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Bisphenol A (BPA) is an environmental toxin utilized for the production of polycarbonate plastics and epoxy resins. Due to BPA’s
extensive production and environmental contamination, human exposure is unavoidable. Te efects of low-dose of BPA on various
body tissues and organs remain controversial. Our study investigated the potential of BPA to induce biochemical, histopathological,
and immunohistochemical changes in the coronary artery and myocardium and the potential protective role of L-carnitine (LC). 24
adultWistar albinomale rats were divided equally into a control group, a BPA-treated group (40mg/kg/d, by gavage for 4 weeks), and
a BPA plus LC-treated group (received 40mg/kg/d of BPA and 300mg/kg/d of LC, by gavage for 4 weeks). BPA-exposed rats
demonstrated structural anomalies in the coronary artery tissue including vacuolation of cells in the media and detachment of the
endothelium of the intima. Congestion of blood vessels and infltration by polynuclear cells were observed in the myocardium.Tere
was an enhanced collagen deposition in both tissues indicating fbrosis. Immunohistochemical changes included enhanced eNOS
and caspase-3 expression in the coronary artery and myocardium indicating vascular disease and apoptosis, respectively. Oxidative
damage was evident in the coronary artery and the myocardium of BPA-treated rats, which was indicated by the reduced level of
glutathione (GSH) and elevated malondydehyde (MDA) levels. Te coadministration of LC signifcantly improved BPA-induced
structural alterations and oxidative stress. In conclusion, BPA could potentially cause pathologic changes and oxidative damage in the
coronary artery and myocardium, which could be improved by LC coadministration.

1. Introduction

Bisphenol A is one of the greatest volumes of chemicals
produced globally, and more than one hundred tons are
released into the environment every year [1]. It is used in the
manufacturing of polycarbonate plastic products, which

include water bottles, sports equipment, CDs, and DVDs.
BPA is also utilized to line water pipes, and food cans, and in
the production of thermal paper [2]. Due to its widespread
use, human exposure to BPA is universal. More than a de-
cade ago, measurable BPA concentrations were detected in
93% of urine samples from humans [3]. Since there is
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continuous exposure to BPA, this chemical has been de-
tected in almost all humans studied [4].

Te health hazards related to BPA are mostly because of
the partial polymerization leaving some unbound monomer
BPA molecules in the product. Such monomers become
released into food or beverages with time, particularly due to
the efects of heat, acidic, or basic conditions [5]. It was
stated that humans are exposed to BPA predominantly in
their diet; however, there is evidence that exposure could
also happen through inhalation of household dust or par-
ticles released during the BPA’s industrial production [6].

Bisphenol A acts through several mechanisms. More
specifcally, it interacts with multiple receptors such as es-
trogen, aryl hydrocarbon, androgen, thyroid hormone, and
glucocorticoid receptors. BPA binds to classical nuclear
estrogen receptors, classical and nonclassical membrane-
bound ERs, and G protein-coupled receptors 30 [7].
Moreover, BPA can cause oxidative stress in diferent body
tissues as reported in several studies [8, 9]. In addition, BPA
can act through epigenetic mechanisms and alterations in
genomic methylation, including genes involved in immu-
nological function, transport activity, metabolism, and
chromosome X [10].

Tough the endocrine-disrupting efects of BPA have
been thoroughly evaluated, there is still some uncertainty
regarding its potential to harm the health. Much of such
uncertainty is because of the controversies that surround the
design and interpretation of results from hypothesis-driven
BPA research [11].

Being an endocrine disruptor, BPA can trigger several
disorders, including developmental and reproductive system
abnormalities, impaired brain and neurologic functions,
malignancy, cardiovascular disease (CVD), diabetes, early
puberty, obesity, and immune dysregulation [12].

Cardiovascular diseases are the leading cause of mor-
tality globally. Research has found that oxidative damage has
a signifcant role in the development of coronary artery
disease (CAD) [13]. A systematic review has demonstrated
a correlation between increased BPA and the enhanced risk
of CVD, obesity, diabetes, insulin resistance, and hyper-
tension in humans [14].

Experimentally, it was shown that low BPA doses could
afect estrogen signaling in cultured rodent cardiomyocytes
[15]. Also, exposure to oral BPA (50mg over 8 weeks) caused
morphologic and structural alterations in the rat myocardial
tissue, including vacuolation of myocytes, focal loss of
myofbrils, and mitochondrial distortion [16]. However, the
impact of low-dose BPA on rat myocardial tissue remains
elusive. Kim and coworkers demonstrated that BPA (50 μg/
kg/d) accelerated atherosclerosis progression in a genetic
mouse model prone to endothelial dysfunction and
vasculitis [17].

BPA exposure was also associated with atherosclerosis
progression in the coronary artery and aorta of rabbits [18],
and other reports have shown a relationship of BPA with
blood pressure in mice [19], and electrical contraction of rat
heart extract [20].

In addition, Aboul Ezz and colleagues administered BPA
to adult male rats by oral route for 6–10 weeks (25 or 10mg/

kg/d) and assessed oxidative damage in the cardiac tissue.
Tey reported enhanced lipid peroxidation, low GSH, and
catalase levels. BPA was also associated with a reduction in
nitric oxide, which may result in vasoconstriction and re-
duced blood supply to the cardiac tissue. Tere was also
reduced acetylcholinesterase activity among the BPA-treated
rats, which might cause a decrease in heart rate and
contractility [21].

Te cardiotoxic efects of BPA could be triggered
through its action on estrogenic receptors, modifcation of
cardiac Ca2+-handling protein expression, ion channel in-
hibition/activation, oxidative damage, production of free
radicals, and genome/transcriptome modifcations [22, 23].

LC is a nonprotein amino acid, which is formed from
lysine and methionine amino acids. It promotes the
β-oxidation of fatty acids and has a role in the metabolism of
branched-chain amino acids and the stabilization of cell
membranes [24]. Also, several studies have shown that LC
acts as a free radical scavenger and thus provides protection
for the antioxidant enzymes against oxidative stress [25, 26].
Compared to the wealth of data linking BPA to reproductive
disorders, diabetes, and obesity, few studies have focused on
the relationship of BPA with CVDs and in particular cor-
onary artery pathology. Terefore, this work was conducted
to assess the biochemical and histopathological alterations
mediated by BPA in the myocardium and coronary artery of
adult rats and to assess the efect of coadministration of LC
against the BPA-induced alterations.

2. Martial and Methods

2.1. Ethical Consideration. In the current study, we followed
the ethical guidelines according to the ethical norms ap-
proved by the Medical Research Ethics Committee, Man-
soura University (Code No.: R/96).

2.2. Chemicals. BPA and LC were purchased from Sigma-
–Aldrich Inc. Te required doses underwent dissolution in
corn oil and were given to experimental animals by oral
gavage.

2.3. Animals and Experimental Design. Te study was per-
formed on 24 male adult Wistar albino rats weighing about
200–250 g. Rats were housed and maintained under stan-
dard environmental conditions at a temperature of
22°C± 2°C, 12 h of light/dark cycle, 41%–55% relative hu-
midity, and provided with food and water throughout the
experimental period. All animal work was carried out in
accordance with the guidelines for the use of animals in
research established by Mansoura University, Egypt. Also,
the animals underwent handling according to the Guide for
the Care and Use of Laboratory Animals [27].

Te study duration was 4 weeks. Te rats were randomly
divided into three groups (8 rats each) as follows: Group 1:
untreated rats and served as controls (received corn oil),
Group 2 (BPA 40mg/kg/d): rats were treated with 40mg/kg/
d BPA dissolved in corn oil and given by oral gavage. Tis
dose was chosen following the Chapel Hill BPA expert panel
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consensus statement, which defned the “low BPA dose”
dose below the LOAEL (50mg/kg/d) in animal models [28],
and Group 3 (BPA 40mg/kg/d + LC 300mg/kg/d): rats
received 40mg/kg/d BPA along with the administration of
LC 300mg/kg/d [29], dissolved in corn oil and given by
gavage by oral gavage.

At the end of the experimental work, rats were in-
traperitoneally injected with pentobarbital (50mg/kg). Teir
hearts were then dissected. Te left ventricles were cut
perpendicular to the long axis into rings of 1 ̶2mm width
and utilized for the measurement of tissue GSH and MDA,
and histopathological and immunohistochemical
examination.

2.4. Histopathological Examination. Te myocardial and
coronary artery tissues of the sacrifced rats were dissected
immediately, and part of it was fxed in 10% neutral bufered
formalin for histopathologic examination. Te parafn-
embedded sections were prepared to be 5 μm thicknesses,
and deparafnized using 100% xylene, followed by re-
hydration with 100% and then 70% ethyl alcohol. Transverse
sections underwent staining with hematoxylin and eosin
(HE) for visualization of general tissue morphology and
Masson trichrome to detect fbrotic areas. Stained sections
were examined under light microscopy [30, 31].

2.5. Immunohistochemistry. For the immunohistochemical
study, sections were cut at 3 μm thickness. Tey were col-
lected on poly-L-lysine coated slides, dried in a thermostat at
37°C for 24 h to achieve an appropriate adhesion of the
biologic material to the surface of the slide, and then stained
with the appropriate antibodies (anti-eNOS and anticaspase-
3). Immunohistochemistry examination by eNOS was
performed according to Felaco et al. [32], while examination
by caspase-3 was performed according to Hamed et al. [33].

2.6. Biochemical Tests. Te myocardial and coronary artery
specimens from the sacrifced rats were homogenized in
phosphate bufer solution (0.01M sodium phosphate bufer,
pH 7.4, containing 0.14M NaCl) at 1ml volume/g tissue wet
weight ratio of 4 :1. Homogenates underwent centrifugation
at 13, 000 × g for 20 minutes, and the resultant supernatant
was used for oxidative activity analysis. GSH and MDA
concentrations were measured in the tissue homogenates
utilizing commercially available kits.

2.7. Statistical Analysis. Te data were analyzed using IBM
SPSS Statistics for Windows, v 22.0. Armonk, NY: IBM
Corp. Qualitative data were presented as numbers and
percentages. Quantitative data were presented as means and
standard deviations for parametric data following testing
normality by the Kolmogorov ̶Smirnov test. Te signif-
cance of a result was judged at the (0.05) level. Te one-way
ANOVA test was utilized to compare more than 2 in-
dependent groups with the post hoc Tukey test to detect
pair-wise comparison.

3. Results

Tere were no reported mortalities among the experimental
animals. In each group, the same area of each section was
selected for hematoxylin and eosin, Masson trichome,
eNOS, and caspase-3 stainings. Te current study revealed
the following fndings.

3.1. Histopathology

3.1.1. Hematoxylin and Eosin. To investigate BPA’s efects
on the coronary artery, sections were stained using HE and
examined using a light microscope. Unlike the control rats,
which demonstrated the normal histological structure of the
artery, sections from the BPA group show vacuolation of
cells in the media and detachment of the endothelium of the
intima of the artery. In contrast, sections taken from rats that
received the BPA+LC demonstrated a near-normal struc-
ture to control rats (Figure 1). Regarding the myocardium,
the control group demonstrated branching and anasto-
mosing muscle fbers. Cardiomyocytes show central oval
nuclei. Capillaries and fbroblasts were observed in the
connective tissue endomysium in between muscle fbers. On
the other hand, the hearts of BPA-treated rats showed
congested blood vessels and infltration by polynuclear cells
in comparison to control rats. Coadministration of LC
improved these BPA-induced changes (Figure 2).

3.1.2. Masson Trichrome Stain. TeMasson Trichrome stain
stains the collagen-rich fbrotic areas in a bluish color. As
demonstrated in Figure 3, the expression of the bluish color
is notably enhanced in rats receiving BPA in comparison
with rats in the BPA+LC group, which demonstrated re-
duced bluish color expression, indicating that BPA resulted
in signifcant fbrosis in the wall of the coronary artery
(P< 0.001) (Table 1). On the other hand, the Masson tri-
chrome stain of the hearts demonstrated that BPA signif-
cantly enhanced the collagen fber content in the
myocardium in comparison with the control group
(P< 0.001). However, LC coadministration was associated
with a signifcant reduction in collagen deposition between
muscle fbers (Figure 4) (P< 0.001). Moreover, as shown in
Figure 5, the quantitative analysis of the interstitial collagen
fber area percentage in the heart revealed that BPA in-
creased the fbrous tissue content compared to the control
group (47.34± 3.60% versus 11.11± 1.54%). However, co-
administration of LC and BPA caused a signifcant reduction
in collagen deposition in comparison with the BPA-treated
rats (30.02± 4.09% versus 47.34± 3.60%) (P< 0.001).

3.2. Immunohistochemistry

3.2.1. Caspase-3. To measure the apoptosis in the coronary
artery, sections were stained with the caspase-3 immune
stain (Figure 6). BPA-exposed rats showed an increased
expression of caspase-3 as compared with control rats. In
contrast, the BPA+LC group demonstrated a decrease in
caspase-3 expression in comparison to BPA-treated rats
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(P< 0.001) (Table 1). Te apoptosis in the heart was also
assessed in this study. Heart sections of BPA-exposed rats
showed an increased caspase-3 expression (evidenced by
excess brownish staining) as compared with control rats
(P< 0.001). In contrast, the BPA+LC group showed a de-
crease in caspase-3 expression in comparison to the BPA

group (Figure 7) (P< 0.001). Te quantitative analysis of
caspase-3 expression area percentage of the heart demon-
strated that BPA enhanced caspase-3 expression in com-
parison with control rats (240.69± 4.84% versus
182.92± 6.44%) and that coadministration of LC and BPA
was associated with a signifcant reduction in caspase-3

Figure 1: Histopathological section in the coronary artery of a rat stained with hematoxylin and eosin. a, b, c, and d are the control group; e,
f, g, and h are the BPA group; and i, j, k, and l are the BPA+LC group.Te L.S. sections (a and b) of the coronary artery of the control group
and c and d are the T.S. section showing the normal structure of the artery with thick media rich in acidophilic elastic fbers and regular
endothelium. Te sections of the BPA group show weak acidophility and vacuolation of cells in the media and detachment of the en-
dothelium of the intima of the artery.Tis picture is not marked in the BPA+LC group (HE stain; A, C, E, G, I, and KX 200; B, D, F, H, J, and
L X 400).
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expression in comparison with the BPA group
(204.47± 10.59% versus 240.69± 4.84%) (P< 0.001)
(Figure 8).

3.2.2. eNOS. In our study, the endothelial function was
assessed by staining coronary artery sections with the
eNOS immune stain (Figure 9). BPA caused an enhanced
expression of eNOS when compared with the control
group (P< 0.001). Conversely, coadministration of LC
caused a signifcant reduction in eNOS expression in the
coronary artery (P< 0.001) (Table 1). Regarding the
myocardium, Figure 10 demonstrated that the cardiac
muscle showed an increased expression of the eNOS in
rats exposed to the BPA group (P< 0.001). On the other
hand, there was a decreased expression of the stain in the
BPA + LC group (P< 0.001). Te quantitative analysis of
the eNOS expression area % of the heart (Figure 11)
revealed increased eNOS expression in BPA-treated rats
in comparison with control rats (114.84 ± 6.21% versus
52.39 ± 4.05%). However, coadministration of LC and
BPA was associated with a signifcant decrease in eNOS
expression in comparison to the BPA group
(81.86 ± 5.94% versus 114.84 ± 6.21%) (P< 0.001).

3.3. Tissue Glutathione andMalondialdehyde. Te statistical
analysis of tissue MDA and GSH demonstrated a highly
statistically signifcant diference (P< 0.001) between BPA-
treated rats and control rats (approximately 3-fold for MDA
and 2.5-fold for GSH). In the group of BPA+ LC, the MDA
demonstrated a statistically signifcant decrease (P< 0.001)

of the mean MDA level (20.75 nmol/g versus 32.82 nmol/g)
while the GSH demonstrated a statistically signifcant rise
(P< 0.001) of mean GSH level (1.22mmol/g versus
0.82mmol/g) (Table 2).

4. Discussion

BPA is a pollutant that induces diferent health problems
including metabolic disorders, hormonal-based tumors, and
cardiovascular diseases [34]. According to Melzer et al. [35],
humans with greater urinary BPA concentrations seemed to
be more susceptible to heart disease. Data do exist about
BPA’s toxic efects on the heart; however, there is little data
regarding such an efect on the coronary artery. Hence, in
this research, BPA’s efects on the heart and coronary artery
were investigated. A BPA dose of 40mg/kg/d was used in our
study.Tis dose was selected from recently published studies
that used a BPA dose of 40mg/kg/d [36, 37].

Figure 2: Histopathological section in the heart of rat stained with hematoxylin and eosin. a and b are the control group, c and d are the BPA
group, and e and f are the BPA LC group. Te sections of the BPA show congested blood vessels and infltration by polynuclear cells. Tis
picture is not marked in the BPA+ LC group (HE stain; A, C, E, G, I, and K X 200; B, D, F, H, J, and L X 400).
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Te current study demonstrated signifcant histopath-
ological and immunohistochemical changes in the coronary
arteries and the hearts of the rats. Starting with coronary
artery changes, the current BPA-associated histopatholog-
ical alterations in the coronary artery, which included

vacuolation of cells in the media and detachment of the
endothelium of the intima of the artery, and increased
collagen fbers in the arterial wall, are suggestive of coronary
artery vasculitis and atherosclerosis. Tese changes can be
elucidated by the infuence of BPA on the endothelial cells,

Figure 3: Histopathological section in the coronary of rat stained withMasson trichrome stain. a and b are the control group, c and d are the
BPA group, and e and f are the BPA+ LC group.Te coronary artery of the control group shows minimal bluish-stained collagen fber in the
wall of the artery. Te expression of the color is notably increased in the BPA group and reduced in the BPA+LC group (Masson trichrome
stain; A, C, and E X 200; B, D, and F X 400).

Table 1: Comparison between the study groups regarding Masson trichrome area fraction (%), caspase area fraction (%), and eNOS area
fraction (%).

Control group BPA group BPA+LC Test of
signifcance

Within group
signifcance

Masson trichrome area fraction (%) 11.11± 1.54 47.34± 3.60 30.02± 4.09
F� 259.593 P1< 0.001∗
P � 0.001∗ P2< 0.001∗

P3< 0.001∗

Caspase area fraction (%) 182.92± 6.44 240.69± 4.84 204.47± 10.59
F� 115.535 P1< 0.001∗
P< 0.001∗ P2< 0.001∗

P3< 0.001∗

eNOS area fraction (%) 52.39± 4.05 114.84± 6.21 81.86± 5.94
F� 245.417 P1< 0.001∗
P< 0.001∗ P2< 0.001∗

P3< 0.001∗

F: one-way ANOVA test, p1: diference between control and BPA groups, P2: diference between control and BPA+LC groups, P3: diference between BPA
group and BPA+LC groups. Data are presented as means± SDs. ∗indicates a statistically signifcant diference.
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resulting in elevated levels of surface adhesion molecules
that increase permeability and induce immune cell in-
fltration [38]. BPA could also enhance the infammatory

response by increasing the serum levels of proinfammatory
cytokines, ending by apoptosis of coronary artery smooth
muscle cells [38], which was also evident in our study by

Figure 4: Histopathological section in the heart of rat stained withMasson trichrome stain. a and b is the control group, c and d are the BPA
group, and e and f are the BPA+LC group. Te myocardium of the control group shows minimal bluish-stained collagen fbers. Te
expression of the color is notably increased in the BPA group and reduced in the BPA+LC group (Masson trichrome stain; A, C, and E X
200, B, D, and F X 400).
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Figure 5: Graph demonstrating the quantitative analysis of interstitial collagen fber area percentage in the heart. Data are expressed as
means± SDs. #: signifcantly diferent from the control group, while $signifcantly diferent from the BPA group (P< 0.001).
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immunohistochemistry. Moreover, BPA-induced endothe-
lial cell changes could lead to coronary vascular weakness
and ventricular hemorrhage, which appear as cardiac dys-
function [39]. Melzer et al. [40] stated that BPA exposure
was linked to an enhanced risk of CAD. Te latter has been
suggested to be related to BPA by diferent receptor-
mediated toxicity such as estrogenic and antiandrogenic
receptors, which fnally afect the cardiovascular tissues.

On the other hand, the myocardium of BPA-exposed
rats showed congestion of the blood vessels and infltration
by polynuclear cells in the myocardium. Tese fndings are
suggestive of the infammation linked to BPA administra-
tion. Proinfammatory cytokines such as TNF-α and IL-1β
can reduce the left ventricular function and cause loss of
cardiomyocytes via apoptosis. Tese cytokines also have the
ability to induce neurohumoral activation and cause oxi-
dative damage, resulting in the initiation of the p38-MAP
kinase and nuclear factor-κB. Collectively, this induces
cardiomyocytolysis and reduces Ca+2 uptake by the
sarcoplasmic reticulum, and therefore impairs cardiac

inotropy [16]. Te congested and dilated blood vessels
could explain the enhanced cellular infltrates in-between
muscle fbers in the BPA-treated group. Such fndings are
consistent with Klint and coworkers [41], who reported that
BPA increased vascular endothelial growth factor and eNOS
that controls vascular tone in cardiac tissues.

In addition, the myocardial changes were suggestive of
increased fbrosis as indicated by a signifcant increase in
collagen fbers. Similar fndings in the myocardium have
been reported previously after oral administration of BPA
(50mg/kg) to rats, where the myocardium of BPA-exposed
rats showed a signifcantly increased collagen fber de-
position in comparison to control rats [16]. Also, Bahey et al.
[42] reported that BPA-exposed animals showed structural
myocardial abnormalities, which included disarrangement
of myofbers, hypertrophy of myocytes, and fbrosis. Myo-
cardial fbrosis was reported previously as well after the
exposure of rats to a higher BPA dose [43]. It commonly
occurs in many cardiac diseases including heart infarction,
failure, and hypertension [44]. BPA-induced myocardial

Figure 6: Histopathological section of the coronary artery of the rat stained with the caspase-3 immune stain. a and b are the control group, c
and d are the BPA group, and e and f are the BPA+LC group. Te coronary artery of the control group shows a minimal expression of the
dye in the wall of the artery. Te expression of the color is notably increased in the BPA group and reduced in the PBA+LC group
(caspase-3 immune stain; A, C, and E X 200; B, D, and F X 400).
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Figure 7: Histopathological section in the heart of rat stained with caspase-3 immune stain. a and b are the control group, c and d are the
BPA group, and e and f are the BPA+LC group.Te cardiac muscle of the control group shows aminimal expression of the dye in the wall of
the artery. Te expression of the color is notably increased in the BPA group and reduced in the BPA+LC group (caspase-3 immune stain;
A, C, and E X 200, B, D, and F X 400).
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Figure 8: Graph demonstrating the quantitative analysis of caspase-3 expression area percentage of the heart. Data are expressed as
means± SDs. #: signifcantly diferent from the control group, while $signifcantly diferent from the BPA group (P< 0.001).
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fbrosis is mostly promoted by the cardiac fbroblasts’
proliferation, collagen production, and mast cell
activation [45].

In our work, the apoptosis caused by BPA was evaluated
by the immunohistochemical study of the proapoptotic
marker caspase-3. BPA caused apoptosis in the coronary
artery and the cardiac tissue as indicated by enhanced
caspase-3 expressions. Te immunohistochemistry exami-
nation of caspase-3 in cardiac slices revealed that caspase-3
expression was minimal in the control group, while it is
signifcantly elevated in the BPA group and decreased in the
BPA+LC group. Indeed, treatment of rats with LC im-
proved the apoptotic efects of BPA, as evidenced by down-
regulatingcaspase-3 expressions. Myocyte apoptosis is as-
sociated with high concentrations of proinfammatory cy-
tokines including IL-1β, NF-α, and interferon-c [46].

Due to the importance of eNOS activity to keep the
vascular dilatation, eNOS expression was investigated in this

study. Nitric oxide (NO) is produced by the endothelial
nitric oxide synthase (eNOS) enzyme by converting the L-
arginine to NO in the vasculature [47]. Te eNOS is
expressed in endocardial cells, endothelial cells, myocytes,
and other myocardial cells [48]. NO underlies smooth
muscles and acts as an endothelium-dependent vasodilator
[49]. Te reduced NO level results in vasoconstriction,
endothelial dysfunction, and hypertension [50]. Also, it was
revealed that a defciency of eNOS accelerated atheroscle-
rotic lesion formation in eNOS knockout mice [51].

Our fndings revealed an increased expression of eNOS
in BPA-exposed rats, which was in agreement with Klint
et al. [41]. It should be mentioned that this fnding is not
against the previously mentioned concept that eNOS de-
fciency is associated with atherogenesis. To clarify, eNOS
may have two faces in the pathophysiology of atheroscle-
rosis. Tis depends on the vascular tissue levels of tetra-
hydrobiopterin. For example, eNOS overexpression may

Figure 9: Histopathological section in the coronary artery of rat stained with eNOS immune stain. a and b are the control group, c and d are
the BPA group, and e and f are the BPA+LC group. Te coronary artery of the control group shows a minimal expression of the dye in the
wall of the artery. Te expression of the color is notably increased in the BPA group and reduced in the BPA+LC group (eNOS immune
stain; A, C, and E X 200; B, D, and F X 400).
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promote atherogenesis through increased free radical pro-
duction from dysfunctional eNOS, i.e., eNOS-mediated
superoxide generation [51]. Interestingly and supporting
our results, it was postulated that oxidative stress (which was
evident to be induced by BPA in our study) can enhance the
eNOS expression, and, indeed, eNOS expression is enhanced

in most types of vascular disease.Tis might be an attempt of
the organism to compensate for the decreased NO activity.
However, such compensation is usually inefective, as the
eNOS becomes or remains uncoupled under pathologic
conditions. Te upregulation of eNOS expression makes the
condition even worse as the uncoupled eNOS worsens

Figure 10: Histopathological section in the heart of rat stained with eNOS immune stain. a and b are the control group, c and d are the BPA
group, and e and f are the BPA+LC group.Te cardiac muscle of the control group shows a minimal expression of the dye in the wall of the
artery.Te expression of the color is notably increased in the BPA group and reduced in the BPA+ LC group (eNOS immune stain; A, C, and
E X 200; B, D, and F X 400).
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Figure 11: Graph demonstrating the quantitative analysis of eNOS expression area percentage of the heart. Data are expressed as
means± SDs. #: signifcantly diferent from the control group, while $signifcantly diferent from the BPA group (P< 0.001).
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oxidative damage [48]. Moreover, other diferent mecha-
nisms could modulate the BPA-induced eNOS expression
including the Ca2+/calmodulin-dependent mechanism [52],
and the angiotensin II pathway [53].

At the biochemical level, BPA-induced oxidative stress
was investigated. Te biochemical analysis showed the oc-
currence of oxidative damage in BPA-treated rats that was
indicated by the reduced level of the antioxidant GSH and
the elevated level of the lipid peroxidation marker (MDA).
Te heart is signifcantly sensitive to free radicals due to its
high oxidative metabolism and due to its few antioxidant
defenses. ROS are cytotoxic agents, which cause oxidative
stress by targeting biomolecules like membrane lipids and
cellular DNA [16]. Terefore, oxidative stress could be the
cause of the structural alterations observed in the hearts of
BPA-treated rats. Oxidative stress could also trigger cardiac
fbrosis via diferent mechanisms, such as stimulation of
transforming growth factor-beta1 expression [54] and the
JAK/STAT signaling pathway [55]. Tus, the current data
may indicate a possible correlation between BPA-mediated
oxidative stress and cardiac fbrosis. Other studies have
reported BPA-induced oxidative damage in the myocardial
tissue of adult male albino rats. For instance, the study by
Abd El-Haleem and Abass [16] revealed a signifcant rise in
serum MDA and a signifcant reduction in tissue-reduced
GSH and catalase in the myocardium of BPA-treated ani-
mals. Similarly, it was found that BPA caused a signifcant
rise in MDA, and a signifcantly decreased catalase [21].

Te increased evidence of BPA-related negative efects
on health has encouraged researchers to search for a drug or
natural substance that protects against these efects, espe-
cially for those at high exposure risk [42]. Tis study reports,
for the frst time, that LC has a signifcant protective efect
against BPA-related coronary andmyocardial toxicity. It was
clear that LC could reduce the BPA-induced lipid perox-
idation and elevate the antioxidant GSH levels as well.
Similarly, LC showed protective efects against
isoproterenol-induced myocardial infarction by reducing
oxidative damage markers and infammatory cell infltration
[56]. In our study, the BPA-induced histopathological al-
terations were reduced in the LC-treated group, which was
indicated by the lower cells’ infltration, normal myocardial
fber structure, and normal coronary artery architecture.
Tese fndings are explaining the ability of LC to reduce
cardiac fbrosis pathogenesis and myocardial infarction,
which are consistent with many previous reports [56–58].

Moreover; LC could attenuate the BPA-induced eNOS ex-
pression revealing its protective efect against the probable
PBA-induced coronary artery vasoconstriction. It is known
that the LC role is enhanced by diferent mechanisms, such
as calcium channel regulation, endothelial integrity main-
tenance, and cellular homeostasis control [59]. Tus, LC can
protect against the myocardial and coronary artery damage
that commonly occurs in cardiovascular diseases.

5. Conclusion

Exposure to BPA has been reported to be linked to CVD.
However, few studies have focused on its association with
coronary artery pathology. Tis study concluded that BPA
exposure can result in biochemical and pathologic alter-
ations in the myocardium and coronary artery. Te results
suggest that oxidative stress, fbrosis, and apoptosis play
important roles in BPA-related toxicity. Importantly, the
harmful alterations caused by BPA could be partially im-
proved by the coadministration of LC. However, more
studies are required to evaluate the efects of prolonged
exposure to diferent BPA doses on the cardiovascular
system. Also, it is recommended to regularly administer LC
to help reduce the deleterious efects of exposure to BPA-
containing products.
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