Research Article

Knowledge, Attitude, and Preventive Practice Related to Onchocerciasis and Associated Factors among Resource-Limited Selamogo Woreda Residents, South West Ethiopia, 2021

Girma Gilano,1 Mulugeta shegaze,2 and Amanuel Dubale3

1Department of Health Informatics, School of Public Health, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
2Department of Public Health, School of Public Health, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
3Department of Medical Laboratory, School of Medicine, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia

Correspondence should be addressed to Girma Gilano; gilanog@yahoo.com

Received 10 May 2022; Revised 15 July 2022; Accepted 9 August 2022; Published 29 August 2022

Academic Editor: Maoshui Wang

Copyright © 2022 Girma Gilano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction. Ethiopians work very hard to control and eradicate the vector and the parasite of Onchocerciasis. However, some hard-to-reach areas are not adequately covered by interventions that have previously taken place in various endemic sites in the country. This study aimed to assess knowledge, attitude, and preventive practice of Onchocerciasis among Selamogo residents to enhance the expansion of interventions.

Methods. We used a survey questionnaire to capture the data on 572 Selamogo residents. We checked, cleaned, entered the data into EPI Info v.7, and analyzed it in STATA v.15. We fitted a binary logistic regression model to examine the associated factors. Variables significant at \( P < 0.20 \) were included in the model. We declared association at \( P < 0.05 \).

Results. Of the 578 residents we approached, 572 (99%) responded to the interview. We found 48.30% of poor knowledge, 90.90% of poor attitude, and 85.70% preventive practice related to Onchocerciasis. Factors like Amhara ethnicity (AOR = 2.35, 95% CI: 1.05, 5.27), Orthodox Christianity (AOR = 1.87, 95% CI: 1.12, 3.10), Muslims (AOR = 2.28, 95% CI: 1.05, 4.94), secondary school (AOR = 2.31, 95% CI: 1.50, 3.55), diploma (AOR = 10.34, 95% CI: 4.62, 23.16), and preventability of Onchocerciasis (AOR = 3.02, 95% CI: 1.39, 6.55) were associated with KAP. Other factors like medical treatability, admission history to the health facilities, sex, and the number of households were also associated. Conclusion. The KAP related to Onchocerciasis is very poor compared to the indicators and evidence in the country. An intervention that considers local resources like taking the experience of groups with good knowledge, attitude, and preventive practice led by educated plus positive attitude people regarding the preventability and treatability of Onchocerciasis might be mandatory to improve the status.

1. Introduction

Neglected Tropical Diseases (NTDs) are the common cause of illness in low-income populations of Africa, Asia, and the South Americas. They are very common in 31 sub-Saharan African countries [1, 2]. Onchocerciasis is a parasitic disease that causes ocular and nodular lesions in humans, and the transmission is mediated by the vector blackflies [3, 4]. According to the 1995 WHO report, 17.5 million Africans were affected, followed by 140,000 Americans and 30,000 people in the Arabic peninsula, with 267,950 cases of blindness [4–6]. According to the African Program for Onchocerciasis Control (APOC), 99% of blindness is in Africa [7]. From 1974 to 2002, 11 West African countries successfully managed to control Onchocerciasis with the help of the Onchocerciasis Control Program (OCP) [8]. Nigeria in 2012 [9], Guatemala in 2016, Colombia in 2013, Ecuador in 2014, and Mexico in 2015 [10] reported zero cases. In sub-Saharan countries, the number of people treated for microfilaria, the number of people protected...
from the parasite, and areas freed from infection have increased in the last 30 years [11]. In East Africa, a program focused on southwestern Uganda reported the disappearance of microfilaria in 2012 [12]. Kenya eliminated vectors in the 1960s without treatment [13]. In Ethiopia, the 2017 status review report showed Onchocerciasis is endemic in 188 districts [14]. One report showed that the drastic environmental change caused the disappearance of the parasite in the Tigray region [15].

In developing countries like Ethiopia, knowledge, attitude, and preventive practice are important in communities to control and eradicate Onchocerciasis [16]. The first-ever epidemiological assessment in Ethiopia was done in the 1970s in Illuhabor, where the prevalence rate of Onchocerciasis was 51.4% and 66.7% in two areas [17]. Like all African countries, Ethiopia has a plan of eradicating Onchocerciasis by 2030 through CDTI, vector control, and other methods [18]. In one study in Southwest Ethiopia, 64.4% of participants had the disease but only 36.5% thought Onchocerciasis was transmissible [19]. Nigeria, Senegal, and Mali eliminated Onchocerciasis only by ivermectin intervention at least in some parts of their countries [9]. The ivermectin strategy outways the vector controlling mechanism that is complicated by the long-living worms in human skin (0–15 years). There are even many programs (OCP, APOC, and CDTI) trying to control Onchocerciasis, which are successful in West Africa. The OCP is specially confined to the region [20]. The knowledge of the disease, attitude, and preventive practices have been very important parameters for community campaigns to control Onchocerciasis and to bring the matter to the community [21]. In North West Ethiopia, the misconceptions regarding the disease and the poor knowledge, attitude, and practice were identified as obstacles [16]. In other words, the status review showed that community readiness comes after the direct increase in community awareness, attitude, and preventive practices [14]. For the 2025 plan of Onchocerciasis eradication, community participation is forwarded as the crucial strategy in Africa [22]. Without understanding experience in every hard-to-reach area of the countries, improving knowledge, attitude, and preventive practice regarding Onchocerciasis might be impossible to facilitate interventions. The study in the Bench Maji zone showed that many years of treatment with ivermectin did not reduce the prevalence of the disease in the area, which might be a good indication of the necessity of improving knowledge, attitude, and practice [23, 24]. There was no status evidence and no other studies have ever been conducted on Onchocerciasis in the current area despite its endemic nature. Thus, this study aimed at assessing knowledge, attitude, preventive practice, and associated factors in Selamago woreda to uplift the attention of stakeholders and policymakers.

2. Materials and Methods

2.1. Study Design and Setting. The community-based cross-sectional study design will be employed in the South Omo zone, Selamago Woreda, from March 2021 to January 2022. South Omo Zone is one of the 15 zonal administrations of Southern Ethiopia. Selamago is one of the woredas in the zone. As a part of the Debub Omo Zone, Selamago is bordered on the south by Nyangatom on the west and north by the Omo River, which separates it from the Bench Maji, Keffa, and Konta. In the northeast, it is bordered by the Gamo Gofa, on the east by the Basketo and Bako Gazer, and on the southeast by the Usno River, which separates it from Bena Tsemay. The Maga River defines a part of the boundary with Bako Gazer. The administrative center of Selamago is in Hana. David Turton describes this area as one of the most isolated in Ethiopia. The Omo and Mago rivers make access difficult, and the conquering armies of Menelik II bypassed them. Although the occupying Italians briefly occupied a military post along the Omo in what later became Selamago in 1940, it was not until the 1970s that direct Ethiopian administration reached this area [25].

2.2. Participants. We selected 6 kebeles (smallest administrative level) from a possible 14, and households from the randomly selected kebeles were randomly included. All individuals in the randomly included households during the data collection period whose age was ≥ 18 years old and who has been a resident for at least 6 months were eligible for a face-to-face interview. We excluded residents who were physically or mentally unable to communicate with the interviewer and when there were no other possibilities of obtaining their information.

2.3. Sample Size Determination and Sampling Procedures. We calculated the sample size using the single population proportion formula. The prevalence rate of knowledge, attitude, and practice is considered 50% since no previous study has been obtained in this specific area. Considering 95% CI, a 5% margin of error, and adding a 10% of non-response rate, the final sample size calculated using EPI Info was 578. To achieve the selection, we used systematic sampling methods. We randomly selected kebeles and proportionally allocated samples to each kebele using sample fractions depending on the population of each kebele. We obtained individual households by dividing the number of households by sample size as 2000/578 = 4:1. Using the lottery method, the first household from 1 to 4 was drawn, and every 4th household that fulfilled the inclusion criteria for the interview was chosen.

2.4. Variables of the Study. The outcome variables of this study were knowledge, attitude, and preventive practices. To address the knowledge, 6 item questions regarding clinical manifestations, organs affected, cause, and transmission of the disease were considered. All items were measured through yes/no. Yes (present, known, accepted) scored as “1” and No (do not know, not agree, not true or others) scored as “0”. The combination of the items’ scores becomes “1” to mean good and “0” to mean poor knowledge.

To address information on attitude, 7 parameters were prepared regarding the presence/absence of stigmatization
and the preferable place for treatments and others to indicate a good or poor/low attitude. All items were measured using yes/no. Positive attitude responses were categorized as good/positive attitude [1] and poor/negative or low attitude (0). We combined as we did under knowledge. Prevention practices were collected using three questions “When a member of your family suffers from Onchocerciasis, what did she/he use to treat the disease?”, “Where did she/he seek help drug/others,” and “do you use preventive methods to avoid Onchocerciasis” with the responses drug/other, HC/Hospital/others, and yes/no, respectively. The correct answer was coded “1” which is good practice, and “0” represented the incorrect answer as poor/low practice [21]. In some of the questions like where to seek help, the answer can be health center (HC), or hospital, and others; however, we combine 1 and 2 as 1 and others as 0. This is similar in both practice and attitude measurements. For all three correct answers, more than half the score was taken as good.

The independent variables of the study were socio-demographic information including age (number), gender(male/female), occupation(government employee,, farmer, housewife, merchant, daily laborer, or others), number of households(number), and educational status of respondents(illiterate, primary school, secondary school/preparatory, diploma, 1st degree and above), living kebele, medical treatability of the disease(yes/no), admission (yes/no), Onchocerciasis preventability (yes/no), socio-economic (number), presence of chronic illness(yes/no), marital status(single, married, divorced, separated, and widowed), religion(orthodox, Muslims, Protestant, Catholic and others), and ethnicity(Dime, Bodi, Mursi, Amhara, and others).

2.5. Data Collection Instruments and Data Quality. The instrument for data collection was designed after a vigorous literature review in the disease domain. It contains 6 knowledge-based questions, 7 questions about attitudes, and three questions on preventive practice along with socio-demographic variables [21].

Twelve (diploma) trained data collectors who know the local language participated based on their previous experience in data collection and research. We assigned three supervisors (MSc) to follow the process and handle the fieldwork. The questionnaire was translated to Amharic and back to English to see the consistency. Before data collection, the tool was tested on 5% of the population in far unselected kebeles. Issues related to understanding, language, and consistency during completing questionnaires were corrected and included in the final questionnaire.

2.6. Data Processing and Analyses. After completion of the field checkup, the principal investigators received, checked, and entered the data into EPI Info version 7. We used binary logistic regression to examine the factors that affected knowledge, attitude, and practice. All analyses were performed in STATA 15. P value <0.20 was used to include variables in the model and P value <0.05 was used to declare association. We presented descriptive statistics using numbers, means, standard deviation (±SD), and percentages. Using 95% CI and adjusted odds ratio, we presented association data.

2.7. Ethical Consideration. Primarily, we obtained ethical clearance from the Institutional Review Board of Arba Minch University with issue number AMU-IRB/1123/2021, and then the permission letters were collected from the Zonal Health Departments and Selamago woreda health office. Verbally, consent was secured from each participant, and the right to refuse or participate was granted and respected. The information obtained from the study was kept confidential.

3. Results

3.1. Descriptive Statistics. Of 578 residents approached, 572 (99%) responded to the interview. We found 48.30% of poor knowledge, 90.90% of poor attitude, and 85.70% of poor preventive practice related to Onchocerciasis among Selamago woreda residents. Descriptive statistics indicate that participants had an average household income of 698.53 ± 92.9, a mean age of 37.55 ± 8.25, an average number
of children of 4.02 ± 1.56, and a mean household size of 5.98 ± 1.70. The largest ethnic group was Dime (45.10%), followed by Bodi (27.40%). The largest proportion of the participants was illiterate (54.90%), and farmers accounted for 55.80% of the total followed by pastoralists at 36.20%. The largest proportion of participants (92.70%) believe Onchocerciasis is unpreventable and 71.00% believe Onchocerciasis is medically untreatable (Table 1 and Figure 1).

3.2. Analysis of Factors Associated with Knowledge, Attitude, and Preventive Practice of Onchocerciasis. Examination of socio-demographic and other factors showed that ethnicity, religion, education status, number of households, the experience of medical treatability of the disease, and preventability were associated with knowledge of Onchocerciasis. Accordingly, Amhara’s ethnic background was associated with 2.35 times increased knowledge related to Onchocerciasis with AOR of 2.35 (1.05, 5.27). The odds of good knowledge were higher among Orthodox Christian and Muslim religions with AOR of 1.87 (1.12, 3.10) and 2.28 (1.05, 4.94), respectively, compared to protestant religion followers. Good knowledge was also observed among participants who learned (secondary school 2.31 (1.50, 3.55), diploma 10.34 (4.62, 23.16), and first degree or above 8.95 (3.97, 20.21)) compared to illiterate participants. Participants from larger households had good knowledge of Onchocerciasis with an AOR of 1.15 (1.03, 1.30); similarly, the odds of good knowledge were higher among participants regarding preventability of Onchocerciasis with AOR of 3.02 (1.39, 6.55) (Table 2).

The odds of a good attitude were higher among female participants with an AOR of 2.17 (1.04, 4.56). The ethnic groups of Mursi and Amhara were associated with higher odds of good attitude with AOR of 3.74 (1.47, 9.52) and 5.31 (1.18, 23.85) respectively. Participants at primary level education had higher odds of good attitude with AOR of 3.68 (1.38, 9.80) compared to illiterates. Participants who believe Onchocerciasis is medically treatable had higher odds of good attitude with AOR of 2.80 (1.24, 6.31). However, participants with previous admission history had a lower attitude related to Onchocerciasis with AOR of 0.39 (0.16, 0.93) (Table 3).

In this study, 70% of females were not practicing preventive measures for Onchocerciasis with AOR of 0.30 (0.10, 0.90). The participants from the Mursi ethnicity had 77% reduced preventive practice related to Onchocerciasis with
related to Onchocerciasis in Selamago in 2021. 

Poor access to health education information. In other words, Onchocerciasis might be due to the socio-demographic differences and poor access to health education information. In other words, poor knowledge of 33%, poor attitude of 36%, and poor preventive practice related to Onchocerciasis among Selamago residents. This is less than the finding from the study conducted in South-Western Ethiopia which showed poor knowledge of 33%, poor attitude of 36%, and poor practice of 39.6% [19]. The inconsistence might be associated with the hard-to-nature of the current area causing the gap. The area was out of road access from both the federal and the regional government before the recent opening of the sugar factory, which came with the opportunity. The pastoralist lifestyle, accessibility of services, and availability of Onchocerciasis-related information might be the reason that both regional and federal governments are unable to reach the area. Only 7.30% of the respondents perceived Onchocerciasis as preventable [21]. Orthodox Christianity was also associated with the higher odds of the preventive practice of Onchocerciasis with AOR of 4.67(1.32, 16.57). The participants who believe Onchocerciasis is medically treatable had 53% reduced odds of preventive practice with AOR of 0.47(0.24, 0.92), the previous admission was associated with good preventive practice with AOR of 2.25(1.13, 4.50) (Table 4).

### Table 4: Distribution of factors associated with preventive practice related to Onchocerciasis in Selamago in 2021.

<table>
<thead>
<tr>
<th>Variables</th>
<th>P value</th>
<th>AOR</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.03</td>
<td>0.30</td>
<td>0.10</td>
<td>0.90</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dime</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodi</td>
<td>0.08</td>
<td>1.73</td>
<td>0.94</td>
<td>3.18</td>
</tr>
<tr>
<td>Mursi</td>
<td>0.01</td>
<td>0.23</td>
<td>0.08</td>
<td>0.72</td>
</tr>
<tr>
<td>Amhara</td>
<td>0.03</td>
<td>5.23</td>
<td>1.13</td>
<td>24.23</td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protestant</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthodox</td>
<td>0.02</td>
<td>4.67</td>
<td>1.32</td>
<td>16.57</td>
</tr>
<tr>
<td>Muslims</td>
<td>0.08</td>
<td>2.74</td>
<td>0.88</td>
<td>8.54</td>
</tr>
<tr>
<td>Medical treatable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.03</td>
<td>0.47</td>
<td>0.24</td>
<td>0.92</td>
</tr>
<tr>
<td>Ever admitted to health facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.02</td>
<td>2.25</td>
<td>1.13</td>
<td>4.50</td>
</tr>
</tbody>
</table>

AOR of 0.23(0.08, 0.72); while, ethnic Amhara had higher odds of good preventive practice with AOR of 5.23(1.13, 24.23). Orthodox Christianity was also associated with the higher odds of the preventive practice of Onchocerciasis with AOR of 4.67(1.32, 16.57). The participants who believe Onchocerciasis is medically treatable had 53% reduced odds of preventive practice with AOR of 0.47(0.24, 0.92), the previous admission was associated with good Onchocerciasis preventive practice with AOR of 2.25(1.13, 4.50) (Table 4).

## 4. Discussion

From the analysis of the data, we found 48.30% of poor knowledge, 90.90% of poor attitude, and 85.70% poor preventive practice related to Onchocerciasis among Selamago residents. This is less than the finding from the study conducted in South-Western Ethiopia which showed poor knowledge of 33%, poor attitude of 36%, and poor practice of 39.6% [19]. The inconsistency might be associated with the hard-to-nature of the current area causing the gap. The area was out of road access from both the federal and the regional government before the recent opening of the sugar factory, which came with the opportunity. The pastoralist lifestyle, accessibility of services, and availability of Onchocerciasis-related information might be the reason that both regional and federal governments are unable to reach the area. Only 7.30% of the respondents think Onchocerciasis is preventable [21]. Orthodox Christianity was also associated with the higher odds of the preventive practice of Onchocerciasis with AOR of 4.67(1.32, 16.57). The participants who believe Onchocerciasis is medically treatable had 53% reduced odds of preventive practice with AOR of 0.47(0.24, 0.92), the previous admission was associated with good preventive practice with AOR of 2.25(1.13, 4.50) (Table 4).

AOR of 0.23(0.08, 0.72); while, ethnic Amhara had higher odds of good preventive practice with AOR of 5.23(1.13, 24.23). Orthodox Christianity was also associated with the higher odds of the preventive practice of Onchocerciasis with AOR of 4.67(1.32, 16.57). The participants who believe Onchocerciasis is medically treatable had 53% reduced odds of preventive practice with AOR of 0.47(0.24, 0.92), the previous admission was associated with good Onchocerciasis preventive practice with AOR of 2.25(1.13, 4.50) (Table 4).
Authors have read and approved the final version of the manuscript.

Acknowledgments

The authors are grateful to Arba Minch University NTD-RC for the funding and to South Omo Health offices including Selamago Woreda Health Department for their unlimited support during the data collection. Arba Minch University Neglected Tropical Disease Research Center funded this work with GOV/AMU/TH–CRTC-NTD/HI/10/13 funding number.

References


