the soil moisture spectra, and extract efective
information [37].

Te process of acquiring spectral data is vulnerable to
disruption caused by noise from the instrument, uneven
distribution of soil particles, and random measurement
errors. Consequently, the measured sample spectra include
spectral noise, which ultimately impacts the precision of
the prediction model [38]. In order to enhance the re-
lationship between spectral refectance and soil elements, it
is necessary to perform data preprocessing to extract
valuable information from the spectra in nearly all as-
sessment procedures. For this research, we utilized

well-established preprocessing techniques, specifcally
Savitzky–Golay (SG) smoothing and frst derivative (FD),
to enhance the spectral profle and remove any potential
baseline ofset and background noise interference in the
spectrum [39, 40].

Te Savitzky–Golay smoothing algorithm is a popular
choice for data preprocessing because of its straightforward,
rapid, and user-friendly nature. Te fundamental concept
involves selecting a window with an odd number of points in
width initially, and employing the least-squares technique to
ft through the window’s translation. Te data are smoothed
by replacing the original value with the midpoint of the
window [41, 42]. In this study, the spectra were smoothed
using a flter window length of 15 and a polynomial order
of 3.

Te frst derivative (FD) can be used to identify changes
in the spectral slope, thus allowing for the identifcation of
delicate fuctuations and the recognition of overlapping
peaks. Incorporating frst-order derivatives and Savitz-
ky–Golay smoothing flters into spectral data analysis
provides a powerful way to improve data interpretation,
recognize subtle changes, and improve the visibility of
spectral features [39].

3.2. Spectral Feature Band Selection Algorithm. Te study
utilized three methods (CARS, GA, and ICO) for selecting
the soil moisture content feature bands from the full-band
spectra, employing spectral feature band selection
techniques.

3.2.1. Interval Combination Optimization (ICO). Interval
combination optimization is diferent from the other
wavelength selection algorithms used in this study. It re-
places wavelength points with wavelength intervals as the
optimization object and uses weighted bootstrap sampling
(WBS) to gradually shrink and optimize the combination of
wavelength intervals. Finally, combined with a local search
strategy, the edge bands of each wavelength range are further
optimized [43]. To begin an ICO, the initial action is to
evenly partition the spectral variable region into M sub-
intervals of equal length based on wavelength. Using the
WBS method, combinations of various wavelength intervals
are sampled from M intervals in the second step, with the
initial weight of each interval set at 1. Te weight determines
the probability of being selected for each wavelength
interval.

pk �
wk

􏽐
n
1wk

× n. (2)

In equation (2), the number of wavelengths is n; pk

denotes the probability of the kth wavelength being selected;
wk denotes the sampling weight of the kth wavelength. Te
third step of ICO is to establish PLSR models based on N
combinations of wavelength intervals and calculate
RMSECV for each model. Te cross-verifed mean square
error (RMSECV) of the corrected set of samples indicates
that the quantitative model has better prediction accuracy
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and stability when the RMSECV value is smaller. Te model
set with the minimum RMSECV is taken as the optimal
model set, and the selection ratio is denoted as α.

3.2.2. Genetic Algorithms (GA). Genetic algorithm as the
heuristics, an automatic wavelength selecting process is
proposed for constructing a multiparameter calibration
model with the capability of self-organized and robust
optimization [44]. GAs mimic the biological evolution
process by drawing inspiration from the theory of biological
evolution to simulate the problem that needs to be solved.
Operations such as replication, crossover, and mutation
generate the subsequent iteration of solutions. Solutions
with low ftness function values are gradually eliminated and
solutions with high ftness function values are increased.
After N generations of evolution, individuals with high
ftness function values will emerge. By simulating the natural
evolutionary process, a search is conducted for the most
favorable outcome, utilizing strong adaptability and global
optimization capability [45].

Tis approach is to search for optimal parameters from
a set of possible solutions by choosing a representative
feature variable, and to increase the precision at the same
time [46].

3.2.3. Competitive Adaptive Reweighted Sampling (CARS).
CARS evaluates the signifcance of each variable by ana-
lyzing the absolute values of regression coefcients in the
partial least square model. Te selection of N subsets of
variables is achieved through iterative N sampling runs,
drawing inspiration from Darwin’s evolution theory [47].
Monte Carlo resampling is employed in a competitive and
iterative manner to sequentially select subsets of variables
with a fxed sample ratio [48]. In each resampling iteration,
the approach is employed to identify the spectral variables
that exhibit signifcant absolute regression coefcients in the
training model. Te number of selected variables (nVAR) is
set by an exponentially decreasing function. Finally, cross-
validation is employed to identify the most suitable subsets
of variables [40].

Let Y represent the desired m × 1 characteristic matrix of
sample soil moisture content, X represent the m × n ob-
served spectral matrix of the sample, m represent the
number of samples, n represent the number of variables, w

denote the combination coefcients, T represent the sub-
matrix X (a linear combination of X and w), c represent the
regression coefcient vector of the PLSR model constructed
by T and T, b represent the n-dimensional regression co-
efcient vector, and e represent the prediction residuals [49].

T � w · X.

Y � c · T + e � c · w · X + e � b · X + e.
(3)

Te absolute value |bi|(1≤ i≪p) of the i element of the
regression coefcient vector b � w · c � [b1, b2, · · · , bn], b in
equation (3) represents the contribution of the i th

wavelength variable to Y. Ten, the total contribution of all
wavelengths to Y is f � 􏽐i�1 · |bi|. As a criterion for variable
selection, the weight wi was determined by calculating the
proportion of |bi| each wavelength’s contribution to the total
(equation (4)) in order to assess its signifcance. Te sig-
nifcance of the wavelength variable is indicated by higher
values of |bi| and wi.

wi � bi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ·

i

f
. (4)

Each evaluation of the importance of wavelength vari-
ables was the process of calculating wi. Te wavelength
variables with smaller values of |bi| were then removed. To
calculate the RMSECV values, the PLSR correction model
was reconstructed using the new set of variables obtained
through the adaptive reweighted sampling (ARS) technique
from the retained variables. Te process mentioned above
was iterated N times (the predetermined number of Monte
Carlo sampling) until the completion of sampling. By
comparing, the model obtained the optimal subset of var-
iables that had the smallest RMSECV value.

3.3. Prediction Model and Accuracy Evaluation. Tree dis-
tinct models were employed to forecast the local soil
moisture content in order to ascertain the optimal model for
soil moisture content prediction. For the soil moisture
content’s hyperspectral inversion, three models (RF, SVM,
and PLSR) were chosen in this research.

Te SVM is a kernel-based approach introduced by
Vapnik [50]. It is a kind of nonlinear modeling approach
which is based on the theory of statistics. Based on the SVM,
we can make the best decision by making use of the support
vector in the training data. It is capable of dealing with both
linear and nonlinear problems, and can also be used to solve
the problem of regression modeling. By using SVM in the
remote sensing feld, it is possible to efectively manage
a small training set with fewer samples, thereby decreasing
the model’s generalization error and minimizing the sample
error, thus enhancing the model’s generalization capability
and achieving a high level of precision [51].

In 2001, Breiman combined random forest (RF) with
classifcation trees to create an integrated learning algo-
rithm. Tis algorithm is advantageous due to its capacity for
nonlinear mining, its antinoise capabilities, its inability to
meet any assumptions in terms of data distribution, its
ability to quickly adapt to datasets, and its rapid training
speed [52].

In spectroscopic applications, the conventional view is
that partial least squares regression (PLSR) is highly resistant
to interference and can be involved in building full-
wavelength calibration models [53]. Wold et al. in-
troduced the concept of partial least squares regression
(PLSR). Te PLSR model, which merges the features of
a principal component analysis with a multiple linear re-
gression, successfully resolves the issue of multicollinearity
and notably forecasts a set of response variables from
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multiple independent variables. Tis technique has been
recognized as a benefcial instrument for gauging soil
moisture [54]. During the construction of the model, it takes
into consideration the correlation between spectral data
sources and is able to accurately explain the spectral signal.
Furthermore, it has a fairly consistent level of precision when
it comes to modeling and testing.

Initially, the calibration set was used to train themodel in
this study, followed by verifying the accuracy using the
validation set. Te model accuracy test is based on the
standard regression and error-index evaluation; we evalu-
ated the model’s precision and consistency by utilizing the
coefcient of determination (R2), root mean square error
(RMSE), and relative analysis error (RPD). Te calculation
formulae are as follows:

R
2

�
􏽐

n
i�1

􏽢Yi − Yi􏼐 􏼑
2

􏽐
n
i�1 Yi − Yi􏼐 􏼑

2, (5)

RMSE �

�������������

􏽐
n
i�1

􏽢Yi − Yi􏼐 􏼑
2

n

􏽳

, (6)

RPD �
SDYi

RMSE
, (7)

where 􏽢Yi represents the measured values,Yi represents the
predicted values, and Yi denotes the average of the mea-
sured values. Te standard deviation of predicted values is
represented by SDYi

and n denotes the number of soil
samples.

A higher accuracy of model estimation is indicated by
larger RPD and R2 values, as well as smaller RMSE values.
However, the model estimation’s precision is low [55]. RPD,
which is also referred to as relative prediction deviation,
indicates the predictive ability of the calibration model for
the data. If the RPD value is below 1.4, it signifes that the
application requirements cannot be fulflled, and the model
is unable to predict the sample. A model with a relative
analysis error value ranging from 1.4 to 2.0 suggests
a moderate ability to predict the sample. A value of 2.0 or
higher for relative analysis error signifes the model’s ex-
cellent predictive capability and its ability to accurately
estimate the sample. R2 represents the relative alteration in
dependent variables accounted for by the predictors. Te
assessment of model accuracy is provided by evaluating the
degree to which the model aligns with the observed out-
comes and accurately predicts future results, ofering a fairly
reliable measure of its performance. Te root mean square
error (RMSE) represents the dispersion of data points from
the regression line, indicating the concentration of data
around the line of best ft.

4. Results

4.1. Spectral Curve Preprocessing. Tis study examined two
preprocessing techniques for model performance, using the
original spectra as the control set. For model optimization,
the original VIS-NIR spectra were compared with the results

to choose the most suitable preprocessing technique for VIS-
NIR-based soil moisture content modeling and prediction.
Te original soil spectra at various moisture levels are
displayed in Figure 3. Each color corresponds to a spectrum.
In order to see the refectance spectral curves of soils with
diferent water contents more clearly, we randomly selected
ten curves from the original spectra for Savitzky–Golay
smoothing and frst derivative, and the results are shown in
Figure 3(b). Figure 3(c) shows Savitzky–Golay smoothing of
randomly selected original refectance curves. Figure 3(d)
shows the frst derivative processing of randomly selected
original refectance curves.

Figure 3 displays the outcomes of every spectral pre-
processing technique. In general, the VIS-NIR refectance
spectra of the 70 soil samples exhibited similar overall
trends. Changes in moisture content were observed to afect
the spectral refectance of soil. Typically, the refectivity
decreased as the moisture content increased [56]. Te
outcome aligned with the conclusions of prior research and
was attributed to the oscillations of O-H clusters and water
particles. Te refectivity patterns of every soil sample
exhibited three primary absorption peaks around 1,400,
1,900, and 2,200 nm. Te absorption band observed at ap-
proximately 1,400 nm can be attributed to the frst overtone
of O-H stretching, which signifes the presence of water
molecules absorbed onto the clay surface. On the other hand,
the band observed at around 1,900 nm indicates a combi-
nation of O-H stretching and H-O-H bending, indicating
the presence of water molecules contained within the lattice.
It is conceivable that organic molecules, including CH2,
CH3, and NH3, as well as Si-OH bonds and cation-OH
bonds found in phyllosilicate rocks, such as kaolinite and
montmorillonite, may have a potential association with
wavelengths around 2,200 nm. Te O-H groups, including
water, exhibited the highest absorption properties in the
vicinity of 1,400 nm and 1,900 nm [57], but these two bands
are not practically useful in inverting soil moisture using
remote sensing due to the interference of water vapour in the
atmosphere [58]. Sun et al. [59] showed in feld spectral data
collection on soil samples that the spectral curves obtained
had signifcant spectral data noise around 1,400 and
1,900 nm and could not be used for moisture inversion.

4.2. Selecting Feature Variables. CARS successfully achieved
variable optimization by iteratively adjusting the number of
sampling processes and evaluating the RMSECV values. Te
iterative procedure was used to determine the ideal variable
subset, which had the lowest RMSECV value. Using this
iterative procedure, the ideal variable subset with the lowest
RMSECV value was identifed. As the sample methods in-
creased, Figure 4 illustrates a progressive decline in the
number of selected wavelength variables. Te RMSECV
values decreased continuously during the 1st to 38th sam-
pling processes, indicating that the variables removed during
the selection process were not related to moisture content.
Meanwhile, after the 38th sampling process, the RMSECV
values showed a rebounding trend, indicating that important
variables related to moisture content began to be removed,
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which led to an increase in RMSECV values. It can also be
seen that the minimum RMSECV value was obtained after
the 40th sampling, with Savitzky–Golay smoothing, while
the minimum RMSECV value was obtained at the fourth
iteration of sampling for the spectra with frst derivative
preprocessing and then continuously increased.

At the 38th sampling, the original spectra R exhibited the
lowest RMSECV value. Te subset of spectral variables
corresponding to the position of the blue asterisk “∗” in
a vertical column in the fgure is considered to be the best
[60].Tis subset contained 141 spectral variables, accounting
for 7.05% of the original spectral variables. At this point, for
the calibration model, Rc2 � 0.9858 and RMSEC� 1.757; for
the validation model, Rv2 � 0.944, RMSEV� 2.7477, and
RPD� 4.2511. Te SG-preprocessed spectra reached the
minimum RMSECV value at the 40th sampling, and 123
spectral variables were preferentially selected, accounting for
6.15% of the original spectral variables. At this point, for the
calibration model, Rc2 � 0.9835 and RMSEC� 1.8935; for
the validation model, Rv2 � 0.9501, RMSEV� 2.6093, and
RPD� 4.4765. Te frst derivative preprocessed spectra
reached the minimum RMSECV value at the fourth sam-
pling, and 428 spectral variables were preferentially selected,
accounting for 21.4% of the original spectral variables. At
this point, for the calibration model, Rc2 � 0.9999 and
RMSEC� 0.0330; for the validation model, Rv2 � 0.673,
RMSEV� 2.5370, and RPD� 5.5335. Te distribution of the
feature wavelength points is depicted in Figure 5.

Typically, the absorption bands of peaks are hydroxyl
(-OH) spectral bands, H2O spectral bands, and combined
spectral bands representing the hydroxyl stretching vibra-
tions and AL-OH vibrations [61]. Te frst derivative pro-
cessing performed limit correction on the original spectra,
making signifcant changes to the spectra. Tus, it can de-
compose overlapped mixed spectra, expand the spectral
feature diferences between samples, and increase spectral
sensitivity bands.

Te number of equal fractions of wavelength sub-
intervals was set to 30, the number of WBS sampling
processes per round was taken as 1,000, and the optimal
model set ratio α was set to 0.05 when optimal band se-
lection was performed using ICO. Figure 6 shows the ICO
screening variable process. Figure 6(a)–6(c) show the
weight changes of each interval for each round of sampling
for the original, SG-preprocessed, and FD-preprocessed
spectra, respectively. Te color gradient from dark blue to
dark yellow represent the increasing weight values as the
iterative process proceeded. Te diference between the
weighted bootstrap sampling (WBS) method utilized by
ICO and the weighted binary matrix sampling (WBMS)
method was that even if a band changed its weight to 1 in
the previous round of sampling by chance, it may still be
excluded in subsequent iterations. As shown in Figure 6(a),
the sampling weight of the sixth subinterval was initially 1.
However, with continuous iteration, its importance
gradually decreased. Te weight value returned to zero in
the last iteration; thus, it was not selected in the optimal
subset. Tis indicated that ICO had high fault tolerance in
wavelength selection. Figure 6(d)–6(f ) show the preserved

variables for diferent preprocessing spectra. Figure 6(d)
illustrates that the ICO algorithm preserved 500 out of the
2,000 variables, with selected intervals ranging from 400 to
600 nm, 700 to 800 nm, 1,100 to , nm, and 1,400 to
15,00 nm. In the same way, (e) kept 400 variables while (f )
retained 300 variables.

Figure 7 illustrates the frequency at which all variables
are selected during the genetic algorithm feature variable
selection process. Te selection frequency thresholds are
represented by two horizontal lines in the fgure. Increasing
the frequency threshold led to a decrease in the number of
selected variables. A larger frequency threshold resulted in
a smaller number of variables selected [62]. Te selection
frequency variable in the fgure has two horizontal lines
representing diferent numbers of modelled feature bands.
Te feature bands whose selection frequency is greater than
the corresponding frequency of the horizontal line are se-
lected for modelling. As to which horizontal line is taken as
the selection criterion, it can be based on the requirement of
model accuracy; the higher the position of the horizontal
line, the lower the number of eigenwavelengths used for
modelling [63]. Te retained feature variables, which are
above the horizontal line, were used for model construction,
and those below the horizontal line are unselected variables
that were not used for modeling analysis.

Te preprocessed spectral values were calculated by GA
and repeated fve times to screen the characteristic spectral
bands. Figure 7 shows the results with soil spectral bands, for
example, the spectral measurement range is between 401 and
2,400 nm, with 2,000 bands in total, and the horizontal axis
represents the sequence number of bands 1-1,999. As for
which horizontal line is chosen as the selection criterion, the
result shows that the upper horizontal line has a higher
number of wavelengths and the lower horizontal line has
a lower number of wavelengths. It was found that the higher
the position of the horizontal line, the lower the number of
feature wavelengths modelled. When a small number of
feature wavelengths are modelled, a lower model prediction
error can be obtained. Nineteen feature variables were se-
lected from the original spectra using genetic algorithm in
this study, accounting for 0.95% of all the variables in the
VIS-NIR spectra. Eighteen feature variables were selected
from the Savitzky–Golay preprocessed spectra, accounting
for 0.9% of all variables in the VIS-NIR spectra. From the
results of model processing, 67 feature variables were se-
lected from the frst derivative preprocessed spectra, ac-
counting for 3.35% of all the variables in the VIS-NIR
spectra.

4.3. Accuracy and Validation of Diferent Prediction Models.
Te accuracy of the PLSR, SVM, and RF models constructed
using SMC, along with the full-band spectral data and
feature bands fltered by various methods, is presented in
Table 1. Te models’ estimation accuracy was enhanced to
varying extents after Savitzky–Golay and frst derivative
preprocessing, in comparison to R (original spectra). Te
models constructed using the feature bands had higher
estimation accuracy compared to the calibration and
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Figure 4: Te outcomes of variable selection for soil moisture content (SMC) in the visible (VIS)-near infrared (NIR) band using
competitive adaptive reweighted sampling (CARS) are shown in the fgure. (a) Efect of CARS on the original spectra; (b) efect of CARS on
SG preprocessed spectra; and (c) efect of CARS on FD preprocessed spectra.
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Figure 5: Continued.

Journal of Spectroscopy 9



validation sets’ modeling of the full-band spectral data (401-
2,400 nm) for all three feature variable selection methods.
Specifcally, the Savitzky–Golay (SG)-genetic algorithm
(GA) technique achieved feature band modeling by utilizing
18 modeling variables, accounting for a mere 0.9% of the
complete spectra. Te ranking of the three feature screening
methods in terms of their ability to enhance model accuracy
was determined as GA>CARS> ICO. Based on the evalu-
ation results in Table 1, we used the 19 sensitive wavelengths

selected using R-GA and the 18 sensitive wavelengths
preferred by FD-GA as input variables for modeling soil
water content using PLSR, RF, and SVM methods,
respectively.

A comparison of the data presented in Table 1 leads to
the use of the FD-GA-RF combination, when Rc2 � 0.9957
and RMSEC� 0.9838; the validation model Rv2 � 0.9962 and
RMSEV� 0.8643, and RPD� 16.2421. Similarly, for both
PLSR and SVM, the corresponding optimal combinations of
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Figure 5: In the VIS-NIR band, the fgure displays the count of variables chosen by the CARS-based SMC. (a) Efect of CARS on the original
spectra; (b) efect of CARS on SG preprocessed spectra; and (c) efect of CARS on FD derivative preprocessed spectra.
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Figure 7: Genetic algorithm (GA) feature variable screening process. (a) Efect of the GA on the original spectra; (b) efect of the GA on SG-
preprocessed spectra; and (c) efect of the GA on FD-preprocessed spectra.

Table 1: Cross-validation of the spectral dataset and the PLSR, SVM, and RF calibration models of SMC.

Spectral preprocessing Feature variable selection Model
Calibration models Validation models

R2 RMSE R2 RMSE RPD

R

CARS
PLSR 0.9858 1.7570 0.9447 2.7477 4.2511
SVM 0.9440 1.1139 0.9652 2.1799 5.3583
RF 0.9960 0.9380 0.9923 1.0227 11.4218

GA
PLSR 0.9504 3.2853 0.8591 4.3838 2.6645
SVM 0.9964 0.8912 0.9900 1.1684 9.9968
RF 0.9956 0.9821 0.9897 1.1843 9.8631

ICO
PLSR 0.9890 1.5505 0.9889 1.2329 9.4738
SVM 0.9956 0.9812 0.9864 1.3618 8.5770
RF 0.9961 0.9211 0.9908 1.1179 10.4485

SG

CARS
PLSR 0.9835 1.8935 0.9501 2.6093 4.4765
SVM 0.9940 1.1415 0.9657 2.1647 5.3959
RF 0.9959 0.9500 0.9912 1.0948 10.6693

GA
PLSR 0.9583 3.0143 0.8803 4.0415 2.8902
SVM 0.9956 0.9795 0.9800 1.2786 9.1357
RF 0.9960 0.9305 0.9901 1.1609 10.0612

ICO
PLSR 0.9915 1.3639 0.9884 1.2559 9.3002
SVM 0.9953 1.0075 0.9856 1.4018 8.3328
RF 0.9952 1.0233 0.9903 1.1488 10.1676
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soil moisture content prediction models can be obtained. In
addition, the RPD value is calculated to be 16.2421. Likewise,
the optimal combinations of soil moisture content pre-
diction models can be acquired for both PLSR and SVM.
Figure 8 displays the outcomes of the modelling. Te visual
representation accurately depicts the relationship between
the observed and projected soil moisture content values. Te
calibration model’s trend line closely matched the target
trend line, with a value close to 1 :1, suggesting that the FD-
GA-RF model successfully predicted various soil moisture
contents. A high degree of ft of the validation model trend
line to the target trend line indicated that the FD-GA-RF
model ensured good prediction robustness.

Te RF model demonstrated superior forecasting
compared to the SVM and PLSR models. Te relationship
between soil moisture content and the spectrum was more
complex. PLSR is a linear method that performs poorly at
solving nonlinear problems, whereas SVM and RF can better
solve complex nonlinear relationships between independent
and dependent variables. However, the SVMmodel is prone
to severe bias estimation caused by high spectral noise,
which reduces the model’s accuracy. Te RF model in-
corporates two machine-learning technologies of random
feature selection and the Bagging algorithm. Compared with
the traditional classifer algorithm, the RF model can better
tolerate outliers and noise, so that the established model has
higher accuracy and better robustness. Moreover, it can
handle continuous and discrete data simultaneously [64].

5. Discussion

Te study’s fndings demonstrate that choosing appropriate
spectral feature bands is an essential frst step in creating
reliable models. Tere is a lot of redundant information in
the full-band data, which can be somewhat eliminated by the
variable fltering [65]. In this study, the feature wavelengths
of CARS, GA, and ICO were selected. Te 401-2,400 nm
band of the original VIS-NIR spectra was used as the full
wavelength for feature band selection. Diferent pre-
processing conditions were considered when selecting the
feature wavelengths using the three methods. Te new
datasets were constructed by utilizing these wavelengths to
create the three prediction models. Both GA and CARS

algorithms possess identical traits as they are both global
optimization methods. Both algorithms explore the entire
solution space and detect confdential data within their
search collections. Te ICO algorithm retains more useful
information than the GA and CARS algorithms.

In order to guarantee the full representation of the
calibration set samples and the even distribution of all
samples within each set, the dataset was partitioned using
SPXY [66]. Te study compared the efects of pretreatment
using two diferent methods. Te fndings indicated that
certain preprocessing techniques were not successful in
eliminating noise and minimizing errors in the spectral data
of intricate sample systems. Te frst derivative pre-
processing technique was employed to enhance the cali-
bration model’s performance in contrast to the initial
spectral modeling. In order to develop the model, the results
were also compared to determine the most efective method.
Te signifcance of spectral preprocessing in forecasting
SOM content in Vis-NIR spectroscopy lies in its ability to
diminish or nullify spectral noise, thereby enhancing the
model’s predictive precision [67]. Nonetheless, not every
spectral preprocessing technique is capable of yielding fa-
vorable outcomes. As a result, choosing the right spectral
pretreatment technique is crucial. Research has demon-
strated that frst derivative (FD), Savitzky–Golay (SG)
smoothing, and other approaches all have signifcant
spectral preprocessing efects; nevertheless, the efects of FD
spectral preprocessing are superior and more stable than
those of the other techniques [35].

When the feature selection algorithm was executed in
isolation, CARS excelled in identifying highly informative
variables, whereas GA excelled in determining optimal band
combinations. However, the computation time of GA was
the longest and its capability to simplify the model inputs
was weaker. Te ICO exhibited the poorest ability to extract
efcient wavelengths, which ultimately did not enhance the
model’s accuracy. When employing feature variable selec-
tion techniques, certain methods enhance the model’s
processing speed by refning the variable selection outcomes,
whereas others enhance the model’s predictive capability
and improve its quality [15]. Typically, simplifying themodel
coincided with a boost in the model’s predictive capability.
Furthermore, the selection of characteristic variables using

Table 1: Continued.

Spectral preprocessing Feature variable selection Model
Calibration models Validation models

R2 RMSE R2 RMSE RPD

FD

CARS
PLSR 0.9999 0.0030 0.9673 2.5370 5.5335
SVM 0.9996 0.2267 0.9697 2.4433 5.7458
RF 0.9891 1.5736 0.9888 1.4843 9.4583

GA
PLSR 0.9908 1.4448 0.9904 1.372 10.2275
SVM 0.9866 1.7434 0.9828 1.8420 7.6215
RF 0.9957 0.9838 0.9962 0.8643 16.2421

ICO
PLSR 0.9998 0.0884 0.9744 2.1090 6.6564
SVM 0.9997 0.2379 0.9833 1.1827 7.7447
RF 0.9955 1.0124 0.9868 1.6146 8.6949

CARS (competitive adaptive reweighted sampling); GA (genetic algorithm); ICO (interval combination optimization); R (original spectra); SG (Savitz-
ky–Golay); FD (frst derivative); PLSR (partial least squares regression); SVM (support vector machine); RF (random forest).
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various spectral preprocessing techniques can also infuence
the generated models. Hence, it is essential to examine and
deliberate on the preprocessing technique that is more
advantageous for modeling when combined with the process
of selecting wavelength variables.

After Savitzky–Golay smoothing and frst derivative
preprocessing of the original refectance of soil samples at
diferent soil moisture contents, the feature absorption
bands were more obvious. Te characteristics of the ab-
sorption peaks were particularly prominent near 450; 1,400;
1,900; and 2,200 nm. Tis laid the foundation for variable
optimization. By selecting CARS variables for soil samples at
diferent soil moisture contents, the optimal variable set for
predicting the soil moisture content was obtained. Te GA
algorithm had high prediction accuracy and strong pre-
diction capability and efectively reduced the number of
modelling wavelength variables. In order to more accurately
estimate the amount of organic matter, Sun et al. [68] se-
lected the band using a genetic algorithm (GA) and
hyperspectral satellite data and the PLSR model.

Te ideal combination of prediction models was ob-
tained by combining diferent preprocessing methods with
feature variable selection algorithms. Te PLSR model
achieved the best combination of R-GA-PLSR with

R2 � 0.9904, RMSE� 1.3726, and RPD� 10.2275. For the RF
model, the optimal FD-GA-RF combination was
R2 � 0.9962, RMSE� 0.8643, and RPD� 16.2421. For the
SVM model, the optimal R-GA-SVM combination was
R2 � 0.9900, RMSE� 1.1684, and RPD� 9.9968. Te SVM
model’s prediction performance on SMC was not as good as
that of RF and PLSR. Tis might be explained by the re-
stricted anti-interference ability of SVM and limitations
resulting from parameter choices, such as kernel functions
and penalty factors [69]. However, the performance of the
PLSR model is subject to negative infuence from other
factors, such as texture and color [70]. Te RF method is
especially good at solving nonlinear problems because of its
robustness, which is demonstrated by its strong anti-
interference and antioverftting characteristics as well as
its high tolerance to background noise and outliers [71].Tis
outcome is consistent with the SMC inversion investigation
conducted by Eyo et al. [72]. Te random forest (RF)
classifer employs several decision trees for the purpose of
training and predicting samples. RF requires low hyper-
parameter settings [73]. When the sample features are high-
dimensional, it arbitrarily chooses features to place at the
decision tree’s nodes in order to efciently train the model
for any dataset. RF is not sensitive to the lack of several
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Figure 8: Scatter plot of soil moisture content with optimal estimation based on (a) R-GA-PLSR, (b) FD-GA-RF, and (c) R-GA-SVM.
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essential features and is comparatively easy to build. In
summary, FD-GA-RF was the best combined model for
estimating the soil moisture content.

6. Conclusions

After gathering soil samples from the target area, the
spectral refectance of soils with varying moisture con-
tents was measured indoors using controlled variables.
More accurate results were obtained by employing a range
of spectral treatments, feature band selection, and pre-
diction techniques in the subsequent work. Nevertheless,
because this was a study carried out in a particular area,
variations in soil texture, soil moisture content, and en-
vironmental factors may make the model less appropriate
in some areas than others. Both feature bands and full
bands were used in these models. Te RF model out-
performed the SVM and PLSR models in terms of ac-
curacy. Te coefcient of determination (R2) for the
calibration and validation sets of the RF-established soil
moisture content prediction model was 0.9957 and 0.9962,
respectively. Te validation set had a relative prediction
deviation (RPD) of 16.2421. Te combination of feature
variable selection and regression methods signifcantly
enhanced modeling efciency and maintained accuracy,
in comparison to full-band modeling. Terefore, the re-
sults of this study can provide research ideas for exam-
ining soil properties in various contexts; further research
is needed to see whether the model developed in this study
can be applied to other places. In order to reduce the
efects of various environmental factors, such as light,
temperature, and moisture, on spectral refectance, the
soil samples in this investigation were sieved and prepared
in an ideal laboratory setting. Future studies will therefore
focus on determining how adaptable the current soil
moisture content prediction model is in various settings
and on undisturbed soil.
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