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Understanding and extracting noticeable patterns of malaria surveillance data at the district level are crucial for malaria
prevention, control, and elimination progress. )is study aimed to analyze spatiotemporal trends and nonparametric dy-
namics of malaria incidences in northwest Ethiopia, considering spatial and temporal correlations. )e data were analyzed
using count regression spatiotemporal models under the Bayesian setups, and parameters were estimated using integrated
nested Laplace approximations (INLA). )e region had a declining linear trend, and the average annual malaria incidence rate
was 24.8 per 1,000 persons between 2012 and 2020. )e malaria incidence rate was decreased by 0.984 (95% CI: 0.983, 0.986)
per unit increase in months between July 2012 and June 2020. Districts found in the western and northwestern parts of the
region had a steeper trend, while districts in the eastern and southern parts had a less steep trend than the average trend of the
region. Compared to the regional level trend, the decreasing rate of malaria incidence trends was lower in most town
administrations. )e nonparametric dynamics showed that the monthly malaria incidence had a sinusoidal wave shape that
varied throughout study periods. Malaria incidence had a decreasing linear trend changed across districts of the study region,
and the steepness of trends of districts might not depend on incidences. )us, an intervention and controlling mechanism that
considers malaria incidences and district-specific differential trends would be indispensable to mitigate malaria transmission
in the region.

1. Introduction

Malaria surveillance is a continuous, systematic collection,
analysis, and interpretation of malaria data and is used as
input for planning, implementation, and evaluation of
public health practice [1, 2]. Understanding the trend of
malaria surveillance data and extracting its noticeable pat-
terns of prevalence across districts are crucial to inform
concerned organizations about the state of malaria control
and elimination [3].

Even though malaria morbidity and mortality have
significantly declined in Ethiopia since 2001, 9% and 8% of
the global Plasmodium vivax cases occurred in 2017 and
2018, respectively [4]. According to the worldmalaria report,

the estimated number of malaria cases was 4,231,328 in 2020,
significantly declining compared to 2010 [5]. Malaria is the
major public health challenge in the Amhara region of
Ethiopia [6]. )e average malaria incidence rate was 23.51
per 1000 persons in the region between 2004 and 2014, and it
was the fifth-largest incidence in the country [7]. )e region
has a decreased malaria burden, and the estimated preva-
lence was 4.6% in 2006, 0.6% in 2007, and 0.8% in 2011 [8].
More than 1.1 million cases occurred in 2012, with an annual
incidence rate of 60 per 1000 persons, accounting for 19% of
the national malaria cases. A cross-sectional survey in the 19
districts of more vulnerable revealed that malaria prevalence
was 1.9% in 2013, and 40% of confirmed cases were
asymptomatic [9].

Hindawi
Journal of Tropical Medicine
Volume 2022, Article ID 6355481, 10 pages
https://doi.org/10.1155/2022/6355481

mailto:teshagerzm@gmail.com
https://orcid.org/0000-0001-7561-2763
https://orcid.org/0000-0003-1503-8055
https://orcid.org/0000-0002-2469-5009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6355481


Malaria transmission exhibits spatial and temporal
variability due to diverse ecology, climate, altitude, topog-
raphy, and human settlement patterns [10]. Even under
lower transmission settings, districts have substantial
malaria incidence variations in the region. Studies revealed
that malaria risks have spatial, temporal, and spatiotemporal
heterogeneity in the south and north Gondar zones [3, 6, 9].
Malaria incidence has spatial variations across districts of the
region, influenced by trends or the number of malaria cases
in their neighborhood districts [11]. Exploring and esti-
mating malaria trends at the district level in considering the
space-time interaction effect would reflect the entire picture
of malaria transmission that would be crucial for planning,
intervention, elimination, and control. Previous studies did
not cover districts in the region, both with lower and higher
malaria transmission scenarios. )e regional level trend,
differential trends of districts, and nonparametric dynamics
of malaria incidence were not studied with the account of
space-time interaction effects through spatial and temporal
autocorrelations [6, 9]. In this study, malaria surveillance
data from July 2012 and June 2020 were utilized to inves-
tigate and estimate global linear effects of time in a month,
differential trends of districts, and nonparametric dynamics
of malaria incidence.

2. Methods

2.1. Study Setting. )is study was conducted in the Amhara
National Regional State (ANRS), Ethiopia (Figure 1). )e
region is located in northwestern Ethiopia between 9°20′ and
14°20′ north latitude and 36°20′ and 40°20′ east longitude.
)e region has a monsoon climate, and its elevation ranges
from 506meters at the bottom of the Blue Nile gorge to 4,533
meters at Ras-Dajen mount [12]. )e study area encom-
passes 152 rural and town districts that have had weekly
malaria surveillance reports to the Amhara Public health
institute (APHI) since 2012.

2.2. Study Design and Period. Using the weekly reported
malaria surveillance data of Amhara Public Health Institute
(APHI) from July 2012 to June 2020, a retrospective study
design was used to investigate monthly spatiotemporal
trends and space-time dynamics of malaria incidence.

2.3. Data. )e weekly malaria surveillance data of rural
districts, town administrations, general and specialized
hospitals of the study region were obtained from Amhara
public health institute (APHI), within the Public Health
Emergency Management (PHEM) directorate. )e weekly
malaria data were reported using WHO EPI week that starts
on Sunday and ends on Saturday.

)e weekly malaria surveillance data encompass various
information about districts, EPI-week, budget year, total
malaria cases (clinical and confirmed), number of cases in
different age groups, and types of Plasmodium species. )is
study used monthly malaria cases between July 2012 and
June 2020, obtained by aggregating weekly surveillance data
based on a month that had four or more days from a given

WHO EPI-week. )e estimated monthly population size of
districts between 2012 and 2020, obtained from the central
statistical agency of Ethiopia and Amhara National Regional
State Planning Commission, is used as an offset in themodel.

2.3.1. Inclusion and Exclusion Criteria. )e districts en-
compass various healthcare institutions such as health posts,
health stations, and different levels of hospitals. Especially
town administrations have general, referral, or specialized
hospitals where patients get treatment with or without re-
ferral letters from the rural districts. Hence, malaria cases
from the referral and specialized hospitals were not included
in the analysis to preclude the overestimation of malaria
incidence trends of town administrations.

2.4. Statistical Analysis. Spatiotemporal disease mapping
models are widely used in disease surveillance studies [13]
when the interest is identifying the underlying spatial and
temporal patterns of diseases. Count spatiotemporal models
were used to investigate and estimate malaria incidence
trends at the district level in considering space-time inter-
action effects. Let Yit be the number of malaria cases in the ith

district at time t and nit be the size of the corresponding
population at risk, for i � 1, 2, . . . , I � 152 and
t � 1, 2, . . . , T � 96. Suppose μc

it be the conditional expec-
tations of the Yit given random effects, then the disease
mapping model is as follows:

log μc
it(  � ηit � log nit(  + μ + ui + vi + Tt, (1)

where μ is the mean log-number of cases in overall areas, ui

and vi are structured and unstructured spatial effects, re-
spectively, and Tt represents temporal effects and can be
specified in a parametric or nonparametric structure [14].

2.4.1. Parametric Trend. )e parametric time trend on the
temporal components of the spatiotemporal model was
introduced by Bernardinelli et al. [15], and the linear pre-
dictor given in equation (1) is written as follows:

ηit � log nit(  + μ + ui + vi + β + δi( Tt, (2)

here, the equation includes the structured and unstructured
spatial effects that represent between area-specific log-
number of cases and overall mean rate, β is mean linear time
trend, which represents global time effect, and δi is a dif-
ferential trend (DT) that represents the difference between
district-specific trends and regional level trends, which
measures time and space interaction effects. For identifi-
ability purposes, a sum-to-zero constraint is imposed on
δ(δ1, δ2, . . . , δn) and u(u1, u2, . . . , un) and a value of δi < 0
implies that an area-specific trend is less steep than a mean
trend, whilst a value of δi > 0 implies that the area-specific
trend is steeper than the mean trend. )e presence of a
statistically significant differential trend in a given area is
tested using posterior probability (PP), the Bayesian
equivalent of the p-value [16]. A value of posterior proba-
bility, which is greater than 0.90, indicates some evidence of
differential trend is greater than zero (greater than one in the
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exponential scales of parameters); that is, the area or district-
specific trend is as steep as or steeper than the mean trend
[15]. In disease mapping, spatial effects were considered
random [15], and a Bayesian approach estimates parameters
through assignments of prior distributions to the fixed
parameters and spatial effect ui.

)e prior distribution for the intercept is assumed to be
zero-mean Gaussian with variance σ2ρ. )e conditional
autoregressive model proposed by Besag et al. [17] is used as
a prior distribution for the spatially structured effects, that is,

ui|uj, i≠ j, σ2  ∼ N μi, σ
2
i , (3)

where μi � (1/j≠iwij)j≠iwijuj, σ2i � σ2/j≠iwij, and
wij � 1, if i and j are geographically adjacent districts and
wij � 0 otherwise [18]. )e uncorrelated spatial effect prior is
defined as vi ∼ N(0, σ2v) and is used to allow for uncorrelated
extra variation. )e differential trend, which accounts space-
time interaction, is assumed to follow normal distributions
with mean zero and variance σ2δ, that is, δit ∼ N(0, σ2δ). In
addition, noninformative prior distributions are considered
for hyperparameters, so that the inference is based on the
assumed model and observed data [19].

2.4.2. Nonparametric Dynamic Trend. Bernardinelli et al.
[15] evaluated spatiotemporal interactions on the disease
risk by imposing a linearity constraint on differential
temporal trends. )e temporal trends in disease risk may be
different for different spatial locations with a noticeable
spatial variation. However, disease risk might not have linear
temporal trends across areas. Knorr-Held [20] extended the
linear time trend using a dynamic nonparametric formu-
lation for the linear predictors underlying inseparable space-
time effects. )e log-link of the mean number of cases
log(λit) � ηit decomposes to

ηit � log nit(  + μ + ui + vi + αt + ct + δit, (4)

where μ is the overall malaria risk level, ui and vi represent
unspecified features of district i that, respectively, do and do
not display spatial structure. Similarly, αt and ct represent
the unspecified features of month t that, respectively, do and
do not display temporal structure. )e interaction between
space and time effect is incorporated using δit(δ11, . . . , δnT),
which would explain differences in the time trend of malaria
cases for different areas or districts. )e parameter δit is
assumed to be Gaussian with precision matrix λδKδ, where
λδ is unknown scalar and Kδ � Iv ⊗ Ic � I is a prespecified
structure matrix that is Kronecker’s product of the struc-
tured matrices of the main effects, which are assumed to
interact [21]. Here, the unobserved covariate effect at each
pixel or area (i, t) assumed does not have any structure in
space-time interactions, and all interaction parameters are
prior independent [14, 20]. )e spatial and interaction ef-
fects are assigned conditional autoregressive and normal
prior distributions, respectively. In contrast, the structured
temporal random effects are assigned random walk order 2
(RW2) prior distribution in order to account dynamic
nature of the disease incidence. )e random walk order 2
model is specified as follows: αt|αt−1, αt−2 ∼ Normal
(2αt−1 + αt−2, σ2). )e unstructured temporal effect (vi) has
assigned a Gaussian exchangable prior distribution which is
given as vi ∼ normal(0, σ2v � 1/τv). Moreover, hyper-
parameters are assigned noninformative flat priors.

2.4.3. Parameter Estimation and Model Comparison. )e
Poisson spatiotemporal model is widely utilized for ana-
lyzing spatiotemporal count data. However, count data often
display overdispersion, and using Poisson regression may
underestimate the standard errors and overstate the
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Figure 1: Study area map showing districts in the Amhara national regional state, Ethiopia in 2012.
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significance of regression parameters [22]. In addition, a
higher number of zeros in the data imposes problems, which
might be occurred due to structural and sampling issues
would be modeled using zero-inflated models [23, 24].
Districts located in the highlands areas, altitudes with 2500
and above meters, have a lower malaria transmission in-
tensity, are malaria free, and might have zero monthly
malaria cases, especially in the lower transmission seasons
[9, 25–27].)e spatiotemporal models were compared using
the deviance information criterion (DIC) and Watanabe-
–Akaike information criterion (WAIC). A spatiotemporal
model with the smallest DIC value is used to fit and interpret
results.

)e model parameters and hyperparameters were esti-
mated using Integrated Nested Laplace Approximations
(INLA), which is a computationally efficient numerical
approximation method for fitting complex spatiotemporal
models and faster than Markov Chain Monte Carlo
(MCMC) [28, 29].

3. Results

3.1. Temporal and Spatial Variation of Malaria Morbidity.
)emalaria surveillance data showed that 4,565,506 malaria
cases occurred in the Amhara region between July 2012 and
June 2020, with a decline from July 2012 to June 2018 and an
increasing trend since 2019. Monthly total malaria cases
have fluctuated during months of the year, and there were
higher variabilities at the beginning of the study periods
between 2012 and 2015 (Figure 2(a)). )e intensity of
malaria infection varied among different age groups, and
more than three-quarters (78%) of malaria patients were
aged above 14 years. )e remaining 1% and 21% of malaria
patients were under 5 years and 5–14 years, respectively
(Figure 2(b)). Plasmodium falciparum was a more prevalent
malaria parasite in the Amhara region, accounting for 67%
of the confirmed cases between 2012 and 2020 (Figure 2(c)).

)e seasonal variation of yearly malaria cases is depicted
in Figure 2(d), revealing that malaria cases were higher from
September to November, following the primary rainy season
between June and August, in 2012–2019. Monthly malaria
cases were consistently higher in 2012 and 2013 than in other
periods. )e number of malaria cases reached the bottom
level in 2018 and had a consistently lower number of patients
throughout all months (Figure 2(d), red dot line). However,
the number of malaria cases was higher in 2019 and 2020
compared to 2018, which has an increasing trend that might
be due to various conditions limiting malaria prevention,
control, and elimination endeavors of concerned bodies.

)e average annual malaria incidence rate was 24.8 per
1,000 persons between 2012 and 2020 in the region. )e
annual malaria incidence rate was declined between 2012
and 2018, but there was a higher annual incidence rate in
2019. )e result also indicates that total malaria and con-
firmed cases had consistently similar annual incidence rates
between 2012 and 2020.)e average annual incidence rate of
malaria in patients and malaria in pregnant women were
9.68 and 16.93 per 100,000 persons per year, respectively,
and reached the bottom level in 2018/19 (Table 1).

)e annual malaria incidence rate was also varied on the
types of Plasmodium species, and the result indicated that
the average annual incidence rate of P. falciparum and
P. vivax were 16.32 and 8.17 per 1,000 persons per year,
respectively (Table 1). Besides, the result revealed that the
annual malaria mortality rate was 2 per 1,000,000 persons
per year. )e annual incidence rates of total malaria and
confirmed cases, P. falciparum cases, and malaria in preg-
nancy were lowest in the 2017/18 fiscal year. On the contrary,
P. vivax cases and malaria in patients had the lowest inci-
dence rate in 2018/19. However, the annual malaria mor-
tality rate was stable throughout the study years (Table 1).

)e annual malaria cases of districts in the study region
are presented in Figure 3. Maps in Figure 3 depicted the
spatial and temporal variations of malaria cases among
districts of the Amhara region between 2012 and 2020 with a
similar legend. )e map showed that districts in the western
Amhara region had higher malaria cases than districts lo-
cated in the eastern parts of the region. Between 2012 and
2015, there were significantly higher malaria cases in North
Gondar, South Gondar, Awi, East Gojjam, andWest Gojjam
zones.

Districts located in the highland areas of North Shewa,
South and North Wollo, and Wag-Himra zones had fewer
malaria cases either imported or infected through travel
history (Figure 3). Further, the map showed that malaria
incidence would have spatial and temporal autocorrelations
due to the clustering of similar colors in the neighborhood
districts throughout the study period. Hence, the spatio-
temporal variation of malaria incidence would be considered
to estimate and explore space-time trends and dynamics of
malaria transmission in the region.

3.2. Parametric Spatiotemporal Trend. )e model compar-
ison result is presented in Table 2, and the spatiotemporal
negative binomial model has the lowest DIC and WAIC
values and is used to estimate spatiotemporal linear trends
and nonparametric dynamics of malaria incidence.

)e parametric spatiotemporal trends of malaria inci-
dence results are presented in Table 3. )e intercept and
slope of time in a month were negative, indicating that the
log scale of malaria incidence had decreasing linear trend
between 2012 and 2020. )e malaria incidence rate was
reduced by a factor of 0.984 (95% credible interval:
0.983–0.986) for a unit increment in months in the study
period. Moreover, the precision of spatial and space-time
interaction effects was estimated, and their 95% credible
intervals showed the presence of significant variations in
spatial heterogeneity, spatial clustering, and differential
trends across space over time.

)e space-time interaction effect is estimated using the
differential trend representing the difference between dis-
trict-specific trends and the average trend of the region and
is depicted in Figure 4(a). )e differential trends revealed
that districts had a geographical variation on their district-
specific trends. )e values within Figure 4(a) are posterior
probabilities used to test the presence of significantly dif-
ferent district-specific trends compared to the mean trend of

4 Journal of Tropical Medicine



the region. )e 45 districts had a steeper trend than the
mean trend since they had 0.9 or more posterior proba-
bilities (Figure 4(a)). Figure 4(a) also depicted that most
districts in the old North Gondar Zone, now reorganized
into three zones named Central, West, and North Gondar,
had a steeper trend than the average regional trend. Even

though the North Shewa zone had a smaller number of
malaria cases than other zones, most districts had a steeper
trend than the mean trend of the region. On the contrary,
districts located inWest Gojjam and SouthWollo Zone had
a less steep trend than the average trend of the region
(Figure 4(a)).
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Figure 2: Total malaria cases by year, age group, months, plasmodium species, seasonal variation, and annual trends in the Amhara region,
Ethiopia, between July 2012 and June 2020. (a) Monthly malaria cases and trends. (b) Total malaria cases by age groups. (c) Total confirmed
cases by plasmodium species. (d) Monthly variations in the annual trends of malaria cases.

Table 1: Annual malaria incidence for selected malaria indicators, Amhara region, Ethiopia.

Fiscal year 2012/13 2013/14 2014/15 2015/16 2016/17 2017/18 2018/19 2019/20 Average
Total malaria cases/1,000 54.64 30.34 26.92 25.61 16.44 11.73 12.46 20.28 24.80
Confirmed malaria cases/1,000 52.37 30.25 26.86 25.59 16.42 11.72 12.44 20.25 24.49
Malaria deaths/1,000,000 2.04 2.00 1.97 1.94 1.91 1.88 1.86 1.83 1.93
PF cases/1,000 32.10 19.04 17.61 16.95 11.00 8.60 9.61 15.68 16.32
PV cases/1,000 20.27 11.21 9.25 8.64 5.42 3.13 2.82 4.58 8.17
Malaria in-patients/100,000 32.99 16.65 8.53 6.37 3.59 2.98 2.45 3.84 9.68
Malaria in pregnancy/100,000 35.90 26.26 16.72 15.52 9.32 7.99 8.17 15.56 16.93
Source: )e APHI malaria surveillance data, Amhara region, Ethiopia.
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)e study region has included 23 districts, which are
solely town administrations, and most of them had a less
steep malaria incidence trend than the average regional level

trend. On the contrary, Bahir Dar, Lalibela, Kobo, Woldia,
Bati, Debre Birhan, and Shewa Robit were town adminis-
trations that had a steeper trend than the mean trend of the

Table 2: Model comparisons of parametric and nonparametric spatiotemporal dynamics of malaria incidence.

Model Distribution Marginal log likelihood DIC WAIC

Parametric spatiotemporal trend
Poisson −1,203,581.6 2,182,313.12 2,027,216.46

Negative binomial −78,831.76 156,807.64 156,957.38
Zero-inflated negative binomial −159,539.98 209,438.41 209,998.69

Nonparametric spatiotemporal dynamics
Poisson −874,923.54 1,564,501.48 1,552,981.12

Negative binomial −76,612.81 152,246.15 152,350.83
Zero-inflated negative binomial −76,608.81 152,250.74 152,355.08

)e bold values indicate the selected distribution for each model.

Table 3: Parametric spatiotemporal trends and fixed and precision parameters estimate malaria incidence in northwest Ethiopia between
2012 and 2020.

Variable Mean Mode Standard deviation 0.025 quantile 0.975 quantile
Fixed effect

Intercept −6.494 −6.436 0.014 −6.522 −6.466
Time (month) −0.016 −0.016 0.001 −0.018 −0.014

Precision of hyperparameters of the random effects
Spatial heterogeneity 1830 372 2126.76 136.42 7230
Clustered spatial effect 0.237 0.237 0.029 0.182 0.297
Differential effect 11200 11100 1394.48 8628.56 14100
Dispersion parameter� 1.38 (test statistic� 2(lnL1− lnL0)� 2,249,499.68; p-value <0.05).
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Figure 3: Spatial and temporal distribution of malaria incidences of districts in Amhara region, Ethiopia between 2012 and June 2020.
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region. Generally, districts shaded in yellow to light orange
colors had a lower rate of decreasing trend than the average
trend of the region (Figure 4(a)).

)e spatial variation of malaria incidence was signifi-
cantly explained using spatial effects through its compo-
nents, that is, spatial clustering (structured) and spatial
heterogeneity (unstructured). )e 99.96% geographic vari-
ation of malaria incidence was explained using the spatial
clustering of districts. )e Moran’s I statistic of the struc-
tured spatial effects was 0.443 (P-value� 0.0017< 0.01), re-
vealing the presence of significant spatial clustering of
districts based on their malaria incidence. )e estimated
district/spatial effects and its map are given in Figure 4(b),
indicating that as one goes towards the west and spatial
effects of malaria incidence get higher. Malaria incidence
had higher estimated spatial effects in the northwestern and
western Amhara region, and it decreased as one moved
towards the central and eastern parts of the region. Districts,
mainly located in the highland fringe areas, had relatively
smaller spatial effects, that is, in North Shewa, South Wollo,
and North Wollo zones (Figure 4(b)).

3.3. Nonparametric Dynamic Trend of Malaria Incidence.
)e dynamic feature of the malaria incidence trend was
estimated using negative binomial spatiotemporal dynamic

model underlying separable space-time interaction effects,
which has the smallest DIC value (Table 2). )e nonpara-
metric dynamic trends of malaria incidence were decom-
posed into structured and unstructured spatial and temporal
effects, and their results are presented in Table 4. )e result
revealed that malaria incidence had significant spatial and
temporal variation among districts of the study variations.

)e structured and unstructured temporal dynamic
trends of malaria incidence are shown in Figure 5. )e
structured temporal trend has an overall decreasing non-
linear trend between 2012 and 2018 and increased between
2018 and 2020 with a noticeable seasonal variation in each
year. However, the unstructured temporal effects had ran-
dom oscillations. )e series plot had many peaks and
changes over months that indicate the seasonality of malaria
morbidity and higher temporal effects occurred between
September and November throughout the study year.

4. Discussion

)e focus of this study was estimating linear trends and
dynamic features of malaria morbidity in the Amhara region
using monthly surveillance data. More than 4.6 million
people were confronted with malaria problems in the region
between June 2012 and July 2020. )e average malaria in-
cidence rate was 24.8 per 1,000 persons per year between
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2012 and 2020, which is a bit greater than in 2004–2014 [7].
)e malaria incidence rate was declined three to fourfold in
2018 compared to 2012 and increased starting from mid-
2018 might be due to drug and insecticide resistance, social,
demographic, cultural, and behavioral beliefs and practices,
and unreformed health infrastructure [30]. )e result sug-
gests that malaria incidence of the region followed a similar
pattern of changes as the national and global malaria
transmission patterns [4, 31]. Malaria is public health
burden that affects individuals in all age intervals, and 78%
of malaria patients were aged above 14 years. )e most
prevalent malaria parasite was P. falciparum, which
accounted for 67% of confirmed cases in the region, a
predominant malaria parasite in Ethiopia and the WHO
African region [4, 6, 31–33]. )e number of malaria cases
was higher between September and December following the
main rainy season in the region, and there were also con-
siderably higher malaria cases from May to July. Seasonal
variability might be attributed to the suitability of envi-
ronmental conditions for the reproduction of mosquito
vectors [34] and influenced by crop cycle, crop weeding, and
grass cover of lands that appeared on and after rainy seasons
[35].

)e suitability of environmental conditions determines
the distribution of Plasmodium species in space and time,
and the spatiotemporal distributions of malaria have been
related to this [36–38]. )e annual malaria incidence varied
across districts of the study region, and space-time distri-
bution of malaria declined between 2012 and 2018. However,
compared to 2018, most districts in the Amhara region had
an increased number of malaria patients from 2019 to 2020.

Districts in the northwestern and western parts of the region
had higher annual malaria incidence than the eastern parts
throughout the study period. Mainly, South Gondar, North
Gondar, Awi, East Gojjam, and Wag-Himra zones had
higher malaria incidence between 2012 and 2015, similar to a
previous study finding in the west and near the border with
Sudan and South Sudan [4]. )e result is also supported by
Alemu et al.’s [6] findings, which indicated that malaria
transmission remained high in northwest Ethiopia between
2003 and 2012. On the contrary, districts located in the
highlands of the North Shewa, North and South Wollo, and
the Oromo special zone had lower malaria incidence be-
tween 2012 and 2020.

)e estimated linear spatiotemporal trend suggested that
the Amhara region had a decreasing malaria trend between
2012 and 2020; that is, between July 2012 and June 2020, per
a unit increment in months of the year, the rate of malaria
incidence decreased by a factor of 0.984, which is consistent
with findings from previous studies conducted in Ethiopia
between 2004 and 2016, 2011 and 2016, and 2013 and 2018
[3, 4, 32]. )e result contradicted Taye et al.’s [7] predictions
of an increased malaria trend in the Amhara region in
2015–2020, which might be occurred due to differences in
data aggregation time scale and spatial units. Among the 152
districts, 45 had a significantly steep trend than the average
trend of the region. )e majority of districts with a higher
malaria incidence in the North Gondar zone had a higher
declining rate than the mean trend and had spatial disparity
that is in line with the findings of Yalew et al. [9]. Among 23
town districts, about 70% of them had a less steep trend than
the average regional trend, supported by Doumbe-Belisse

Table 4: Nonparametric dynamic trend estimate of malaria incidence in northwest Ethiopia between 2012 and 2020.

Variable Mean Mode Standard deviation 0.025 quantile 0.975 quantile
Fixed effect

Intercept −7.356 −7.356 0.039 −7.434 −7.278
Precision of hyperparameters random effects

BYM model 0.251 3.254 0.038 0.177 0.327
RW2 model 13.48 11.32 3.84 8.08 22.96
Spatial heterogeneity 4.93 3.38 2.35 2.26 11.12
Temporal variability 34.21 29.57 9.40 20.43 56.99
∗BYM, Besag–York–Mollié; RW2, random walk order 2. Dispersion parameter� 1.36 (test statistic� 2(ln L1 − ln L0) � 1,596,619.48 (p-value <0.05).
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Figure 5: Posterior temporal trends of malaria incidence in the Amhara region, Ethiopia, between 2012 and 2020.
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et al.’s finding, revealed that malaria transmission has in-
creased in most cities since 2003 [39]. However, Bahir Dar,
Lal Yibela, Kobo, Woldia, Bati, Debre Birhan, and Shewa
Robit were urban districts with a highly declining malaria
incidence rate compared to the regional level trend.

)e nonparametric dynamics of malaria incidence
decomposed into spatial and temporal effects, each with
structured and unstructured heterogeneity [20]. )e struc-
tured monthly temporal dynamics fluctuated in the study
periods and had seasonal variations, and higher incidence
occurred following the main rain seasons between July and
December [9]. Overall, malaria incidence decreased between
2012 and 2018 and began rising since 2019 across all months
of the year. Compared to districts located in the eastern
Amhara, the structured spatial effect of districts in western
Amhara was higher. )e results revealed that the North
Gondar zone had a higher spatial effect due to peak malaria
incidence. In contrast, North Shewa and South Wollo zones
had lower spatial effects [6].

Spatiotemporal trend analysis is needed to provide in-
sight and evidence supporting policy decision-making to
prevent and control infectious diseases [40]. )e parametric
and nonparametric spatiotemporal trends are crucial for
estimating area-level trends in considering spatial-time in-
teraction effects. It is also used to detect areas that require
emergency prevention and control interventions and can be
reproduced anywhere with spatiotemporal areal data. )e
district-level trends would play a valuable role in evaluating
the progress of malaria prevention and control perfor-
mances of the districts’ health offices. Furthermore, malaria
prevention, control, and elimination could target districts
with lower or higher malaria trends to achieve the malaria
elimination target of the region. )is study did not include
climate, environmental, and other malaria transmission
intervention impacts on the estimation of the nonparametric
spatiotemporal dynamics of malaria, which is the limitation
of the study.

5. Conclusions

)e APHI malaria surveillance data have been used to ex-
plore and investigate the spatiotemporal linear and dynamic
temporal trend of malaria incidence across districts of the
Amhara region, Ethiopia. )e Amhara region had a linearly
declining malaria incidence trend between 2012 and 2020.
)e finding of this study revealed that districts in the western
and southwestern parts of the Amhara region had a steeper
trend than the average trend of the region. In contrast,
districts in the eastern part of the region had a less steep
trend than the average trend of the region. Further, two-
thirds of urban districts had a less steep trend incidence than
the average regional trend. Generally, monthly malaria in-
cidence had sinusoidal wave dynamics that varied across
months, and where there was an overall decreasing trend
between 2012 and 2018. However, the trend of malaria
incidence was reversed and showed an increasing trend.
)us, an intervention and controlling mechanism that
considers malaria incidences and district-specific differential

trends would be indispensable to mitigate malaria trans-
mission in the region.
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