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Imidacloprid (IMI) is a neonicotinoid insecticide used worldwide, either alone or in combination with other pesticides.Te goal of
this study was to assess the efects of IMI on the central nervous system of rats and its mechanism of oxidative stress-induced DNA
damage by oxidant/antioxidant parameters. Fifteen male rats, divided into three groups, were used: the frst group received 5ml/
kg body weight corn oil as a control, the second received a high oral dose of IMI (45mg/kg body weight), while the third received
a low dose (22mg/kg body weight). After 28 days, acetylcholinesterase (AChE) activity, oxidative stress markers, histopathological
alterations, and DNA damage were examined in the brains of these rats. Te AChE activities decreased signifcantly after IMI
exposure, reaching 2.45 and 2.75 nmol/min/mg protein in high dose and low dose, respectively, compared to the control group
(3.75 nmol/g tissues), while the concentration of malondialdehyde MDA increased signifcantly (29.28 and 23.92 nmol/g tissues)
vs. the control group (19.28 nmol/g tissues). Te antioxidant status parameters such as reduced glutathione (GSH) content was
13.77 and 17.63 nmol/g, catalase (CAT) activity was 22.56 and 26.65 µmol/min/g, and superoxide dismutase (SOD) activity was
6.66 and 7.23 µmol/min/g in both doses against the control group (21.37 nmol/g, 30.67 µmol/min/g, 11.76 µmol/min/g), re-
spectively, and histopathological changes in the brain tissues were observed. More in vivo research using epigenetic methods is
needed to determine the ability of IMI and its metabolites to cause neurotoxicity and DNA lesions in mammalian brains.

1. Introduction

Neonicotinoids, which frst appeared in the late 1980s, now
constitute one-third of the global pesticide market and are
rapidly replacing organophosphates, carbamates, and pyre-
throids [1]. Nicotine is a part of their structure, and they
specifcally act on nicotinic acetylcholine receptors [2].
Imidacloprid (IMI) is an agonist nicotinic acetylcholine re-
ceptor that is very efective against a variety of sucking insects
[3, 4]. Its action causes an in acetylcholine, which paralyzes
the insect and eventually kills it [3]. Inhibition of the enzyme

acetylcholinesterase (AChE) was one of the frst biomarkers
identifed for human exposure to environmental pesticides.
Guerra et al. found a statistically signifcant decrease in
zebrafsh brain AChE activity after being exposed to 15 and
45 µg/L IMI for 96 hours [5]. On the other hand, Sevim et al.
discovered no signifcant diferences in AChE levels between
IMI-exposed and control L-929 fbroblasts [6].

Oxidative stress and lipid peroxidation (LPO) are con-
sidered good biomarkers for assessing insecticide-induced
hazardous efects in numerous organisms [7–9]. Oxidative
damage harms biological systems by contributing to lipid,
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DNA, and protein damage, leading to cell death. Numerous
studies have shown that IMI causes oxidative stress and lipid
peroxidation in mammals and cell lines [10, 11]. Orally
exposing female rats to 20mg/kg IMI resulted in a signifcant
elevation of malondialdehyde (MDA) levels and a decrease
of redox parameters such as reduced glutathione (GSH),
catalase (CAT), and superoxide dismutase (SOD) in their
livers, kidneys, and brains [12]. Furthermore, IMI disrupts
compound ion channels or neurotransmission, leading to
irreversible neurotoxicity in mammals which may eventually
devolve into chronic neurodegenerative disorder.

Humans are primarily exposed to IMI through drinking
water and food. Concerningly, IMI can cause carcinogenic
and mutagenic efects in both animals and humans [13]. Te
frst stage of genotoxicity is DNA damage, which disrupts
biological structures and functions, and causes reproductive
and carcinogenic problems [14]. DNA oxidation is a useful
marker for determining mutagenicity mechanisms [15].
IMI’s mutagenic potential has been demonstrated in vitro
and in vivo using genomic endpoints, for instance, the
micronucleus test, chromosomal aberrations, the comet
assay, andDNA damage [16–18]. Moreover, exposure occurs
in the nutrition through imported agricultural goods, till
now [19]. Te aim of this research was to discover the
mechanism of neurotoxicity by which IMI afects cholin-
esterase activity, antioxidant status biomarkers, and primary
DNA damage in rat brains after a 28-day oral dosage.

2. Materials and Methods

2.1. Chemicals. IMI (95.45% pure) was obtained from
Central Agricultural Pesticides Lab. (CAPL), Agricultural
Research Center, Dokki, Egypt. Sigma Chemical Co. (USA)
supplied all the other chemicals used in this study. Prior to
each experiment, all lab solutions were freshly prepared.

2.2. Animals. For 2weeks, all 15 adult male rats (Rattus
norvegicus, weighing about 200± 20 g, National Research
Centre, Giza, Egypt) were acclimatized prior to the treat-
ment by housing them under standard conditions of 50–55%
humidity, 22°C± 2°C, and 12± 1 h of light/dark cycles, with
open access to water and consumed with commercial pel-
leted diet (obtained from Modern Mills Company, Giza,
Egypt). Te Cairo University Animal Ethics Committee
approved the animal guidelines used in this study (Per-
mission No. CU/III/F/5/20) according to with (EU Directive
2010/63/EU).

2.3. Experimental Design. Te IMI doses were chosen based
on the documented median lethal dose value: 450mg/kg
body weight [20]. Te time period of the experiments was
varied according to the results of the subacute study con-
ducted by Test No. 407 [21]. IMI was dissolved in corn oil
and administered orally daily for 4weeks. Te animals were
divided randomly into three groups (n� 5 per group) and
gavage-treated for 28 days at 45mg/kg B.W. IMI for high
dose and 22.5mg/kg B.W. IMI for low dose whilst the
control group received 5ml/kg B.W. with corn oil as vehicle.

2.4. Euthanasia and Sample Collection. After 28 days, the
animals were anaesthetized prior to cervical dislocation with
intraperitoneal injections of ketamine (90mg/kg B.W.) and
xylazine (5mg/kg B.W.) [22]. Brain samples were quickly
extracted, rinsed in ice-cold saline, homogenized, and used
to determine biochemical parameters. Te brain homoge-
nates were centrifuged at 14000 rpm for 20minutes at 4°C
(MSE Super-Minor centrifuge, England), and the super-
natants were collected to measure LPO levels (MDA), GSH
contents, antioxidant enzyme activities (CATand SOD), and
AChE activity using the V-670 UV/VIS/NIR spectropho-
tometer (190–2700 nm wavelength). Brian tissue samples
were also dissected for examining DNA fragmentation and
their histopathology.

2.5. Acetylcholinesterase Activity. AChE activity was evalu-
ated using a previously described method by the authors in
[23]. Te reaction mixture, containing 2.6ml of sodium
phosphate bufer (0.1M, pH 7.5), 0.15ml of dithiobis
(2-nitrobenzoic acid) (DTNB, 10mM, pH 7.0, containing
3mg of NaHCO3 per 8mg of DTNB), and 0.1 g of the su-
pernatant, was kept at room temperature for 10min. Te
reaction was started by adding 0.15ml of acetylthiocholine
iodide (12.5mM), and the absorbance change per minute
was measured at 412 nm for 4min. Specifc activity is
expressed in nmol·min−1·mg−1 protein.

2.6. Lipid Peroxidation Level. MDA, a byproduct of LPO, is
commonly detected by the thiobarbituric acid reactive
substances (TBARS) assay because it reacts with TBARS to
produce a fuorescent product [24]. Tiobarbituric acid
(TBA) reacts with MDA in an acidic medium for 30min at
95°C to form a TBAR product, which can be measured at
534 nm. MDA levels are expressed in nmol g−1 tissue.

2.7. Oxidative Stress Markers. GSH content was assessed by
the method described in [25], CAT activity was estimated
using a previously described method [26], and SOD activity
was measured using the autoxidation and illumination of
pyrogallol at 440 nm for 3min 40, according to Marklund
and Marklund [27].

2.8. Total DNA Fragmentation. DNA fragmentation was
qualitatively assessed by agarose gel electrophoresis through
a DNA laddering assay [28, 29]. To clarify, the brain tissue was
homogenised in a hypotonic lysis bufer, the lysates were
centrifuged for 10minutes, and the supernatants containing
small DNA fragments were separated from the intact DNA
pellets. Te DNA was resuspended in Tris-ethylenediaminete
traacetic acid (Tris-EDTA) bufer for electrophoretic analysis
on a 2% agarose gel. Under ultraviolet light, the gel was
stained with ethidium bromide and observed.

2.9. Histopathological Examination. Brain cells were col-
lected from all groups, immersed in 10% formol-saline for
24 h, embedded in parafn wax, sectioned at 4mm, and
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stained with hematoxylin and eosin. Te slides were ex-
amined under a microscope to assess pathomorphological
alterations in the brain tissues [30].

2.10. Statistical Analysis. Te data are displayed as mean-
± standard deviation (M± SD). Te one-way ANOVA (SPSS,
SPSS Inc., Chicago, IL, USA) version 17 and GraphPad Prism,
version 8 software (San Diego, CA), compared the groups. A
p value of <0.05 is recorded.

3. Results and Discussion

3.1. Acetylcholinesterase Activity. Te nicotinergic neurons
in the brain are inactivated by IMI, a chloronicotinyl in-
secticide used systemically [31, 32]. As shown in Figure 1 and
Table 1, all investigated doses of IMI signifcantly reduced
AChE activity in rat brains after 28 days, compared with the
control (p< 0.05), eventually leading to neurotoxicity. IMI
binds, either with high afnity or partially, to specifc
subsites on nicotinic acetylcholine receptors (nAChRs),
stimulating them and inducing neurotoxicity [19, 33, 34].
Tis continuous stimulation afects both nervous function
and AChE activity [35]. Kimura-Kuroda et al. showed that
exposing a Sprague–Dawley rat cerebellar cell line to IMI-
induced conformational changes in the Ach receptors and
enhanced cellular Ca2+ uptake via α7 nAChRs [32]. In-
creased total cholinesterase activity, which reduces ACh-
assisted IMI binding, may be an adaptive response to oxi-
dative stress caused by increased Ca2+ uptake [36]. Like our
results, Topal et al. reported decreased AChE activity in the
brains of fsh exposed to IMI [37].

3.2. Lipid Peroxidation. Increased free radicals generated
during IMI exposure, combined with the decreased capacity
of the cell to scavenge them, may be responsible for free
radical-induced membrane lipid peroxidation (MDA) in rat
tissues [10]. Figure 2 and Table 1 show that MDA signif-
cantly increased in brain tissues following both the oral
doses of IMI, compared with the control. A high concen-
tration of polyunsaturated fatty acids in biological systems,
combined with a low antioxidant capacity, makes themmore
susceptible to LPO and oxidative stress [38]. Furthermore,
IMI metabolites, such as desnitro metabolites, and nitro-
methylene analogs are more dangerous to mammals
[19, 31, 39]. IMI metabolites might be sources of free radicals
that induce abundant amounts of MDA. Numerous fndings
have suggested that IMI exposure is associated with LPO in
rodent livers and kidneys [12, 40].

3.3. Oxidative Stress Biomarkers. Pesticide concentrations
and structures may alter the efciency of the GSH redox cycle.
Furthermore, enzymes such as SOD and CAT neutralize the
reactive oxygen species (ROSs) produced during pesticide
exposure [10, 41]. GSH and the vitamins C and E have been
shown to protect cells and tissues from xenobiotic oxidative
stress [42]. Several studies have shown that IMI has oxidative
and neurotoxic potential in mammals [32, 39, 43].

Figures 3–5, and Table 1 show that all doses of IMI led to
a signifcant decrease in GSH, CAT, and SOD levels compared
with the control (p< 0.05). IMI’s metabolism is fast and
metabolite accumulation in tissues may result in an excess of
free radicals/ROS, which could damage mitochondrial
membrane structures, having caused permeability changes as
evidenced by increased LPO and GSH depletion [44].
Mahajana et al. showed that IMI exposure reduced antioxi-
dant enzymes (SOD and CAT) responsible for scavenging
superoxides, peroxides, and hydroxides generated during
toxicant-induced oxidative stress in the kidney tissue [10].

3.4. Total DNA Fragments. DNA damage can disrupt bi-
ological pathways, resulting in a genotoxic disorder linked
with reproductive and carcinogenic diseases [45]. IMI’s
mutagenic potential has been demonstrated in in vitro and
in vivo systems using cytogenetic endpoints, such as the
micronucleus test, the comet assay, and the DNA frag-
mentation assay [13]. Figure 6 shows that brain cells fre-
quently contained fragmented DNA, observed using gel
electrophoresis, and these fragmentations were used as
a damage characteristic. DNA, isolated from the brains of
rats exposed to IMI at doses of 45mg/kg and 22mg/kg body
weight, had degraded into oligonucleotide fragments,
forming a clear laddering pattern when resolved by elec-
trophoresis. Te higher dose caused more DNA fragmen-
tation, yielding four bands (790.12, 627.72, 436.2, and
258.47 bp) compared with control, while the lower dose
yielded three bands (810.59, 622.61, and 439.91 bp). ROS
levels increased with increasing IMI concentrations,
resulting in more DNA damage [18, 46, 47]. Change in
glutathione status due to toxic agents causes oxidative stress,
which leads to mammalian genotoxicity [48]. IMI is an
alkylating material that can cause clastogenesis by damaging
cellular DNA. Te presence of an electronegative group in
the nitroguanidine moiety of neonicotinoids may link IMI to
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Figure 1: Acetylcholinesterase activity in rat brain tissues after
28 days of oral IMI exposure. Values are expressed as the
mean± SD expressed as nmol of acetylthiocholine hydrolyzed per
minute per mg protein. 45mg/kg B.W., and 22.5 groups vs. control
p< 0.05 three groups (n� 5).
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DNA, inducing the formation of breaks [2]. IMI-induced
DNA damage could also be attributed to direct reactions
with the pesticide or their metabolites, which destabilize the
DNA structure and cause breaks [49].

3.5. Histopathological Findings. Te histopathology of the
cerebral cortex, hippocampus, striatum, and the cerebellum
of control group rats was unaltered, thus showing a normal
histological neuronal structure (Figure 7). Rats exposed to
the lower dose of IMI showed nuclear pyknosis and de-
generation in the neurons of the cerebral cortex, fascia
dentata, and the hilus, with intracellular edema in the

Table 1: Te efects of sublethal Imidacloprid doses on antioxidant parameters, lipid peroxidation, and neural biomarker (AChE) in rat
brain tissues.

Treatment AChE
(ml mol/min/mg protein)

MDA
(nmol/g tissues)

GSH
(nmol/g tissues)

CAT
(µmol/min/g tissues)

SOD
(µmol/min/g tissues)

Control 3.75± 0.41 19.28± 2.79 21.37± 3.12 30.67± 2.08 11.76± 3.48
45mg/kg IMI high dose 2.47± 0.41a 29.79± 3.82a 13.77± 1.58a 22.56± 3.53a 6.66± 1.65a
22.5mg/kg IMI low dose 2.75± 0.42a 23.92± 1.18a 17.63± 1.64a 26.65± 1.4a 7.23± 1.51a

Data are expressed as mean± SD (n� 5) aStatistical signifcance between imidacloprid treatment groups versus control group (the one-way ANOVA,
p< 0.05).
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Figure 2: Malondialdehyde levels in rat brain tissues after 28 days
of oral IMI exposure. Values are expressed as the mean± SD
expressed as nmol of MDA per g protein. 45mg/kg B.W., and 22.5
groups vs. control p< 0.05 three groups (n� 5).
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Figure 3: Reduced glutathione content in rat brain tissues after
28 days of oral IMI exposure. Values are expressed as the
mean± SD expressed as mmol of g tissues. 45mg/kg B.W., and 22.5
groups vs. control p< 0.05 three groups (n� 5).
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Figure 4: Catalase levels in rat brain tissues after 28 days of oral
IMI exposure. Values are expressed as the mean± SD expressed as
units of CAT per g protein. 45mg/kg B.W., and 22.5 groups vs.
control p< 0.05 three groups (n� 5).
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Figure 5: Superoxide dismutase levels in rat brain tissues after
28 days of oral IMI exposure. Values are expressed as the
mean± SD expressed as units of SOD per g protein. 45mg/kg B.W.,
and 22.5 groups vs. control p< 0.05 three groups (n� 5).
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striatum, and necrosis in the granular layer of the cerebellum
(Figure 8). Similar observations were made in rats admin-
istered the higher dose of IMI, along with focal eosinophilic
plagues in the striatum (Figure 9). Tese histopathological
fndings are in line with the results of Abd-Elhakim et al.,
who found varying degrees of neuronal degeneration in the
brains of male rats exposed to 1mg/kg body weight IMI per
day [50]. In addition, exposure to IMI for 28 days induced
necrosis of Purkinje cells with loss of dendrites and granules
in the granular layer of the cerebellum in female rats [43].

Te brain of IMI-treated mice 28 (for 90 days) revealed focal
neuronal degeneration, hemorrhages, necrosis, and con-
gestion of cerebral blood vessels, besides congestion and
degeneration in areas of the hippocampus [51]. IMI was
detectable and caused DNA damage in the brains of male
rats treated orally with it for 28 days (2.25mg/kg body
weight/day) [18]. Degenerative changes in Purkinje cells of
the cerebrum have been recorded in rats exposed to high
doses of IMI [52]. Also, brain sections of rats treated with
IMI displayed perivascular hemorrhage and nuclear
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Figure 6: Agarose gel electrophoresis was used to evaluate the fragmentation of rat brain DNA in all experimental groups. Ladder DNA
marker, DNA patterns of the control group, the treated group (low dose), and the treated group (high dose).

Cerebral Cortex Subiculum Fasci Dentata and Hilus

Straitum Cerebellum

Figure 7: Displayed a photomicrograph of the cerebral cortex, subiculum, fasci dentata and hilus, straitum, and cerebellum in rat brain
tissues for histopathological extermination in a control group.
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Cerebral Cortex Subiculum Fasci Dentata and Hilus

Straitum Cerebellum

Figure 8: Displayed a photomicrograph of the cerebral cortex, subiculum, fasci dentata and hilus, straitum, and cerebellum in rat brain
tissues for histopathological changes in a low dose group.

Cerebral Cortex Subiculum Fasci Dentata and Hilus

Straitum Cerebellum

Figure 9: Displayed a photomicrograph of the cerebral cortex, subiculum, fasci dentata and hilus, straitum, and cerebellum in rat brain
tissues for histopathological changes in a high dose group.
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migration of neurons with degenerative changes, which
provide support to the neurobehavioral efects indicating
accumulation of IMI and its metabolites in the brain [53].

4. Conclusion

Te subacute IMI exposure can cause toxic efects, which can
lead to a variety of neurodegenerative diseases, depending
on the dose which its outcomes AChE inhibition; changes in
antioxidant status caused by increased lipid peroxidation
and a decrease in GSH, CAT, and SOD. In addition, high and
low doses induced genotoxicity by DNA fragmentation. Te
results show that IMI can decrease new neurons, through
deterioration in brain cells by histopathological examination
and cell membrane via increment of lipid peroxidation. Our
data suggest that IMI induces oxidative stress which pro-
duces ROS leading to abnormal total DNA, moreover in-
hibition of acetylcholinesterase activity in rat brain. All of
the abovementioned biological events have been suggested
to be possible mechanisms for IMI neurotoxicity. Tese
results provide a possible theoretical basis for evaluating the
harm of IMI to mammals and environment. Tus, we can
conclude from our study that the nervous system of
mammals, including humans, is more sensitive to excessive
consumption of IMI in the environment as a replacement for
traditional insecticides, and that much more research is
needed to prove how IMI and its metabolites promote
oxidative stress, which causes alterations in the mRNA levels
of genes that encode antioxidant proteins.
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