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Objective. Te aim of this study was to investigate the efects of sodium hydrosulfde (NaHS) on Lipopolysaccharide (LPS)-
induced cardiomyocyte injury in H9c2 cells. Methods. H9c2 cardiomyocytes cultivated with medium containing 10 μg/mL LPS
were used to recapitulate the phenotypes of those in sepsis. Two sequential experiments were performed. Te frst contained
a control group, a LPS group, and a LPS +NaHS group, with the aim to assure the protective efects of NaHS on LPS-treated
cardiomyocytes. Te second experiment added a fourth group, the LPS +NaHS+miR-133a-3p inhibition group, with the aim to
preliminarily explore whether miR-133-3p exerts a protective function downstream of NaHS. Te adenosine triphosphate (ATP)
kit was used to detect ATP content; real-time quantitative polynucleotide chain reaction (qPCR) was used to measure the levels of
mammalian targets of rapamycin (mTOR), AMP-dependent protein kinase (AMPK), and miR-133a-3p, and Western blot (WB)
was used to detect protein levels of mTOR, AMPK, myosin-like Bcl2 interacting protein (Beclin-1), microtubule-associated
protein 1 light chain 3 (LC3I/II), and P62 (sequestosome-1, sqstm-1/P62). Results. Compared with the control group, the
expressions of miR-133a-3p (P< 0.001), P62 (P< 0.001), and the content of ATP (P< 0.001) decreased, while the expressions of
Beclin-1 (P � 0.023) and LC3I/II (P � 0.048) increased in the LPS group. Compared with the LPS group, the expressions of miR-
133a-3p (P< 0.001), P62 (P< 0.001), and the content of ATP (P< 0.001) in the NaHS+ LPS group increased, while the expressions
of Beclin-1 (P � 0.023) and LC3I/II (P � 0.022) decreased. Compared with the NaHS+ LPS group, the expression levels of miR-
133a-3p (P< 0.001), P62 (P � 0.001), and the content of ATP (P< 0.001) in the LPS +NaHS+miR-133a-3p inhibition group were
downregulated, and the expression levels of Beclin-1 (P � 0.012) and LC3I/II (P � 0.010) were upregulated. Te diference was
statistically signifcant. Tere was no signifcant diference in the expression of AMPK and mTOR between groups. Conclusion.
Our research demonstrated that NaHS relieved LPS-induced myocardial injury in H9c2 by promoting the expression of miR-
133a-3p, inhibiting autophagy in cardiomyocytes, and restoring cellular ATP levels.

1. Introduction

Sepsis-induced myocardial dysfunction causes the mortality
rate to increase [1–3].

However, how sepsis infuences myocardial and un-
derlying mechanisms remains largely unknown. Hydrogen
sulfde is an important endogenous biological signaling
molecule in mammals and plays an important role in the
physiological and pathophysiological processes of the car-
diovascular system [4]. Sodium hydrosulfde (NaHS) is an
important exogenous donor of hydrogen sulfde [5]. NaHS is

involved in cellular autophagy through multiple pathways,
which inhibits autophagy by activation of phosphatidyli-
nositol-3-kinase (PI3K)/protein kinase B (Akt)/mTOR
pathway and improves brain function after traumatic brain
injury [6]. Also, NaHS can protect against septic cardio-
myopathy by inhibiting autophagy through the AMPK/
mTOR pathway [7]. Terefore, we speculated that NaHS
may be involved in the regulation of mTOR signaling.

MicroRNAs (miRNAs) are a class of small endogenous
noncoding single-stranded RNAs with a length of about 22 nt.
miRNAs play an important regulatory role in the
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development of many cardiovascular diseases [8, 9]. Our
previous experimental results revealed that miR-133a-3p was
diferentially expressed in LPS-treated cardiomyocytes. miR-
133a-3p can promote the progression of thyroid cancer by
regulating the PI3K/AKT/mTOR pathway [10]. Guanidino-
acetic acid regulated myogenic diferentiation and muscle
growth through the miR-133a-3p and miR-1a-3p comediated
Akt/mTOR/S6K signaling pathway [11]. Recently, some
studies indicated autophagy participated in the molecular
mechanism of body damage via measuring miRNAs, ATP,
mTOR, AMPK, Beclin-1, LC3I/II, and P62. Cadmium de-
creased mTOR, increased miR-25-3p, LC3II, and Beclin-1,
and caused liver damage and autophagy [12]. Energetic im-
pairment as well as miR-9-5p and mTOR decreases occurred
in cadmium exposure-caused myocardial injury and auto-
phagy [13]. Energy metabolism disorder, mTOR, Beclin-1,
LC3b, and P62 took part in the molecular mechanism of
chlorpyrifos-induced liver damage and autophagy [14].
However, it is an unclear relationship between NaHS and
miR-133a-3p in the development ofmyocardial injury in LPS-
induced models. Terefore, this study used LPS-treated H9c2
cells to mimic sepsis-induced myocardial damage [3]. We
aimed to elucidate the protective efect of NaHS on myo-
cardial injury through miR-133a-3p-regulated autophagy and
to provide new insights for basic research and clinical
treatment of sepsis-induced myocardial injury.

2. Materials and Methods

2.1. Grouping and Model Building. H9c2 cells were pur-
chased from Procell Life Science & Technology Co., Ltd
(Wuhan, China, CL-0089). H9c2 cells were cultured to
logarithmic growth phase and inoculated in 6-well plates
with a concentration of 1× 105/mL. Te cells were cultured
overnight, and the old medium was removed when the cells
reached a proportion of 70–80% in the wells. Te medium
was replaced according to diferent groups (each group
contained three samples): (1) control group: cultured in
a fresh medium for 24 hours; (2) LPS group: cultured in
a medium containing 10 μg/mL of LPS for 24 hours; (3)
LPS +NaHS group: cultured in a medium containing 10 μg/
mL of LPS + 200 μM NaHS for 24 hours; and (4)
LPS +NaHS+miR-133a-3p inhibition group: in this group,
siRNA interference was conducted to inhibit miR-133a-3p
expression, and the cells were incubated for 36 hours in
a fresh complete medium without double antibodies. Fol-
lowing siRNA transfection, the cells were then treated with
10 μg/mL of LPS + 200 μM NaHS for additional 24 hours.
Te concentrations of NaHS and LPS used were selected
based on the data from literature and previous experiments
[15–17].

2.2. Cell Transfection. Transfection was performed with
riboFECT™ CP Transfection Reagent (RiboBio, China,
R10035.7). Transfection Reagent was used according to the
instructions. A density of 5×104 to 1× 105 cells was in-
oculated in 12-well plates containing the appropriate
amount of complete medium. Transfection Reagent T was

added at a concentration of 100 nM to cells when the cell
proportion reached 30–50% of the wells. Te cells were
incubated with fresh complete medium without double
antibodies at the time of transfection. Te plates were in-
cubated at 37°C in an incubator with CO2 for 36 h. After-
wards, the transfected cells were treated with dosing for 24 h.

2.3.ATPAssay. ATP assay kit (Beyotime, China, S0026) was
used to perform ATP assay on the cells according to the kit
instructions.

2.4. RNA Extraction and Real-Time Quantitative PCR.
RNA extraction and real-time quantitative PCR (RT-qPCR)
procedures were performed according to the instructions of
the kits. Total RNA was isolated from cells using RNAiso
(Takara, Japan, D312). mRNA expression was assessed by
RT-qPCR using a frst-strand cDNA synthesis kit (Takara,
Japan, RR036A) and a qPCR kit (Takara, Japan, RR390A).
Te expression levels of miR-133a-3p, mTOR, and AMPK
were detected. For miR-133a-3p, U6 was regarded as the
internal reference, and GAPDH was regarded as the internal
reference for the other genes.Te primer sequences for these
genes are listed in Table 1. qPCR conditions were set as
follows: 95°C for 2min, 95°C for 5 s, 55°C for 30 s, and 72°C
for 1min, with a total of 40 cycles. Triplicate analysis was
conducted for all samples. Te relative expression levels of
genes were calculated by using the 2−△△Ct method.

2.5.Western Blot (WB). Te total protein was extracted, and
the protein concentration was determined by using a protein
concentration detection kit (Takara, Japan, T9300A). Pro-
tein samples were mixed with a bufer at a ratio of 4 :1, and
protein concentrations were kept constant at 4 μg/μL.
Protein samples were separated using a 4–20% SDS-PAGE
gradient prep gel (Kingsley, China), and the separated
proteins were transferred onto PVDF membranes. Te
primary antibodies of mTOR, AMPK, LC3I/II, P62, and
Beclin-1 were diluted with 3% bovine serum albumin at
a ratio of 1 :1000 to 1 : 2000. Tey were purchased from CST
(USA). Te membranes were added with primary antibodies
and incubated at 4°C overnight. Te next day, the secondary
antibody (diluted to 1 : 5000 with the closure solution, Santa
Cruz, USA) was added to the samples for incubating for 1 h.
Te enhanced chemiluminescence reagent exposure solution

Table 1: Primer sequence.

Primer name Primer sequence (5′–3′)
miR-133a-3p upstream CAGTGCGTGTCGTGGAGT
miR-133a-3p downstream CCAGCTGGTCGTATCCAGT
U6 upstream CTCGCTTCGGCAGCACA
U6 downstream AACGCTTCACGAATTTGCGT
mTOR upstream GGTGGAAAGCCGTTGTTGC
mTOR downstream CAGTGAGTTCTTGCTGCTCCTAC
AMPK upstream CCCTTGAAGCGAGCAACTATC
AMPK downstream GGTCTTGAGGGTCACCACTGTA
GAPDH upstream GGCACAGTCAAGGCTGAGAATG
GAPDH downstream ATGGTGGTGAAGACGCCAGTA
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was mixed at a ratio of 1 :1 of liquid A: liquid B and evenly
covered on the membrane for 1min. Finally, the membrane
was examined by using the exposure meter.

2.6. Statistical Analysis. Te data were analyzed using SPSS
(version 20.0). All data were presented as mean± standard
deviation (x± s). Te means of multiple groups were
compared by one-way ANOVA, and a LSD-t test was
performed between groups. A p value <0.05 was considered
as statistically signifcant.

3. Results

3.1.TeEfect ofNaHSonATPandmir-133a-3pLevels in LPS-
Treated Rat Cardiomyocytes. ATP and miR-133a-3p levels
were signifcantly lower in the LPS group than those in the
control group (P< 0.001 and P � 0.001, respectively).
However, ATP and miR-133a-3p levels were signifcantly
increased in the LPS +NaHS group compared with those in
the LPS group (P< 0.001 and P< 0.001, respectively)
(Figure 1).

3.2.Te Efect of NaHS on Autophagy-Related Factors in LPS-
Treated Rat Myocardium. Te transcript levels and protein
levels of AMPK andmTORwere altered after LPS and NaHS
treatment, but the diferences were not statistically signif-
cant between the groups (P> 0.05). For protein expression
levels of Beclin-1, LC3I/II, and P62, we observed increased
expression levels of Beclin-1 protein and LC3I/II protein, but
decreased expression levels of P62 protein after LPS treat-
ment, compared with the control group (P � 0.023, 0.048,
and P< 0.001, respectively). However, in the LPS +NaHS
group compared with the LPS group, Beclin-1 protein and
LC3I/II protein expressions were signifcantly decreased and
P62 protein expression was signifcantly increased
(P � 0.023, 0.022, and P< 0.001, respectively) (Figure 2).

3.3. NaHS-Regulated ATP Expression via miR-133a-3p.
Compared with the control group, the levels of ATP and miR-
133a-3p were decreased in the LPS group (P< 0.001 and
P< 0.001, respectively). Compared with the LPS group, ATP
and miR-133a-3p expressions were signifcantly increased in
the LPS+NaHS group (P< 0.001 and P< 0.001, respectively).
After treatment with NaHS and miR-133a-3p inhibition, ATP
and miR-133a-3p expressions were signifcantly decreased in
the LPS+NaHS+miR-133a-3p inhibition group (P< 0.001
and P< 0.001, respectively) (Figure 3).

3.4.NaHS-RegulatedAutophagy viamiR-133a-3p. We found
no signifcant diferences in the transcriptional and protein
levels of mTOR and AMPK among the control, LPS,
LPS +NaHS, and LPS +NaHS+mir-133a-3p groups
(P> 0.05 and P> 0.05, respectively), which suggested that
AMPK and mTOR may be not involved in autophagy in
myocardial damage induced by LPS. Compared with the
control group, P62 protein expression was decreased, but
Beclin-1 and LC3I/II protein expressions were increased in
the LPS group (P< 0.001, P< 0.001, and P � 0.003, re-
spectively). While P62 protein expression was increased,
Beclin-1 and LC3I/II proteins were decreased after NaHS
treatment compared with the LPS group (P< 0.001,
P< 0.001, and P � 0.005). However, the expression of P62,
Beclin-1, and LC3I/II protein was reversed (P62 expression
was decreased and Beclin-1 and LC3I/II expressions were
increased) by miR-133a-3p compared to that in the
LPS +NaHS group (P � 0.001, P � 0.012, and P � 0.010, re-
spectively) (Figure 4).

4. Discussion

ATP is the pivotal energy-carrying molecule within every
cell, and the inability to sustain sufcient ATP levels can
prove to be a critical factor in numerous diseases [18]. In

#*

0

1

2

3

4

 T
e c

on
ce

nt
ra

tio
n 

of
 A

TP
 (μ

M
)

LP
S

C
on

tro
l

LP
S+

 N
aH

S

(a)

#*

0

1

2

3

4

5

Re
lat

iv
e e

xp
re

ss
io

n 
of

 m
ir-

13
3a

-3
p

C
on

tro
l

LP
S

LP
S+

N
aH

S

(b)

Figure 1: Te expression levels of ATP and miR-133a-3p. (a) Total cellular ATP levels were determined by using an ATP assay kit. Relative
ATP level in each group. (b) We measured the expression level of miR-133a-3p by qPCR. ∗P≤ 0.05 compared with the control group and
#P≤ 0.05 compared with the respective LPS-treated group.
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intact HepG2 cells, LPS decreased mitochondrial membrane
potential and cellular ATP content [19]. Similarly, in mouse
bone marrow-derived macrophages activated with LPS, total
ATP levels decreased signifcantly [20]. In this study, we

found that the ATP level was signifcantly lower in the LPS
group than that in the control group. H2S can provide
electrons for mitochondria through the electron transport
chain: quinone oxidoreductase (SQR) and mitochondrial
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Figure 2: QPCR assay andWB were used to detect the expression of related indicators. (a) AMPK and mTOR expressions were determined
by qPCR. (b) Western blotting with densitometric analysis of AMPK, mTOR, Beclin-1, P62, and LC3I/II. ∗P≤ 0.05 compared with the
control group and #P≤ 0.05 compared with the respective LPS-treated group.
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complex II, which stimulates oxidative phosphorylation and
increases mitochondrial ATP production [21]. NaHS acts as
a H2S donor and can provide H2S to organisms for pro-
ducing the corresponding biological functions. Te present
study confrmed that the ATP content of LPS and NaHS-
cotreated rat cardiomyocytes was higher than that of rat
cardiomyocytes treated with LPS alone.

NaHS can regulate apoptosis and autophagy in various
ways. Previous studies have shown that NaHS can inhibit
LPS-induced injury in A549 lung cancer cells by increasing
cell viability, transmembrane electrical impedance, and
expression of occluded small-band proteins and decreasing
CRP levels [22]. NaHS can restore mitochondrial function
and inhibit autophagy through the PI3K/Akt/mTOR sig-
naling pathway to ameliorate traumatic brain injury [23]. In
addition, NaHS can also activate autophagy to protect colon
cells in ulcerative colitis [23] and protect against LPS-
induced AKI by promoting autophagy [24]. However,
what mechanisms of NaHS play an important role in LPS-
induced myocardial damage remains unclear. Our study
found that P62 protein expression was decreased and the
expressions of Beclin-1 and LC3I/II proteins were elevated
in rat cardiomyocytes after LPS treatment, whereas in-
creased P62 protein expression and decreased Beclin-1 and
LC3I/II protein expression were observed in LPS and NaHS-
cotreated cardiomyocytes with NaHS treatment. Te si-
multaneous increase in ATP levels was detected. Terefore,
we hypothesized that NaHS may improve myocardial injury
by reducing ATP consumption. Tese results provide di-
rection for future experiments and further research into the
correlation between ATP and autophagy.

Te core lipid kinase complex of autophagy contains
BECN1, phosphatidylinositol-3-kinase catalytic subunit type
3 (PIK3C3), and phosphoinositide 3-kinase regulatory
subunit 4 (PIK3R4) [25], which plays a key role in autophagy
activation. Te process of autophagy is regulated by more
than 30 regulatory genes and multiple pathways. For ex-
ample, the PI3K-AKT-mTORC1 pathway-induced

autophagy was observed in isolated mouse fbroblasts
[26]. Te kinase ULK1 can activate autophagy by phos-
phorylating Beclin-1 that binds to ligands [27]. Phospha-
tidylinositol-3-kinase complex can regulate autophagy
through MAPK8/JNK1 activation. Bcl2 inhibits autophagy
by interacting with BECN1. LC3 is an autophagy-associated
core protein that is required for autophagosome formation
and maturation [28]. LC3 is present in the cytoplasm as
LC3I, and LC3II is formed through binding LC2I to
phosphatidylethanolamine after autophagy, which specif-
cally binds to phagosomes (precursors of autophagosomes)
and induces autophagy [29]. Diferent autophagic pathways
may difer under diferent cellular or survival conditions.
Our experiments demonstrated that AMPK/mTOR
pathway-related proteins were little changed in LPS-induced
rat cardiomyocytes, while P62, LC3I/II, and Beclin-1 protein
levels were signifcantly altered. Moreover, the expression of
these proteins could be regulated by NaHS to ameliorate the
myocardial damage. H2S attenuated sleep deprivation-
induced cognitive impairment by reducing excessive auto-
phagy of hippocampal SIRT 1 in WISTAR rats [30]. H2S
protected retinal pigment epithelial cells from oxidative
stress-induced apoptosis and afected autophagy [31]. In
addition, H2S attenuated acute myocardial ischemic injury
by modulating autophagy and infammatory response under
oxidative stress [32].

Noncoding RNAs (ncRNAs) play a wide range of
regulatory roles in various diseases such as cardiovascular
disease and are considered major players in physiological
and pathological processes [33–35]. miR-133a-3p, a mus-
cle-enriched miRNA, is highly expressed in the heart.
Several studies have previously demonstrated that miR-
133a-3p expression levels are signifcantly elevated in the
circulation of patients with coronary artery disease, making
it a promising blood biomarker for coronary artery disease
[36, 37]. Chen et al. found that miR-133a expression was
elevated in sepsis and could regulate sepsis-induced organ
dysfunction and infammatory responses by targeting
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Figure 3: Te expression levels of ATP and miR-133a-3p. (a) Total cellular ATP levels were determined using an ATP assay kit. Relative
ATP levels in each group. (b) We measured the expression level of miR-133a-3p by qPCR. ∗P≤ 0.05 compared with the control group,
#P≤ 0.05 compared with the respective LPS-treated group, and &P≤ 0.05 compared with the LPS +NaHS group.
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SIRT1 [38]. However, our study found that miR-133a-3p
expression was decreased in LPS-treated cardiomyocytes,
while the expressions of autophagy-related proteins were
altered where Beclin-1 and LC3I/II expressions were

increased and P62 expression was decreased. After NaHS
treatment in rat cardiomyocytes, miR-133a-3p expression
was elevated. Moreover, autophagy-related proteins were
also altered after NaHS treatment, with decreased Beclin-1
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Figure 4: QPCR assay andWB were used to detect the expression of related indicators. (a) AMPK and mTOR expressions were determined
by qPCR. (b) Western blotting with densitometric analysis of AMPK, mTOR, Beclin-1, P62, and LC3I/II. ∗P≤ 0.05 compared with the
control group, #P≤ 0.05 compared with the respective LPS-treated group, and &P≤ 0.05 compared with the LPS +NaHS group.
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and LC3I/II expressions and increased P62 expression. It
may be related to diferent cell models, and apoptosis-
related studies also showed similar results that miR-
133a-3p inhibited apoptosis by binding downstream to the
3′ UTR structural domain of CDIP1 to reduce transcrip-
tional levels [32]. Te simulant of miR-133a-3p promoted
the phosphorylation of AKT in HUVEC or H9c2 cells [39].
In our experiments, we found that autophagy-associated
proteins were altered in cardiomyocytes after treatment
with NaHS but reversed after inhibition of miR-133a-3p
expression, suggesting that NaHS regulated autophagy in
LPS-stimulated cardiomyocytes through miR-133a-3p and
thus protected the myocardium. Although LPS-stimulated
cardiomyocytes showed decreased ATP content and energy
supply, the AMPK level was not afected. In spite of no
activation in the AMPK/mTOR-related autophagic path-
way, other autophagy-related proteins could regulate
autophagy levels in cardiomyocytes.

In summary, miR-133a-3p expression was decreased in
LPS-treated H9c2 cells and miR-133a-3p expression level
was signifcantly upregulated after NaHS treatment, while
the inhibition of miR-133a-3p expression reversed the al-
tered expression of autophagy proteins. Te above-
mentioned results demonstrated that NaHS could
upregulate the level of miR-133a-3p and alter the expression
levels of autophagy proteins. Meanwhile, we found that the
expression of mTOR and AMPK was not signifcantly
changed. Terefore, it could be suggested that NaHS had
a protective efect on myocardial injury by promoting miR-
133a-3p expression, thus inhibiting autophagy and restoring
cellular ATP levels in cardiomyocytes. Te present study
provided a new direction for the mechanism and treatment
related to sepsis-induced myocardial injury, and further
studies on their direct targets will be explored in future
experiments.
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