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Background and Aim. UDP-glucuronosyltransferases (UGTs) play an important role in drug metabolism and detoxification by
catalyzing the glucuronidation reaction, which is associated with the occurrence of antituberculosis drug-induced liver injury
(AT-DILI). The relationship between UGTs polymorphisms and AT-DILI risk has been reported but with inconsistent results. We
conducted a systematic review and meta-analysis to summarize the previous study results and evaluate the precise relationships.
Methods. The PRISMA statement was strictly followed, and the protocol was registered in PROSPERO (CRD42022339317). The
PICOS framework was used: patients received antituberculosis treatment, UGTs polymorphisms (mutants), UGTs poly-
morphisms (wild), AT-DILI, and case-control studies. Eligible studies were searched through nine databases up to April 27, 2022.
The study’s qualities were assessed by the revised Little’s recommendations. Meta-analysis was conducted with a random-effects
model using odds ratios (ORs) with 95% confidence intervals (95% Cls) as the effect size. Results. Twelve case-control studies with
2128 cases and 4338 controls were included, and 32 single nucleotide polymorphisms (SNPs) in the seven UGT genes have been
reported in Chinese and Korean. All studies were judged as high quality. The pooled results indicated that UGT1A1 rs3755319 (AC
vs. AA, OR =1.454, 95% CI: 1.100-1.921, P =0.009), UGT2B7 rs7662029 (G vs. A, OR=1.547, 95% CI: 1.249-1.917, P < 0.0001;
GG+ AG vs. AA, OR=2.371, 95% CI: 1.779-3.160, P <0.0001; AG vs. AA, OR=2.686, 95% CI: 1.988-3.627, P <0.0001), and
UGT?2B7 rs7439366 (C vs. T, OR=0.585, 95% CI: 0.477-0.717, P <0.0001; CC+TC vs. TT, OR=0.347, 95% CI: 0.238-0.506,
P <0.0001; CC vs. TC+TT, OR=0.675, 95% CI: 0.507-0.898, P=0.007) might be associated with the risk of AT-DILI. Con-
clusions. The polymorphisms of UGT1A1 rs3755319, UGT2B7 rs7662029, and UGT2B7 rs7439366 were significantly associated
with AT-DILI susceptibility. However, this conclusion should be interpreted with caution due to the low number of studies and
the relatively small sample size.

1. Introduction

Tuberculosis (TB) is a chronic communicable disease
caused by Mycobacterium tuberculosis that contributes to
high morbidity and mortality worldwide. In 2021, an es-
timated 10.6 million people fell ill with TB worldwide [1].
TB is preventable and, in most cases, treatable. At least 85%
of drug-susceptible TB patients are successfully treated [2].
However, anti-TB therapy is known to have a hepatotox-
icity effect, and anti-TB drug-induced liver injury (DILI)
(AT-DILI) has been a long-standing concern in the
treatment of TB infection [3]. The reported incidence of

AT-DILI varies widely from 2% to 28% in different
countries, depending on the investigators’ definition of
DILI as well as the population being studied [4]. A sig-
nificant upward trend in AT-DILI incidence was observed
from 1999 to 2020 [5]. The clinical spectrum of AT-DILI
includes asymptomatic elevation in liver tests to acute
hepatitis and acute liver failure [6]. Prompt withdrawal of
the anti-TB drugs is the most critical intervention in the
management of AT-DILI [4], which could lead to treatment
interruption and poor treatment outcomes [7]. Therefore,
reducing the occurrence of AT-DILI is crucial for the
control of TB.
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Until now, the specific mechanisms associated with
AT-DILI have been inadequately described. A number of
hypotheses on the pathogenesis of AT-DILI have been
proposed, such as drug metabolism and transport, im-
mune response, oxidative stress, and mitochondrial
dysfunction [8]. Many previous mechanistic studies have
focused on the isoniazid (INH) metabolic pathway.
However, rifampin (RIF) has been reported to cause
hemolysis due to the production of drug-dependent
antibodies [9]. It was believed that hemolysis can gen-
erate a larger amount of hemoglobin from destroyed
erythrocytes in blood and result in increased levels of free
heme [10]. In addition, cotreatment with RIF and INH
also causes accumulation of the endogenous hepatotoxin
protoporphyrin IX in the liver through the alteration of
the heme biosynthesis pathway [11]. The principal
product of heme catabolism, bilirubin, is eliminated by
a conjugation reaction with glucuronic acid, and the
glucuronidation reaction is mediated by uridine di-
phosphate (UDP)-glucuronosyltransferases (UGTs) [12].
The UGT family is a phase II enzyme group responsible
for the glucuronidation of numerous endobiotics, xe-
nobiotics, and drugs to facilitate their excretion from the
body [13]. In humans, 19 functional UGT isoforms
comprise two families (UGT1A and UGT2) based on
genetic similarity [14]. For example, hydrophobic bili-
rubin is a toxic product of heme metabolism that can be
transformed into hydrophilic bilirubin in the liver
through conjugation with uridine diphosphate glucur-
onic acid under the action of UGTIA1 [15]. UGT1A1
dysfunction may lead to hepatic vulnerability induced by
the accumulation of bilirubin in the liver [16]. Thus, the
glucuronidation reaction accelerates the elimination of
toxic compounds, which plays an important role in the
development of AT-DILI.

Human UGT genes have a large number of genetic
polymorphisms, which have been confirmed to modulate
enzymatic activity or promoter activity [17], further af-
fecting the individual genetic susceptibility to AT-DILI.
Recently, a number of studies have investigated the as-
sociation between single nucleotide polymorphisms
(SNPs) in UGTs and the risk of AT-DILL. Among the
UGTs, the UGT1A1 gene has been the most extensively
studied, but with inconsistent results among different
populations [18-21]. For example, the SNP rs4148323 AA
genotype of UGT1A1 was found to significantly reduce the
risk of AT-DILI in Chinese patients in one study [21],
while it was not associated with AT-DILI in Chinese
patients in another study [20]. In recent years, the re-
lationships between SNPs in other UGT genes (UGT1A4
[22], UGT2B4 [3], and UGT2B7 [23]) and AT-DILI risk
have also been reported. Therefore, it is necessary to
conduct a comprehensive systematic review by retrieving
all publications reporting the relationship between SNPs
in UGT genes and the risk of AT-DILI and clarifying the
pooled effects of polymorphisms for AT-DILIL In the
present study, we summarize published data to evaluate
the relationship between UGT polymorphisms and sus-
ceptibility to AT-DILI.
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2. Materials and Methods

2.1. Search Strategy. This systematic review and meta-analysis
was reported according to the PRISMA guidelines [24] and has
been registered on PROSPERO with ID number
CRD42022339317. A comprehensive literature search was
performed in English databases (PubMed, Medline, Web of
Science, Embase, and Cochrane Library) and Chinese databases
(CNKI, WANFANG, VIP, and SinoMed) up to April 27, 2022.
The Medical Subject Headings (MeSH) terms used in the search
were “tuberculosis,” “antitubercular agents,” and “chemical and
drug-induced liver injury.” Furthermore, the following MeSH
synonyms, related terms, and free terms were also included:
“antituberculosis,” “tuberculosis treatment,” “drug-induced liver
injury,” “drug-induced hepatotoxicity,” “uridine diphosphate
glucuronosyltransferase,” “UDP-glucuronosyltransferase,”
“UGTs,”  “uridine  5'-diphospho-glucuronosyltransferase,”
“polymorphism,” and “variant.” The Boolean operators “and”
and “or” were applied to combine these terms. At the same time,
the reference lists of selected articles and relevant reviews were
manually searched to gather other potentially eligible studies.

2.2. Eligibility Screening. Records identified through all
searches were imported into the EndNote X9 software for
screening studies, and duplicate records were removed.
Two reviewers independently selected the relevant
studies meeting the eligibility criteria by titles and ab-
stracts. Full texts were referred to when the above
information was inadequate or unspecific for the
determination of eligibility. Any disagreement was dis-
cussed and resolved by consensus or by consulting a third
reviewer.

The studies included in this research met the following
eligibility criteria: (1) case-control studies designed to in-
vestigate the relationship between UGTs polymorphisms
and AT-DILI; (2) all patients received anti-TB treatment, of
which the case group had AT-DILI, while the control group
did not have AT-DILI (3) the genotype frequency data could
be extracted and analyzed; and (4) the language was re-
stricted to English or Chinese.

The exclusion criteria were the following: (1) conference
abstracts, editorials, letters, case reports, reviews, and meta-
analyses; (2) sample size for each group of less than 10; and
(3) studies with repetitious data (the studies with the most
recent or comprehensive data were selected).

2.3. Data Extraction. The following data were extracted
from all included studies: (1) basic characteristics: the first
author, publication year, and country of origin; (2) study
characteristics: study design, sample size, diagnostic
criteria of AT-DILI, method of causality assessment,
treatment regimens, and genotyping method; (3) pop-
ulation characteristics: sex and mean age of total subjects;
and (4) polymorphism results: genotype frequencies in
AT-DILI cases and controls or adjusted odds ratios (ORs)
with 95% confidence intervals (CIs) under different ge-
netic models and covariates. The data extraction pro-
cedure was also performed independently by two
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reviewers. If there was any disagreement, it was resolved
by a third reviewer. No authors were contacted for further
information.

2.4. Quality Assessment. The study qualities were assessed by
the revised Little’s recommendations [25]. These criteria
included seven items: (1) scientific design, (2) definite in-
clusion of study population, (3) explicit information on
study population, (4) explicit diagnostic criteria on
AT-DILI, (5) genetic detection method, (6) correct statistical
analysis, and (7) logical discussion of study bias. Each item
can be rated as “yes” (low risk of bias) or “no” (high risk of
bias). One score was awarded if an item was judged as “yes.”
Scores for all quality criteria were added together for an
overall quality score, and a study score >4 was defined as
high quality [26].

2.5. Statistical Analysis. The ORs and corresponding 95%
CIs were calculated to identify the potential association
between susceptibility to AT-DILI and UGTs poly-
morphisms. The statistical analysis strategies refer to pre-
vious literature [27]. Allele models (M vs. W) (W refers to
a wild-type allele and M refers to a mutated allele), dominant
models (MW + MM vs. WW), recessive models (MM vs.
MW + WW), homozygote models (MM vs. WW), and
heterozygote models (MW vs. WW) were employed to
analyze their associations. The significance of the pooled
effect size was determined by the Z test and Man-
tel-Haenszel random effects model, with P <0.05 being
considered statistically significant. The heterogeneity be-
tween studies was quantified by the Cochran Q test and the I*
statistic (I” < 25%, low heterogeneity; I” = 25-50%, moderate
heterogeneity; and I°>50%, high heterogeneity) [28].
Subgroup analyses were performed by country of origin.
Review Manager 5.4 software (Cochrane Collaboration,
Nordic Cochrane Centre) was used for this meta-analysis.

3. Results

3.1. Study Identification and Characteristics. The flowchart
for the selection of studies is presented in Figure 1. The initial
search yielded 78 relevant records from the databases, and 40
records remained after disregarding duplicates. Then, 23 full
texts were carefully assessed for eligibility after screening the
titles and abstracts. Finally, 12 eligible studies describing the
relationship between UGTs polymorphisms and suscepti-
bility to AT-DILI were included in the present study
[3, 15, 18-23, 29-32]. A total of 32 SNPs in the seven UGT
genes (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7,
UGT2B4, and UGT2B7) were reported in 12 studies (in-
cluding 6466 patients (2128 AT-DILI cases and 4338 con-
trols)). Eleven studies included participants of Chinese
ethnicity [3, 15, 19-23, 29-32] and only one study included
Korean participants [18]. The main anti-TB treatment
regimen was a combination of first-line drugs (INH, RIF,
pyrazinamide, and ethambutol with/without streptomycin).
Only four studies performed causality assessment of
AT-DILI [15, 20-22]. In terms of DILI criteria, 10 studies

used alanine aminotransferase (ALT)>2 upper limit of
normal (ULN) [3, 15, 18-20, 22, 23, 29-31], one used ALT
>3 ULN [32], and one used ALT >5 ULN [21]. The primary
characteristics of the included studies are shown in Table 1.
All studies were judged as high quality, and the average score
was 6.4 (Supplementary Table 1).

3.2. Association of UGTIAI Polymorphisms with AT-DILI.
Among the seven UGT genes, the UGT1Al gene was the
most frequently reported; it was reported in 5 case-control
studies [15, 18-21] including 924 cases and 1642 controls
and 14 SNPs. All five studies analyzed SNP rs4148323, and
the pooled result showed that it was not statistically asso-
ciated with AT-DILI risk under any genetic model (allele
model: A vs. G, OR=0.983, 95% CI: 0.811-1.191, P=0.857,
Figure 2(a); dominant model: AG + AA vs. GG, OR =0.989,
95% CI: 0.824-1.188, P =0.909, Figure 2(b); and recessive
model: AA vs. AG+ GG, OR=0.775, 95% CI: 0.432-1.391,
P =0.393, Figure 2(c), Table 2). A subgroup analysis of the
Chinese population (four studies with 857 cases and 1483
controls) also did not find any association between SNP
rs4148323 and AT-DILI risk (Tables 2 and 3, Supplementary
Figure 1).

Four SNPs (rs2003569, rs8330, rs4148328, and
rs3755319) were reported by two different studies
[15, 18,20, 21]. The pooled result showed that only one SNP
(rs3755319) was associated with the risk of AT-DILI
(heterozygote model: AC vs. AA, OR=1.454, 95% CI:
1.100-1.921, P =0.009, Figure 3 and Supplementary Figures
2, 3, 4, and 5). In addition, only a single Chinese study
reported the relationship between nine SNPs (rs887829,
rs35350960, 1s8175347, rs34946978, rs4148326,
rs12479045, rs11563250, rs6719561, and rs4148329) and
AT-DILI risk [15, 19, 21] and only SNP rs6719561 was
associated with a reduced risk of AT-DILI (heterozygote
model: TC vs. TT, OR=0.72, 95% CI: 0.53-0.99,
P=0.04) [15].

3.3. Association of UGT2B7 Polymorphisms with AT-DILI
Three case-control studies with 413 cases and 623 controls
focused on the relationships of UGT2B7 polymorphisms
with AT-DILI in a Chinese population [23, 31, 32]. Four
SNPs (rs7662029, rs7439366, rs10028494, and rs7668282)
were reported, and the SNPs rs7662029 and rs7439366 were
reported by two different studies [31, 32]. The pooled result
showed that SNP rs7662029 was statistically associated with
AT-DILI risk (allele model: G vs. A, OR=1.547, 95% CI:
1.249-1917, P<0.0001, Figure 4(a); dominant model:
GG+AG vs. AA, OR=2371, 95% CIL: 1.779-3.160,
P <0.0001, Figure 4(b); and heterozygote model: AG vs. AA,
OR =2.686, 95% CI: 1.988-3.627, P <0.0001, Figure 4(c),
Tables 2 and 3). In addition, a significant association was also
found between SNP rs7439366 and AT-DILI risk under all
genetic models (allele model: C vs. T, OR=10.585, 95% CI:
0.477-0.717, P <0.0001, Figure 5(a); dominant model:
CC+TC vs. TT, OR=0.347, 95% CIL. 0.238-0.506,
P <0.0001, Figure 5(b); and recessive model: CC vs.
TC+TT, OR=0.675, 95% CI. 0.507-0.898, P=0.007,
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FiGUre 1: PRISMA flowchart for literature search. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; UGTs,

UDP-glucuronosyltransferases; DILI, drug-induced liver injury.

Figure 5(c), Tables 2 and 3). Sensitivity analysis confirmed
these significant relationships after excluding the low-quality
study. Another two SNPs (rs10028494 and rs7668282) re-
ported in a single study were not significantly associated with
AT-DILI risk [23].

3.4. Associations of Other Genes in the UGT Family with AT-
DILI. Five other genes in the UGT family with 14 SNPs
(UGT1A3: rs2008584 and rs6431625; UGT1A4: rs2011404;
UGTI1A6: 156759892, 308C/A, and rs2070959; UGT1A7:
rs17868323, rs17868324, and rs11692021; and UGT2B4:
rs1131878, rs1966151, rs28361541, rs4557343, and
rs79407331) were reported in five studies among Korean [18]
or Chinese patients [3, 22, 29, 30]. Seven SNPs were asso-
ciated with AT-DILI risk in Chinese anti-TB treatment
patients. For example, patients carrying the CC genotype of
rs2011404 in UGT1A4 were at a reduced risk of moderate or
severe liver injury (OR=0.293, 95% CI: 0.093-0.921,
P=0.036) [22]. Three SNPs in UGT1A6 were found to be
associated with AT-DILI risk under the additive model
(rs6759892: OR=2.275, 95% CIL: 1.492-3.470, P <0.001;
308C/A: OR=3.399, 95% CI: 2.185-5.287, P <0.001; and
rs2070959: OR =2.342, 95% CI: 1.493-3.675, P < 0.001) [30].
Another three SNPs in the UGT1A7 gene were also sig-
nificantly associated with AT-DILI risk under the additive

model (rs17868323: OR=1.747, 95% CIL 1.177-2.592,
P=0.006; rs17868324: OR=2.391, 95% CI: 1.597-3.579,
P <0.001; and rs11692021: OR =2.383, 95% CI: 1.523-3.729,
P <0.001) [29].

4. Discussion

The present study aimed to verify whether current evidence
supports the relationship between UGTs polymorphisms
and AT-DILI risk. Our meta-analysis included 12 case-
control studies involving 32 SNPs in the seven UGT
genes. Based on two original studies, the pooled results
indicated that UGTIA1 rs3755319 (heterozygote model)
might be associated with AT-DILI risk. In addition,
UGT2B7 157662029 (allele model, dominant model, and
heterozygote model) and rs7439366 (allele model, dominant
model, and recessive model) were also statistically associated
with AT-DILI risk. Therefore, genetic variants in UGT1A1
and UGT2B7 may have relationships with susceptibility to
AT-DILI; thus, they have potential for use as biomarkers in
the anti-TB treatment population.

However, the SNP rs4148323, which is the most studied
SNP to date, was found to have no significant association
with AT-DILI risk under any genetic model. Subgroup
analysis also obtained similar negative results in Chinese
patients (Figure 2, Tables 2 and 3). Further analysis found
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Study or Suber AT-DILI Control ~ Weight Odds Ratio Year Odds Ratio
udy or subgroup Events Total Events Total (%) M-H, Random, 95% CI ca M-H, Random, 95% CI
Kim 2009 31 132 69 310 12.9 1.07 [0.66, 1.74] 2009 —t
Chang 2012 13 34 46 162 5.7 1.56 [0.72, 3.38] 2012 —
Chen 2016 28 178 108 708 14.3 1.04 [0.66, 1.63] 2016 —_—t
Sun 2017 175 922 213 932 35.9 0.79 [0.63, 0.99] 2017 —i—
Tao 2018 110 580 205 1160 31.2 1.09 [0.84, 1.41] 2018 ——
Total (95% CI) 1846 3272 100.0 0.98 [0.81, 1.19] <o
Total events 357 641
Heterogeneity: tau* = 0.01; chi’ = 5.64, df =4 (P = 0.23); I’ = 29% T T T T
Test for overall effect: Z=0.18 (P = 0.86) 0.2 0.5 1 2 5
Favours (AT-DILI) Favours (control)
(a)

Study or Subgrou AT-DILI Control ~ Weight Odds Ratio Year Odds Ratio

Y group Events Total Events Total (%) M-H, Random, 95% CI M-H, Random, 95% CI
Kim 2009 26 66 59 155 9.3 1.06 [0.59, 1.91] 2009 —
Chang 2012 9 17 35 81 3.0 1.48 [0.52, 4.22] 2012
Chen 2016 27 89 98 354 124 1.14 [0.68, 1.89] 2016 —_—t
Sun 2017 167 461 193 466 414 0.80 [0.62, 1.05] 2017 —i—
Tao 2018 103 290 188 580 33.9 1.15[0.85, 1.55] 2018 —T
Total (95% CI) 923 1636 100.0 0.99[0.82, 1.19] ’
Total events 332 573
Heterogeneity: tau* = 0.00; chi® = 4.24, df = 4 (P = 0.37); ' = 6% 0'2 0'5 1 é é
Test for overall effect: Z=0.11 (P =0.91) . .

Favours (AT-DILI) Favours (control)
(b)

Study or Subgrou AT-DILI Control ~ Weight Odds Ratio Year Odds Ratio

Y group Events Total Events Total (%) M-H, Random, 95% CI M-H, Random, 95% CI
Kim 2009 5 66 10 155 20.0 1.19 [0.39, 3.62] 2009 _—
Chang 2012 4 17 11 81 16.1 1.96 [0.54, 7.10] 2012 —_———
Chen 2016 1 89 10 354 7.2 0.39 [0.05, 3.09] 2016
Sun 2017 8 461 20 466 29.5 0.39 [0.17, 0.90] 2017 —a—
Tao 2018 7 290 17 580 27.1 0.82 [0.34, 2.00] 2018 —a—
Total (95% CI) 923 1636 100.0 0.78 [0.43, 1.39] ‘
Total events 25 68
Heterogeneity: tau” = 0.12; chi® = 5.55, df = 4 (P = 0.23); I’ = 28% T T T T
Test for overall effect: Z = 0.85 (P = 0.40) 0.05 0.2 1 5 20

Favours (AT-DILI) Favours (control)

(c)

FIGURE 2: Forest plot of the relation between UGT1A1 SNP rs4148323 and AT-DILI risk with the random effects model. (a) Allele model.
(b) Dominant model. (c) Recessive model. UGT1A1, UDP-glucuronosyltransferases 1A1; AT-DILI, antituberculosis drug-induced liver injury.

TaBLE 2: Meta-analysis results of the association between SNPs in UGT1A1/UGT2B7 and AT-DILI risk under the allele model.

Heterogeneity test Overall effect
Genes Country SNPs Study numbers ) )
X P I OR (95% CI) P
All rs4148323 (G> A) 5 5.64 0.228 29 0.983 (0.811-1.191) 0.857
All rs2003569 (G> A) 2 0.00 0.993 0 0.989 (0.784-1.247) 0.923
UGTIAL All 1s8330 (C> G) 2 0.4 0.506 0 0.852 (0.681-1.065) 0.159
All rs4148328 (T > C) 2 5.66 0.017 82 0.988 (0.711-1.375) 0.945
All rs3755319 (A > C) 2 0.66 0.415 0 1.044 (0.852-1.280) 0.677
China rs4148323 (G> A) 4 5.40 0.145 44 0.982 (0.777-1.242) 0.881
UGT2B7 China 1rs7662029 (A>G) 2 0.01 0.938 0 1.547 (1.249-1.917) <0.001
China rs7439366 (T > C) 2 0.23 0.632 0 0.585 (0.477-0.717) <0.001

UGT1A1, UDP-glucuronosyltransferase 1A1; UGT2B7, UDP-glucuronosyltransferase 2B7; AT-DILI, antituberculosis drug-induced liver injury; SNPs, single
nucleotide polymorphisms; OR, odds ratio; 95% CI, 95% confidence interval.
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Study or Subgrou AT-DILI Control ~ Weight Odds Ratio Odds Ratio
Y group Events Total Events Total (%) M-H, Random, 95% CI M-H, Random, 95% CI
Kim 2009 32 63 60 150 222 1.55 [0.86, 2.80] —_
Tao 2018 116 263 147 413 77.8 1.43 [1.04, 1.96] —.—
Total (95% CI) 326 563 100.0 1.45 [1.10, 1.92] -
Total events 148 207
Heterogeneity: tau” = 0.00; chi’ = 0.06, df= 1 (P = 0.81); > = 0% T T T T
Test for overall effect: Z = 2.63 (P = 0.009) 0.2 0.5 1 2 5

Favours (AT-DILI) Favours (control)

FIGURE 3: Forest plot of the relation between UGT1A1 SNP rs3755319 (heterozygote model) and AT-DILI risk with the random effects
model. UGT1A1, UDP-glucuronosyltransferases 1A1; AT-DILI, antituberculosis drug-induced liver injury.

Study or Subgroup AT-DILI Control ~ Weight Odds Ratio Odds Ratio

Events Total Events Total (%) M-H, Random, 95% CI M-H, Random, 95% CI
Shi 2014 133 364 104 386 47.7 1.56 [1.15,2.13] —a—
Sun 2017a 149 414 111 414 52.3 1.53 [1.14, 2.06] —a—
Total (95% CI) 778 800  100.0 1.55[1.25, 1.92] -
Total events 282 215
Heterogeneity: tau” = 0.00; chi’ = 0.01, df= 1 (P = 0.94); I* = 0% i

Test for overall effect: Z = 4.00 (P < 0.0001) 0.5 0.7 1 1.5 2

Favours (AT-DILI) Favours (control)
(a)
Study or Suberou AT-DILI Control Weight Odds Ratio Odds Ratio
Y group Events Total Events Total (%) M-H, Random, 95% CI M-H, Random, 95% CI
Shi 2014 120 182 85 193 47.2 2.46 [1.62, 3.74] —u—
Sun 2017a 134 207 92 207 528 2.29 [1.54, 3.41] N —
Total (95% CI) 389 400 1000 2.37[1.78, 3.16] -
Total events 254 177
Heterogeneity: tau” = 0.00; chi’ = 0.06, df= 1 (P = 0.81); > = 0% . . . .
Test for overall effect: Z =5.89 (P < 0.00001) 0.2 0.5 1 2 5
Favours (AT-DILI) Favours (control)
(b)
Study or Suberou AT-DILI Control ~ Weight Odds Ratio Odds Ratio
Y group Events Total Events Total (%) M-H, Random, 95% CI M-H, Random, 95% CI

Shi 2014 107 169 66 174 47.1 2.82[1.82, 4.38] ——
Sun 2017a 119 192 73 188 52.9 2.57 [1.70, 3.88] —a—
Total (95% CI) 361 362 100.0 2.69[1.99, 3.63] 0
Total events 226 139
Heterogeneity: tau? = 0.00; chi’ = 0.10, df =1 (P = 0.76); I = 0% . . . .
Test for overall effect: Z = 6.44 (P < 0.00001) 0.2 0.5 1 2 5

Favours (AT-DILI) Favours (control)

()

FIGURE 4: Forest plot of the relation between UGT2B7 SNP rs7662029 and AT-DILI risk with the random effects model. (a) Allele model.
(b) Dominant model. (c) Heterozygote model. UGT2B7, UDP-glucuronosyltransferases 2B7; AT-DILI, antituberculosis drug-induced liver
injury.

that only one original study indicated that patients with the  significant association between the SNP rs4148323 and
A allele of rs4148323 in UGT1Al had a lower risk of  AT-DILI risk [15, 18-20]. Although these studies were all
AT-DILI (A vs. G, OR=0.371, 95% CI: 0.161-0.857,  designed as case-control studies, differences in sample size,
P=0.020) [21]. Other original studies did not show any  diagnostic criteria, and adjusted covariates cannot be
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Study or Subgroup AT-DILI Control ~ Weight Odds Ratio Odds Ratio
Events Total Events Total (%) M-H, Random, 95% CI M-H, Random, 95% CI
Shi 2014 207 364 263 386 46.9 0.62 [0.46, 0.83] ——
Sun 2017a 215 414 273 414 53.1 0.56 [0.42, 0.74] —a—
Total (95% CI) 778 800  100.0 0.58 [0.48, 0.72] -
Total events 422 536
Heterogeneity: tau” = 0.00; chi’ = 0.23, df= 1 (P = 0.63); I* = 0% i i . .

Test for overall effect: Z = 5.15 (P < 0.00001) 0.5 0.7 1 15 2
Favours (AT-DILI) Favours (control)

()

Study or Subgroup AT-DILI Control ~ Weight Odds Ratio 0Odds Ratio
Events Total Events Total (%) M-H, Random, 95% CI M-H, Random, 95% CI
Shi 2014 139 182 172 193 442 0.39 [0.22, 0.70] —a—
Sun 2017a 142 207 181 207 55.8 0.31 [0.19, 0.52] —u—
Total (95% CI) 389 400  100.0 0.35[0.24, 0.51] ’
Total events 281 353
Heterogeneity: tau” = 0.00; chi’ = 0.35, df= 1 (P = 0.55); I* = 0% i i i

Test for overall effect: Z = 5.49 (P < 0.00001) 0.2 0.5 1 2 5
Favours (AT-DILI) Favours (control)

(b)

Study or Subgroup AT-DILI Control  Weight Odds Ratio Odds Ratio
Events Total Events Total (%) M-H, Random, 95% CI M-H, Random, 95% CI
Shi 2014 68 182 91 193 47.9 0.67 [0.44, 1.01] ——
Sun 2017a 73 207 92 207 52.1 0.68 [ 0.46, 1.01] ——
Total (95% CI) 389 400 100.0 0.68 [0.51, 0.90] -
Total events 141 183
Heterogeneity: tau” = 0.00; chi’ = 0.00, df= 1 (P = 0.95); I* = 0% . i i .
Test for overall effect: Z = 2.70 (P = 0.007) 0.2 0.5 1 2 5

Favours (AT-DILI) Favours (control)

(c)

FIGURE 5: Forest plot of the relation between UGT2B7 SNP rs7439366 and AT-DILI risk with the random effects model. (a) Allele model.
(b) Dominant model. (c) Recessive model. UGT2B7, UDP-glucuronosyltransferases 2B7; AT-DILI, antituberculosis drug-induced liver

injury.

ignored. For example, one 1:1 matched case-control study
was conducted in China with the largest sample size to date
(461 cases and 466 controls) [21]. That study employed 5
ULN of ALT as a diagnostic criterion and did not adjust for
covariates in the analysis, while others employed a 2 ULN
criterion and adjusted for some covariates. Previous studies
have found that the rs4148323 homozygous mutation and
heterozygous mutation caused the enzymatic activity of
UGT1AL1 to decrease by 30-40% and 60-70%, respectively,
and then significantly increased total bilirubin levels in vivo
[33]. Among patients who received anti-hepatitis C virus
drug treatment, the A allele of rs4148323 in UGT1A1 could
be considered as a risk factor for drug-induced ALT ele-
vation and liver injury [34]. Therefore, further studies are
needed to confirm the association between SNP rs4148323
and AT-DILI risk, although our meta-analysis found no
association based on the present studies.

For UGTI1AL rs3755319, in silico analysis indicated that
the rs3755319 C allele might induce transcription binding

changes and reduce UGTI1A1l expression [35]. However,
a significant association between SNP rs3755319 and
AT-DILI risk was found under the heterozygote model. The
haplotype TGG  (rs3755319-rs2003569-rs4148323)  in
UGT1A1 was discovered to be associated with a marginally
higher risk of ATLI (OR=5.071, 95% CI: 1.007-25.531,
P=0.049) [15], and no association was observed between
rs3755319 and RIF pharmacokinetics in South African pa-
tients with TB [36]. Therefore, SNP rs3755319 as a genetic
risk marker was not robust enough according to our results,
and more original studies are needed to confirm the above
conclusion. For the other two statistically significant SNPs
(UGT2B7 rs7662029 and rs7439366), the present meta-
analysis under multiple genetic models and two original
case-control studies observed that the AG genotype of
rs7662029 and the TT genotype of rs7439366 in UGT2B7
increased the risk of AT-DILI [31, 32]. A previous study
indicated that genetic polymorphisms in the coding and
promoter regions of UGT2B7 had important clinical
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implications for pharmacology and toxicology and could
induce AT-DILI through clinically significant changes in
drug clearance [37]. This phenomenon has also been ob-
served in other forms of DILI; for example, the T allele of
rs7439366 in UGT2B7 was more common in diclofenac
hepatotoxicity patients (OR=8.5, 95% CI: 1.1-69.9,
P=0.026) [38]. Of course, determining the potential ap-
plication value of rs7662029 and rs7439366 in UGT2B7
requires further research.

Identification of a genetic predisposition to AT-DILI is
of paramount importance. These meta-analysis results in-
dicated that UGT1ALI rs3755319, UGT2B7 rs7662029, and
rs7439366 might be associated with the risk of AT-DILI,
which would help to identify susceptible populations for
liver injury in patients with anti-TB treatment. If used as
a test prior to prescription, genotyping of these genes would
prevent potential AT-DILI. However, although various
genetic polymorphisms have been identified to be associated
with DILI susceptibility, few prospective genetic screening
tests have met the threshold for clinical application [39, 40].
The main reason is that the low incidence rate of DILI leads
to a low positive predictive value for currently identified
genetic variations, making them unsuitable for pre-
prescription screening [41]. As described above, the re-
ported incidence of AT-DILI is relatively low [4]. So, the low
DILI incidence could not warrant the cost and effort as-
sociated with genetic testing [42]. Genetic polymorphisms of
UGTs may be not useful in preemptive tests to reduce DILI
incidence, but they can aid DILI diagnosis and clinical
decision-making [40].

This study was the first to summarize all relevant studies
investigating the relationships of UGTs polymorphisms
with AT-DILI risk under different genetic models and to
perform a meta-analysis of the data reported in those
studies. The quality of the included studies was high.
Nevertheless, the study had several limitations. First, the
number of included studies was small, and the sample size
was relatively small for determining genetic association,
which made it difficult to draw a robust conclusion. Second,
the study subjects were only Chinese and Koreans (limited
to Asian countries), which minimized the possibility of
discovering meaningful genetic associations. Because fewer
than ten studies were included, a publication bias test was
not performed. Finally, there existed a high heterogeneity
for UGT1A1 rs4148328, and I-squares were larger than 60%
under different genetic models. The diagnosis of AT-DILI,
causality assessment, and adjustment for covariates were
not uniform in those studies, which may be sources of
potential heterogeneity.

5. Conclusion

The current meta-analysis indicated that UGTI1Al
rs3755319, UGT2B7 rs7662029, and UGT2B7 rs7439366
were significantly associated with AT-DILI risk, and these
three SNPs may be used as potential genetic risk markers in
anti-TB treatment patients. However, this conclusion should
be interpreted with caution due to the low number of studies
and the relatively small sample size.

Journal of Tropical Medicine
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