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Magnetic feld exposure is a well-established diagnostic tool. However, its use as a therapeutic in regenerative medicine is relatively new.
To better understand howmagnetic felds afect neural repair in vitro, we started by performing a systematic review of publications that
studied neural repair responses to magnetic felds. Te 38 included articles were highly heterogeneous, representing 13 cell types,
magnetic feld magnitudes of 0.0002–10,000mT with frequencies of 0–150Hz, and exposure times ranging from one hour to several
weeks. Mathematical modeling based on data from the includedmanuscripts revealed highermagnetic feldmagnitudes enhance neural
progenitor cell (NPC) viability. Finally, for those regenerative processes not infuenced by magnitude, frequency, or time, we integrated
the data by meta-analyses. Results revealed that magnetic feld exposure increases NPC proliferation while decreasing astrocytic
diferentiation. Collectively, our approach identifed neural repair processes that may be most responsive to magnetic feld exposure.

1. Introduction

Magnetic felds are a ubiquitous part of life, exerting their
efects at all scales, from subatomic particles to the universe
itself [1, 2]. In recent years, considerable interest has turned

towards the therapeutic application of exogenous magnetic
felds for the treatment of a multitude of diseases afecting
neural tissues. Magnetic feld stimulation is appealing since
it is noninvasive and does not require anesthesia. Clinically,
transcranial magnetic stimulation (TMS) is applied for the
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treatment of a variety of psychiatric disorders and applied
magnetic felds have also been explored for cerebral ischemic
stroke [3, 4]. Te varying magnetic felds are thought to
provide neuroprotective (i.e., rescue of apoptotic cells) ef-
fects, through putative mechanisms such as modulation of
calcium and nitric oxide concentrations, free radical pro-
duction, inhibition of apoptosis, induced angiogenesis,
manipulation of cellular electrical activity, and reduced
edema/infammation [4–11]. However, in most cases, dosing
schedules of magnetic feld intensity and exposure lack
standardization. Similarly, the impacts of magnetic feld
exposure on specifc pathologies such as Alzheimer’s disease
(AD) are poorly understood. Some case-controlled and
cohort studies report an increased risk of AD with static (no
oscillations) magnetic feld exposure (∼10 uT), while dy-
namic (oscillations) magnetic felds (10mT, 100Hz) have
been suggested to increase brain activity in AD animal
models [12–14]. Tese latter efects have been hypothesized
to result from the breakdown of β-amyloid plaques [15].

Several factors contribute to both the uncertain beneft-
risk ratio of magnetic feld exposure and questions regarding
the optimal dosing schedule. Magnetic feld properties
(magnitude, frequency, and pulsing), timing schedules
(constant or fxed interval), species, system level (cell, tissue,
organism), outcome of interest (proliferation, reproduction,
cell health, and organism behavior), sensitivity of neuronal
subpopulations to magnetic felds (e.g., neurons that make
up the cortex may respond diferently than neurons that
make up the hippocampus), and many other characteristics
are highly variable across the literature. Such study het-
erogeneity precludes defnition of targeted and specifc
protocols. Trough a combined approach, including a sys-
tematic review of the literature, mathematical modeling, and
application of meta-analytical tools, here, we summarize the
literature aimed to study how magnetic feld stimulation
afects neural repair. We focused on in vitro studies with the
goal of synthesizing our mechanistic understanding of
magnetic feld efects on neural repair, as it is challenging to
evaluate mechanistic cell-based efects in vivo due to com-
plex nervous system interactions. In addition, we compiled
quantifable repair characteristics (diferentiation, pro-
liferation, viability, and maturation) as compared to con-
trols, as well as magnetic feld parameters (magnitude,
frequency, and timing of exposure). With this data, we
performed mathematical modeling and meta-analyses to
characterize magnetic feld efects on neural repair. Col-
lectively, our work identifes magnetic feld parameters that
may be most efective in stimulating magneto-sensitive
cellular repair processes and eliciting regeneration.

2. Materials and Methods

2.1. Systematic Review. We conducted a systematic literature
search using the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement and pro-
tocol (Supplementary Material S1), the Meta-Analysis of
Observational Studies in Epidemiology (MOOSE) checklist
(Supplementary Material S2), the Cochrane Handbook for
Systematic Reviews of Interventions, and the practical guide

for meta-analyses in animal studies [16–20]. We set our
PECO (Population, Exposure, Comparison, and Outcome)
inclusion criteria to identify publications that studied
mammalian neural cells in vitro (population) exposed to
magnetic felds (exposure). Control conditions consisted of an
unexposed (besides the geomagnetic feld) matched neural
cell (comparison), while the outcome variable of interest was
a metric of cellular repair or regenerative processes (out-
come). Details regarding publication search, full-text
screening, and information extraction are provided in the
Supplementary Methods (available here).

Troughout this manuscript we use the term “neural” to
refer to nervous system cells generally (e.g., astrocytes) and
“neuronal” to refer to neurons specifcally. Neural progenitor
cells (NPCs) refer collectively to neural stem cells, neural
progenitor cells, and induced pluripotent stem cells if they
were maintained as stem cells throughout the experiment.
Specifc outcome variables were categorized into the following
regenerative processes: viability, proliferation, diferentiation,
and maturation. “Viability” was defned as a metric that
measured cell survival. “Proliferation” was defned as a metric
that measured increases in cell numbers or signs of an active
cell cycle (i.e., mitosis). “Diferentiation” was defned as
a metric that tracks the transformation from stem/progenitor
cell to a specifc mature cell type. “Maturation” was defned as
a metric that quantifed cellular size. Some dependent vari-
ables were included under multiple categories if that metric
was used to categorize diferent repair processes. For example,
Glial Cell Line-Derived Neurotrophic Factor (GDNF) is
known to be associated with increased viability and difer-
entiation [21, 22], and it was therefore included in both sets of
mathematical models. Graphical data were converted to
numerical data via a digital ruler. Intrarater reliability for
graphical to numerical data conversion, calculated as the
reviewer measuring the same data in sessions ten months
apart (n� 5), was determined to be “excellent” (intraclass
correlation coefcient [1, 2]: 0.9999 95% CI: [0.9846, 1.000]).

2.2. Rigor and Reproducibility Assessment. We scored rigor
and reproducibility using the ARRIVE guidelines 2.0 [23].
Detailed information regarding the scoring strategy, in-
terpretation, and statistics are described in the Supple-
mentary Methods (available here).

2.3. Mathematical Models. We tested a variety of mathe-
matical models to evaluate how diferent magnitudes, fre-
quencies, percent exposure times, and total exposure times
(magnetic feld parameters and independent variables) af-
fected viability, proliferation, diferentiation, and matura-
tion of neural cell populations (repair and regenerative
processes, dependent variables). Magnitude was defned as
the strength or amplitude of the magnetic feld (mT), and
frequency was defned as the number of cycles of magnetic
feld per unit time (Hz). Te percentage of time exposed
represented the proportion of experiment time that cells
were exposed to a magnetic feld relative to the total time
lapsed until assessments were made. For example, if cells
were exposed to a magnetic feld for 1 hour, but a total of
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10 hours passed from the start of the experiment to data
collection, the percent of time exposed would be 0.1.

Te mathematical model described below was run if
there were at least 6 diferent values of the independent
variable (e.g., magnitudes of 0.1, 1, 2, 5, 10, and 100mT
versus all datapoints investigating 100mT). All simulations
were completed in Python Jupyter Notebook (version 6.3.0)
and followed recommendations for best practices in
mathematical modeling [24, 25]. Data were frst visualized
for an understanding of what type of mathematical model
(e.g., linear and logarithmic) would best represent the re-
lationship. For all investigated relationships included in this
review, linear or polynomial were determined to be most
representative. As such, for each independent-dependent
variable combination, initial settings for the mathematical
model (linear and polynomial) and initial coefcient esti-
mates were generated via the numpy.polyft function (Py-
thon 1.23.0).

Simulations were set up as follows:

SMD(x) � ax2 + bx + c, (1)

where x is one of the independent variables (e.g., magnetic
feld magnitude); SMD(x) is the standardized mean difer-
ence between the magnetic feld exposure group and the
control group from an individual study for a repair/re-
generative process dependent variable category; a and b are
the coefcients predicted by the simulation; and c was set to
0. Terefore, an SMD of zero would indicate there is no
diference between the magnetic feld exposure and control
group, a positive SMD would indicate the dependent vari-
able is greater in the magnetic feld exposure group com-
pared to the control group, and a negative SMD would
indicate that a dependent variable is lower in the magnetic
feld exposure group compared to the control group.

In our analysis, we ftted the coefcients of equation (1)
by minimizing the root mean squared error (RMSE). To
accommodate the fact that some exposure settings
appeared in multiple diferent studies, we ran 20,000 dif-
ferent fts. In each ft, if inputs were the same across dif-
ferent studies, one was randomly selected. For instance, if
study A used a magnitude of 10mT and study B also used
a magnitude of 10mT, whether the SMD for study A or
study B was input into the model was randomly selected. To
ensure that we were adequately sampling identical inputs,
we tracked how the conclusions drawn from the analysis
varied with the number of separate fts. We observed that
200 separate fts were sufcient to fx the values of a and b.
Finally, as stated above, we assumed that an external
magnetic feld exposure of zero (magnitude, frequency, and
time) would be equivalent to the control and input this
value as an SMD of 0.

Te null hypotheses for our simulations were that there
is no relationship between our independent variables
(magnitude, frequency, and exposure time) and repair
processes (viability, proliferation, diferentiation, and
maturation). In our models, this would present as co-
efcients (i.e., a, b) equal to zero. To evaluate this statis-
tically, we defned alpha a priori as 0.05. Te p values of our

simulations were quantifed as the number of values greater
than or less than zero divided by the total number of
completed simulations. For example, if the average value of
b was 9.82 and three out of 100 completed fts produced
a negative value of b, our p value would be 0.03 and this
fnding would be considered statistically signifcant. Te
original code for all simulations is shown in Supplementary
Material S3. Fine details for the mathematical model are
available in the Supplementary Methods (available here).

2.4. Statistical Analysis: Categorical Meta-Analyses. Since
a continuous exposure meta-analysis model is not as
sensitive to binary hypotheses [26], we performed cate-
gorical meta-analysis for the combinations of dependent
(e.g., oligodendrocytic diferentiation, and astrocytic dif-
ferentiation) and independent variables (magnetic feld
amplitude, frequency, and exposure time) for which we did
not fnd a continuous relation. In each case the control
group had no external magnetic feld exposure besides the
Earth’s magnetic feld, and the experimental group in-
cluded all cases with additional external magnetic feld
exposure. SMD and pooled standard deviations (SDpool) of
outcome measures were calculated using the DerSimo-
nian–Laird method [20]. All meta-analyses were performed
using SPSS Statistics for Windows (version 29.0, IBM
Corp., Armonk, NY, USA).

3. Results

3.1. Systematic Review Revealed Heterogeneity in Magnetic
Field Parameters, Cell Types, and Outcome Measures for
Neural Repair. From our systematic review, we identifed
7,917 articles that evaluated magnetic feld exposure efects
on in vitro neural cell repair processes. Title and abstract
screening via ASReview, which is a machine learning al-
gorithm for large review screening, resulted in 159 articles
eligible for full-text screening (Table S2). After screening and
citation search, 38 articles were included (Figure 1 and
Table S3) [27–63]. Te most frequent reason for exclusion
was whole animal magnetic feld exposure (Table S2).

Of included studies, 35 used murine cells and 4 used
human cells (1 study used both; Figure 2(a)). Neural pro-
genitor cells (n� 11) were the most common cell type used
(Figure 2(b)). When considering magnetic feld parameters,
dynamic (n� 21, Figure 2(c)), low magnitude (1–10mT,
n� 30, Figure 2(d)), and 50Hz frequency (n� 17,
Figure 2(e)) felds were the most frequently used. For
outcome variables, most studies examined how magnetic
feld exposure afected diferentiation and proliferation
(Figure 2(f )). Te total time of magnetic feld exposure was
variable, ranging from less than one hour to over one week
(Figure 2(h)). Te percent time of exposure demonstrated
a bimodal distribution, with one cluster of studies focusing
on exposure <10% of the total experiment length (e.g., one
short burst at the beginning of the experiment) while the
other studies evaluated exposures that spanned nearly the
entire length of the experiment (>90%) (Figure 2(g)). Tese
fndings reveal a high degree of heterogeneity in studies
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aimed at understanding how magnetic feld exposure im-
pacts neural cellular repair processes.

3.2. Included Studies Lacked Information on “Inclusion and
Exclusion Criteria,” “Protocol Registration,” and “Data
Access”. To assess rigor and reproducibility (R&R), we
scored each manuscript by ranking ARRIVE guideline
categories. Te maximum overall score, indicating higher
rigor, is 36, and the lowest score, indicating no rigor, is
zero. Included manuscripts had an average R&R of 23± 4
(Figure 3 and Table S4). When examining the Essential 10,
“Study Design,” “Outcome Measures,” “Experimental
Procedures,” and “Results” were generally “sufciently
reported.” On the other hand, “Inclusion and Exclusion
Criteria” was “insufciently reported.” Of the additional
guidelines, “Abstract,” “Background,” and “Objectives”
were “sufciently reported,” while “Protocol Registration”
and “Data Access” were scored as “insufciently reported”
across all studies (Figure 3(a)). We also evaluated the
correlation between the ARRIVE score and publication
year (Figure 3(b)). We found a moderate, positive

correlation, suggesting that R&R is slowly improving over
time. Additional description of the qualitative factors
driving these fndings is presented in the Supplementary
Results (available here).

3.3. Mathematical Modeling Revealed Magnetic Field Mag-
nitude Has a Stable, Positive Relationship with Neural Pro-
genitor Cell (NPC) Viability. Te included studies ofered
varying ranges of properties and exposure schedules of
magnetic felds as well as a variety of metrics to quantify
repair and regenerative processes. In categorical (stan-
dard) meta-analyses, conditions can be divided into two
groups: experiment and control. However, the exposure
schedules in the dataset we analyzed were not categorical
but, instead, were continuous. Terefore, for the frst pass
through the dataset, we tested a series of mathematical
models, similar in structure to continuous exposure
meta-analyses, [26] in order to (1) extract the continuous
relationship between exposure and regenerative pro-
cesses and (2) derive information that cannot be
extracted from individual studies. Specifcally, our
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Figure 2: Continued.
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Figure 2: Publications aimed at studying neural repair as a function of magnetic feld exposure ofer a wide range of diversity in both
magnetic feld parameters and cell types under study. Manuscripts were counted based on if the included data fell into certain categorical
variable classifcation. In the case of where a manuscript had data falling into multiple categories, the manuscript was counted in every
category. Full-text refers to all data within the “passed full-text sample” category (n� 38), while mathematical model sample refers to any
manuscript where at least one datapoint was included in the mathematical model (n� 21). See Table S3 for exclusion criteria. (a) Species of
cells. (b) Cell type. NSC� neural stem cells; iPSC� induced pluripotent stem cells; NPCs�neural progenitor cells; NB� neuroblastoma;
SchCs� Schwann cells; Hipp N� hippocampal neurons; Astro� astrocytes; Chro cells� chromafn cells; DRG� dorsal root ganglia;
Oligo� oligodendrocytes; Cortical N� cortical neurons. (c) Type of magnetic feld. (d) Magnitude of magnetic feld. (e) Frequency of
magnetic feld. (f ) Metric of repair/regeneration studied. (g) Percent of time exposed (time exposed to magnetic feld over total time of
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models simulated the efects of magnetic feld parameters
(magnitude, frequency, total time of exposure, per-
centage of time exposed) on neural repair metrics (vi-
ability, proliferation, diferentiation, and maturation).
Studies that did not contain neural repair outcome
measures or that used pulsed magnetic felds were ex-
cluded to simplify the model input. Twenty-one articles
met these guidelines and were included in subsequent
analyses (the modeling workfow is displayed
in Figure 4(a); the model input is presented in Table S5).

After quantifcation, six distinct dependent variables
were tested: neuronal, astrocytic, and oligodendrocytic
diferentiation, as well as neural progenitor cell (NPC)
maturation, proliferation, and viability. Considering the
independent variables (magnitude, frequency, total time
exposed, and percentage of time exposed), a total of 24
combinations were possible for simulation. However, nine
combinations did not have enough data to run a simulation
(Figure 4(b)). Tus, 15 models were simulated (Figure 4(a)
and Tables S6 and S7).

Based on our models, astrocytic and oligodendrocytic
diferentiation did not have a signifcant relationship
with magnitude, frequency, total time exposed, or per-
centage of time exposed to the magnetic feld
(Figure 4(b)). Changes in time-based variables were
positively correlated with NPC maturation, while NPC
proliferation was positively correlated with increasing
magnitude. NPC viability had signifcant, positive cor-
relations with respect to magnitude, total time exposed,
and percentage of time exposed. Lastly, neuronal dif-
ferentiation was positively correlated with magnitude
and total time exposed. Taken together, these simulations
suggest that magnetic feld exposure may exert positive
efects on NPC maturation, proliferation, diferentiation,
and viability.

To assess the robustness of our simulations, we per-
formed sensitivity analyses. First, we analyzed how changes
in a and b values afected the root mean squared error
(RMSE). For most cellular repair processes, we found that
both a and b afected the RMSE.Terefore, we only modeled
polynomial relationships for the entirety of the sensitivity
analyses. For all considered combinations, RMSE efects
were stable. However, unlike the statistically signifcant
relationships observed in ftting to mathematical models,
sensitivity analyses revealed a lack of robustness across many
of the observed relationships, as quantifed by a change in
SMD >2 (Figure 4(c)). Models assessing the relationship
between NPC viability and neuronal diferentiation with
respect to magnitude were stable. Te total time exposed
models generally showed moderate instability (SMD of 2–10
for both a and b), while the percent time models showed
extreme instability (SMD of ∼105 for a and ∼103 for b).

Using the previous data from our R&R analysis, we
repeated the mathematical models incorporating only
those that explicitly blinded their experiments (i.e., a score
of “2” in the 5th ARRIVE Guideline Category, “Blinding”;
n = 6). Of note, astrocytic diferentiation and NPC matu-
ration simulations could not be run because there was not
enough data. Neuronal diferentiation, oligodendrocytic
diferentiation, and NPC proliferation only had enough
independent variables for “total time exposed,” while NPC
viability had enough data for both “total time exposed” and
“magnitude” simulations. Oligodendrocytic diferentiation
and NPC proliferation did not have a relationship with
time exposed to the magnetic feld. Changes in total time
exposed were positively correlated with neuronal difer-
entiation and NPC viability, while changes in magnitude
were positively correlated with NPC viability. However,
sensitivity analyses revealed that only the relationships
between NPC viability with respect to total time exposed
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p = 0.001

Correlation between Total ARRIVE Score and Year of Publication

1995 2000 2005 2010 2015 2020
Year

0

10

20

30

40

A
RR

IV
E 

Sc
or

e

(b)

Figure 3: Rigor and reproducibility in studies aimed at understanding magnetic feld impacts on neural repair is increasing across time.
(a) ARRIVE score based on individual category, with 2 being sufciently addressed and 0 being insufciently addressed. 1� study design;
2� sample size; 3� inclusion and exclusion criteria; 4� randomization; 5� blinding; 6� outcome measures; 7� statistical methods;
8� experimental animals; 9� experimental procedures; 10� results; 11� abstract; 12� background; 13� objectives; 17� interpretation/
scientifc implications; 18� generalizability/translation; 19� protocol registration; 20� data access; 21� declaration of interests. Values are
reported as mean± standard deviation. Guidelines 14–16 were not used due to excluding in vivo studies. (b) Relationship between total
ARRIVE score and publication year. Each dot represents an included manuscript.
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and magnitude were stable. Our fndings indicate there is
a positive relationship between magnetic feld magnitude
and NPC viability (Figure 4(c); raw data shown in
Figure S1).

3.4. Meta-Analyses Reveal Tat NPC Proliferation Is In-
creased, Whereas Astrocytic Diferentiation Is Decreased by
Magnetic Field Exposure. Based on our mathematical
modeling results, oligodendrocytic and astrocytic diferen-
tiation as well as NPC proliferation were not modulated by
changes in magnitude, frequency, or time of exposure to
a magnetic feld. Because there were no apparent efects of
these heterogeneous exposure parameters, we next compiled
these datasets to further characterize whether there were any
efects of magnetic feld exposure via categorical meta-
analysis.

Categorical meta-analysis revealed that NPC pro-
liferation was increased with magnetic feld exposure
(Figure 5(a)). Conversely, astrocytic diferentiation was
decreased (Figure 5(b)). Lastly, oligodendrocytic diferen-
tiation was not impacted, although this analysis is likely
underpowered, as there were only three independent studies
included (Figure 5(c)). Collectively, these fndings suggest
that magnetic feld exposure may amplify the regenerative
activity of some cell types (NPCs) while attenuating others
(astrocytes).

4. Discussion

Magnetic feld stimulation represents a promising non-
invasive regenerative therapeutic strategy. However, more
information is needed to understand the physiological
versus pathological efects of magnetic felds on cell re-
sponses as we seek to defne more targeted and specifc
protocols in the clinic. To improve our understanding of
magnetic feld impacts on neural regeneration, we cataloged
all published studies aimed at understanding the impact of
magnetic feld exposure on neural repair in vitro through
a literature review. Drawing from the data synthesized in our
review, mathematical models revealed that increasing
magnetic feld magnitude increases NPC viability. Our
meta-analyses further revealed that magnetic feld stimu-
lation increases NPC proliferation while decreasing astro-
cytic diferentiation.

In considering the magnetic feld parameters tested
(Figures 2(d) and 2(e)), we found that the included studies
primarily attempted to simulate everyday exposures. For
example, 50Hz felds are refective of those emitted by cell
phones and power lines, and there are some human studies
indicating detrimental efects from exposure [64–66]. Spe-
cifc parameters such as time of exposure lacked a clear
rationale. When we sought to understand the wide range of
exposure times investigated (Figures 2(g) and 2(h)), we
found that authors rarely reported how and why exposure

Sensitivity Analysis Results
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Figure 4: Mathematical modeling and sensitivity analyses reveal NPC viability has a robust relationship with magnitude of magnetic feld
exposure. (a) Mathematical modeling and sensitivity analyses workfow. SMD� standardized mean diference; RMSE� root mean squared
error; SDpool � pooled standard deviation. ∗For example, if the average value of a was 3 and only 3% of simulated a values were negative, we
would say with confdence that there is a relationship between the independent and dependent variables. (b) Results from mathematical
modeling. OD� oligodendrocytic diferentiation; AD� astrocytic diferentiation; ND� neuronal diferentiation; V�neural stem/pro-
genitor cell (NPC) viability; P�NPC proliferation; M�NPC maturation; Percent time� percentage of time exposed. Of note, no negative
relationships were observed in our modeling results. (c) Sensitivity analysis results.
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schedules were chosen. Future work would beneft from
a more clearly presented exposure schedule rationale and/or
systematic evaluation of how magnetic feld parameters
impact repair/regenerative outcomes of interest.

In 2010, the ARRIVE Guidelines were frst published to
address the rigor and reproducibility crisis in the biological
sciences [67]. Based on the positive correlation seen between
publication year and ARRIVE Score, progress is clearly
being made (Figure 3(b)). However, in the body of literature
aimed at understanding magnetic feld efects on neural
repair and regeneration, there are still many areas needing
improvement, including declaration of inclusion and ex-
clusion criteria and a priori protocol registration. Given the
high heterogeneity of study parameters tested (i.e., magnetic
feld specifcations) and the associated knowledge gap

regarding ideal exposure conditions, increased attention to
these parameters is essential.

While meta-analysis is standard in systematic reviews,
here, we applied mathematical modeling to better in-
corporate the heterogeneity present within the included
studies. Our mathematical modeling results revealed that
NPC viability improved with increasing magnetic feld
magnitude. Tis fnding is consistent with several in-
dependent studies and cell types [28, 44, 68–71]. Since
neurons themselves lack a robust ability to regenerate,
maintaining NPC viability is critically important to neural
repair [72]. Our fndings suggest one mechanism of ther-
apeutic beneft provided by magnetic felds is the protection
of NPC. Tere is some evidence suggesting these efects may
be modulated by magnetic feld and voltage-gated ion
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Figure 5: Meta-analyses revealed that magnetic feld exposure increases NPC proliferation and decreases astrocytic diferentiation. (a)
Meta-analysis assessing neural stem/progenitor cell (NPC) proliferation from included studies. (b) Meta-analysis assessing astrocytic
diferentiation from included studies. (c) Meta-analysis assessing oligodendrocytic diferentiation.

10 Journal of Tissue Engineering and Regenerative Medicine



channel interactions, leading to cell membrane stabilization
[73, 74]. Others have suggested this improved viability may
be modulated by cellular magnetoelectric materials that
facilitate temperature control [75, 76]. Our fndings here
suggest that examination of these mechanisms to both
optimize the therapeutic potential and better understand
how magnetic feld stimulation afects NPC viability is
a promising direction for future research.

Our mathematical modeling suggested there were no ef-
fects of magnetic feld magnitude, frequency, or exposure time
on oligodendrocytic diferentiation, astrocytic diferentiation,
or NPC proliferation. Tus, we evaluated the impact of
magnetic stimulation, independent of magnetic feld param-
eters, on repair features by performing categorical meta-
analyses. Our meta-analyses indicated that magnetic feld ex-
posure may increase NPC proliferation while decreasing
astrocytic diferentiation. Astrocytes play a critical role in
neural repair/regeneration by activating NPC and creating an
environment that allows for neuronal maturation and pro-
liferation [77]. However, overactive astrocytes can lead to glial
scarring and serve as a detriment to repair [78]. In other studies
evaluating the efect of magnetic felds on astrocytes, responses
to magnetic felds appeared to be dependent both on endog-
enous cell features (i.e., the cell cycle phase), as well as ex-
ogenous exposure features (e.g., whether the plane of applied
magnetic feld was parallel versus perpendicular to the plane of
the monolayer) [79]. Te diferential response among varying
cellular repair processes tomagnetic feld exposuremay explain
the inconsistencies in the beneft-to-risk ratio. Most likely,
there is a “goldilocks efect,” in which a yet-to-be-identifed
ideal magnetic feld exposure increases NPC viability and
proliferation, while preserving the appropriate level of astrocyte
activity [80]. As such, future studies are needed to systemat-
ically evaluate how these three parameters of magnetic feld
exposure—magnitude, frequency, and time—modulate re-
generative/repair cascades.

We note that none of the studies controlled for the efects
of Earth’s static magnetic feld (∼50 μT), and all the studies
reported magnetic feld amplitude but not vector data. Te
lack of vectorial magnetic feld data makes our mathematical
model insensitive to magnetic feld efects that occur when
amplitudes are on the order of Earth’s magnetic feld or
lower. We hypothesize that biological systems that evolved
in ∼50 μT Earth magnetic feld would be sensitive in the
1–100 μT range. As such, it is important for the next gen-
eration of experiments to carefully compensate for the
Earth’s magnetic feld.

Although our analyses here add to a growing body of
literature assessing the therapeutic potential of magnetic
felds, they have limitations. First, all the included studies
were performed using in vitro monocultures. Tere was
a diversity of cell types, species, outcome measures, and
exposures included in this review. More specifcally, the
variability in the selected times and schedule of exposure
made integration of the protocols challenging. In addi-
tion, interest in pulsed electromagnetic felds is increasing
due to cell phone emissions, but due to the fact that only
a single magnetic feld magnitude could be input into our
model, it was impossible to consider these potential efects

[81]. Given that our review focused on in vitro systems, we
were also not able to take into account how variations of
subpopulation electrical activity may afect magnetic feld
efcacy. It is also possible that there were impacts of
recency here that were not fully elucidated (e.g., 1 hour
exposure then sample collection 24 hours later versus
1 hour exposure and immediate sample collection). Given
this variability, our models cannot be taken as an exact
representation of existing relationships, but rather,
a general, binary trend. It is also worth noting that most
simulations and meta-analyses contained a relatively low
number of studies. Terefore, our analyses were generally
underpowered. Te original data input was usually
clustered around a few points (e.g., frequency was cen-
tered around 0 and 50Hz). Tis observation further
highlights the need for more studies to evaluate un-
common parameters such that the therapeutic window of
magnetic felds can be better delineated. Given these
considerations, our analyses provide guidance to improve
the design and reporting of magnetic feld studies for
neural cell repair and regeneration, as well as mechanistic
understanding.

Magnetic feld exposure is and will continue to be a part
of everyday life, and the potential for a noninvasive thera-
peutic will likely increase with our understanding of mag-
netic feld efects on repair processes. Future steps should
include increased emphasis on systematic evaluation of
magnetic feld exposure that impacts NPC viability and
proliferation and astrocytic diferentiation in original re-
search studies as well as the underlying mechanisms dic-
tating these phenotypes. By increasing our understanding of
the nuances of magnetic feld efects on neural regeneration,
we will move closer towards robust and safe therapies for the
patients they aim to treat.
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