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Acinetobacter baumannii (A. baumannii) is an opportunistic bacterium that has developedmultidrug resistance (MDR) tomost of
today’s antibiotics, posing a signifcant risk to human health. Considering the fact that developing novel drugs is a time-
consuming and expensive procedure, this research focuses on utilizing computational resources for repurposing antibacterial
agents for A. baumannii. We targeted shikimate kinase, an essential enzyme in A. baumannii, that plays a signifcant role in the
metabolic process. Te basis for generating new therapeutic compounds is to inhibit the shikimate kinase and thereby targeting
the shikimate pathway. Herein, 1941 drug-like compounds were investigated in diferent in silico techniques for assessing drug-
likeness properties, ADMET (absorption, distribution, metabolism, excretion, and toxicity) profling, binding afnity, and
conformation analysis utilizing Autodock-vina and SwissDock. CHEMBL1237, CHEMBL1237119, CHEMBL2018096, and
CHEMBL39167178 were determined as potential drug candidates for suppressing shikimate kinase protein. Molecular Dynamics
Simulation (MDS) results for root mean square deviation, root mean square fuctuation, hydrogen bond, and gyration radius
confrm the drug candidates’ molecular stability with the target protein. According to this study, CHEMBL1237 (Lisinopril) could
be the most suitable candidate forA. baumannii. Our investigation suggests that the inhibitors of shikimate kinase could represent
promising treatment options for A. baumannii. However, further in vitro and in vivo studies are necessary to validate the
therapeutic potential of the suggested drug candidates.

1. Introduction

Resistance to antibiotics is currently a global concern to
public health that causes trouble in disease management,
infection control, duration of treatment, and patient care,
thereby increasing the cost of healthcare. Antibiotic activity
towards organisms worsens over time because of multidrug
resistance (MDR), which increases because of the misuse
and overuse of antibiotics, poor ailment managements, and
the evading characteristic of microorganisms [1, 2]. Acine-
tobacter baumannii also has an extraordinary ability to

acquire or upregulate resistance determinants representing
it as one of the organisms that pose threats to present an-
tibiotics [3, 4]. Acinetobacter baumannii is a Gram-negative,
nonmotile, obligate aerobic, oxidase-negative, catalase-
positive, and nonfermentative coccobacillus that harbors
a number of successful virulence factors which enable its
multidrug resistance phenomenon [5]. Species
A. baumannii, which predominantly causes nosocomial
infections, belongs to the Moraxellaceae family [6] and is
responsible for other health issues such as hospital-acquired
pneumonia (HAP), ventilator-associated pneumonia (VAP),
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septicaemias, endocarditis, secondary meningitis, and var-
ious infections of skins, soft tissues, and urinary tracts [7].
Te worldwide incidence of multidrug-resistant
A. baumannii strains in hospital-associated pneumonia
and ventilator-associated pneumonia patients is 79.9% and
ranges from 56.5% in Argentina and 61.8% in Taiwan to
100% (79.9%) in Central America, Pakistan, Lebanon, Qatar,
and Croatia, and the overall mortality rate can reach
56.2% [7].

Te ability of Acinetobacter baumannii to acquire MDR
has drawn a lot of interest in our study [8]. Te WHO
ranked carbapenem-resistant A. baumannii as the world’s
leading priority organism for research and development of
antibiotics in 2018; since resistance to carbapenem often
denotes a broad spectrum of resistance to other classes of
available antibiotics, the drug is listed as a marker [9].
Alongside its incredible resistance abilities, the organism
can survive in the hospital environment for a prolonged
period, enhancing its capacity to cause various infections
[9]. In addition, although A. baumannii infections are so
important, efective therapeutic options to combat them
are limited, which impose a signifcant burden on the world
healthcare system. Furthermore, the multidrug resistance
ability of the organism posed a problem in controlling
infections [10]. Te bacteria have already demonstrated
resistance to all antibiotics, including the last-resort anti-
biotics, such as carbapenem, demanding the attention of
the healthcare community for the necessity of new drug
development that will fght against the organism’s various
weapons. As a result, there is a pressing need for novel
drug-like molecules as treatment options against
multidrug-resistant A. baumannii.

Since the shikimate pathway is necessary for the survival
of algae, vascular plants, fungus, microbes, however not
present in humans, it represents a promising new source for
the synthesis of antibacterial drugs and herbicides [1].
Chorismic chemical is synthesized by bacteria through the
shikimate pathway from which many amino acid precursors
are derived. Tese include anthranilate (a source of tryp-
tophan), prephenate (a source of phenylalanine and tyro-
sine), para-hydroxybenzo (shared source of the compounds:
mycobactins, menaquinones, and naphthoquinones), and
aminodeoxychorismate (a source of para-aminobenzoic
acid) [1]. Te shikimate kinase is located at the top of
chorismate synthase and 5-enol-pyruvyl-shikimate3-
phosphate, and it facilitates the ffth phase in the passage-
way, which is the conversion of shikimate to shikimate 3-
phosphate utilising ATP as a cosubstrate [2]. It is con-
ceivable to construct a multitarget antibacterial drugs potent
against multiple enzymes in the cascade because the sub-
strates of these enzymes have a homologous scafold.
Implementing method will substantially reduce on the
possibility of the development of a resistant strain [2]. Tere
are 3 separate regions inside shikimate kinase: the CORE
motif, that comprises amino acids from the preserved
binding loop (P-loop) that constitutes the binding pocket of
ADP and ATP; the LID area, that shuts over the catalytic site
and bears essential sequences for ATP interaction; and the
NMP-binding area, which correlates to the shikimate

binding area [7]. Our proposed ligands have the ability to
bind to any of the binding pockets and elicit competitive
inhibition. Tis procedure causes an interruption inside the
enzyme’s binding pockets.

Many studies have suggested that phytocompounds are
the best alternative for generating therapies for multidrug-
resistant bacterial infections [11] although synthetic chemicals
are also used to develop novel treatment. Terefore, the
available plant-originated and chemical compounds in the
databases can be screened for their compatibility to develop
drugs to fght the multidrug-resistant A. baumannii. Te
process of developing a new drug is both time-consuming and
costly. Nowadays, computer-aided drug innovation technique
is frequently used to investigate phytochemicals against
pathogens such as A. baumannii. Terefore, the computa-
tional approaches are of great importance for the develop-
ment of new drugs against A. baumannii. Te binding
mechanism between the ligand and the target protein could be
determined by employing docking techniques to screen
phytocompound databases. Te fndings from our current
study can identify lead molecules and also indicate required
mechanism of the lead drug-like molecules, thereby short-
ening the length of the drug discovery process and cost. Te
process of discovering drugs involves evaluating potential
compounds for drug development and identifying potential
targets to be inhibited to improve disease prognosis. To
combat antimicrobial resistance, a combination strategy of
medicinal chemistry and bioinformatics was utilized to
identify possible targets and candidate drug-like compounds
[12]. Te conformational stability of targeted protein-ligand
complexes was evaluated by molecular dynamics simulation
at 100 nanoseconds. Tis suggests a prospective antibacterial
molecule against A. baumannii and demonstrates the in-
teraction of present small drug-like compounds implicated in
antibacterial activities.

Our present fndings suggest potential drug-like
compounds with pharmacological possibilities that can
be used to start a new drug development work. To assess
the efectiveness of the compounds and develop new
therapeutic medicines against A. baumannii, additional
in vitro and in vivo investigation is required. Before these
compounds could be used in treatments, however, more
research into their therapeutic potential and safety is
needed. Here, we found CHEMBL1237 (Lisinopril) as
a putative drug candidate against A. baumannii after
screening their compatible drug-like properties and
pharmacokinetics characteristics, evaluating binding
interaction and molecular stability of lisinopril and
shikimate kinase protein.

2. Materials and Methods

A total of 1,941 chemical compounds and phytochemicals
were retrieved from NPASS (https://bidd.group/NPASS/)
and PubChem (https://pubchem.ncbi.nlm.nih.gov/) data
sources. Te compounds were considered based on previous
research that showed they could be used to treat a variety of
human pathogenic viruses [12]. Doxycycline was also
employed as a control drug in this investigation.
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2.1. Identifcation of Drug-Like Properties. Te drug-like
characteristics represent the potential physicochemical
properties of a small molecule. Te QikProp module of
Schrödinger software was used to predict the drug-like
properties [13]. Canonical smiles of the ligands were col-
lected from PubChem (https://pubchem.ncbi.nlm.nih.gov/)
database. Te Lipinski's rule of fve was used to evaluate the
drug-likeness of the compounds [13]. Here, we submitted
1,941 small compounds for initial screening in the QikProp
module.

2.2. Identifcation of ADMET Properties by pkCSM Server.
To predict the ADMET data of small molecules, pkCSM
online tool (https://structure.bioc.cam.ac.uk/pkcsm) was
utilized. It incorporates graph-based structural signatures
with an optimum threshold value to flter drug-like com-
pounds. Te following parameters such as water solubility,
Caco-2 permeability, intestinal absorption (human), P-gp
substrate, P gp-I inhibitor, P gp-II inhibitor, BBB perme-
ability, CYP2D6 substrate, CYP3A4 substrate, CYP1A2
inhibitor, CYP2C19 inhibitor, CYP2C9 inhibitor, CYP2D6
inhibitor, CYP2C3A4 inhibitor, AMES toxicity, hERG I
inhibitor, hERG II inhibitor, and hepatotoxicity were con-
sidered for predicting ADMET properties. After initial
screening in the QikProp setup, we found 1,065 small
compounds and utilized them in ADMET evaluation.

2.3. Molecular Docking by Autodock-Vina. Te ligands were
downloaded from PubChem (https://pubchem.ncbi.nlm.
nih.gov/) database. Tese ligands were energy minimized
and converted to Autodock-vina supported pdbqt format by
an open babel module of PyRx software [14]. Te 3D
structure of the shikimate kinase from A. baumannii in
complex with shikimate (PDB ID: 4Y0A) was retrieved from
Protein Data Bank (https://www.rcsb.org/). PyMOL was
utilized to eliminate water and other hetero molecules from
the crystal structure of the protein [13]. Swiss-PdbViewer
software was employed to energy minimize the protein [15].
Subsequently, the protein was loaded on the Autodock-vina
to incorporate polar hydrogen bonds to the protein and
convert them from pdb to Pdbqt format. Te active site of
the protein was identifed using CASTp 3.0 (https://sts.bioe.
uic.edu/castp/) server. Based on the information of the
binding pocket, the center of the grid box for the shikimate
kinase (PDB ID: 4Y0A) was fxed where X= 3.924, Y= 9.759,
and Z= 18.945 with a dimension of 62× 58× 66 Å. One
hundred and twenty-fve compounds were screened in the
Autodock-vina to fnd the best binding interaction between
ligand and protein [16].

2.4. Molecular Docking by Swissdock Server. Te SwissDock
server provides a simple and user-friendly GUI for analyzing
a protein-ligand docking [17]. Te ligands were converted to
MOL2 format by Avogadro software for the Swissdock
server. Out of 125, a total of 36 small molecules had the
highest binding afnity with increased nonbonded in-
teractions, and they were submitted to the server for docking

analysis. Te server uses full-ftness and estimated ΔG value
to represent the binding interaction.

2.5. Molecular Dynamics Simulation by GROMACS. MDS
(molecular dynamics simulation) is a thermodynamics-
based method that aids the investigation of dynamic fuc-
tuations in protein-ligand complexes. Te best ligands from
the earlier phases were put through molecular dynamics
simulation (MDS) with their respective proteins. To simulate
protein-ligand conformations, the GROMACS (https://
simlab.uams.edu/) service was used, and the GROMOS96
43a1 force feld was used to produce topological data for the
complex structures [18]. Te GROMACS (https://simlab.
uams.edu/) software was used to simulate protein-ligand
conformations, and the GROMOS96 43a1 force feld was
used to create the complex topological data [19]. To render
ligand topology and coordinate information, the PRODRG
(https://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg) server
was applied [20]. Te SPC water model (simple point-
charge) was used to construct the aqueous phase of mac-
romolecules, which was then neutralized with a 0.15M NaCl
solution [8]. Te biomolecular environment was kept in
a triclinic box, and the energy was reduced using the 5000
steepest decline stages. At 310K and 1.0 bar, the NPT
(constant pressure) and NVT (constant volume) setups were
used to achieve ion-molecule equilibrium around the
macromolecule. It generated simulated structural dynamics,
including the root mean square deviation (RMSD), root
mean square fuctuation (RMSF), radius of gyration (Rg),
solvent-accessible surface area (SASA), and hydrogen bonds
(HBs) at 100 nanoseconds of simulation.

2.6. Molecular Dynamics Simulation by Desmond. We uti-
lized MD simulation in Desmond to further analyze the
binding stability of the Shikimate kinase_CHEMBL1237,
Shikimate kinase_CHEMBL1237119, Shikimate kin-
ase_CHEMBL2018096, Shikimate kin-
ase_CHEMBL3916717, and Shikimate kinase_Doxycycline
complexes [21]. Tese complex structures were solvated
employing the system designer tool on the cubic TIP3P
simulation (3-point water model).Te solvated region was at
least 10 Å distant from the protein-ligand structure. After-
wards, Na+ and Cl− charged ions were provided to the
resulting model to normalize subsequently, bringing it to the
physiological salt content of 0.15M. Te integrated OPLS3e
force feld was applied to optimize the energy of the solvated
complex structures. At 310K and 1.013 bar, the MDS was
conducted utilizing isothermal isobaric composition (NPT).
Tis was a 100 ns simulation period and a 100 ps capturing
interval during which 1000 frames were stored in the tra-
jectory’s memory. Eventually, we analyzed the trajectory
with the help of the simulation interaction diagram (SID)
tool, and the extracted fndings comprised protein contact
mapping, RMSD, RMSF, and RMSD, for the ligand. Te
Shikimate kinase_ CHEMBL1237, Shikimate kin-
ase_CHEMBL2018096, Shikimate kin-
ase_CHEMBL3916717, and Shikimate kinase_Doxycycline
complexes were subjected to a postsimulation MM-GBSA
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assessment utilising thermal MM-GBSA.py package.
Binding-free energy was calculated after MM-GBSA anal-
ysis, yielding a range of 0–1000 [8].

3. Results

3.1. Analysis of Drug-Like Properties. Lipinski’s rule of fve
fltration technique incorporates the following parameters:
molecular weight (recommended range: <500), the number
of hydrogen bond donors (ideal range: ≤5), the number of
hydrogen bond acceptors (standard range: ≤10), and lip-
ophilicity (represented as LogP, normal range: <5). Out of
1,941 small molecules, 1,065 of them showed optimal drug-
like properties based on Lipinski’s rule of fve rule (Sup-
plementary table 1: Drug-like properties of the downloaded
compounds). Te drug-like properties of the top lead
compounds and Doxycycline are provided in Table 1.

3.2. Analysis of ADMET Properties. Te pkCSM web server
integrates pharmacokinetic properties ADMET (chemical ab-
sorption, distribution, metabolism, excretion, and toxicity) of
drug-like compounds based on cut-of scores. All ligands have
a high absorption rate and water solubility in the absorption
section. Each of the compounds evaluated was able to penetrate
Caco-2 cell lines. In terms of distribution, however, not all of
them are permeable to the blood-brain barrier (BBB). Following
that, a few of the substances act as substrates for CYP3A4,
CYP2C9, andCYP2D6during distribution and excretion.Tere
were no hepatotoxic ligands in the study. For further in-
vestigation, a total of 125 drug-like compounds were considered
(Supplementary table 2: Pharmacokinetic properties of the
selected drug-like molecules). Te pharmacokinetics properties
of the top lead compounds and Doxycycline are provided in
Table 2.

3.3. Analysis of Molecular Docking Results by Autodock-Vina.
Previously fltered drug-like molecules were screened in
Autodock-vina docking software. Here, Doxycycline was
used as the control drug for comparing our docking results.
We set-up −11.0 kcal/mol as the cut-of docking score for all
the ligands. Out of 125, 36 ligands showed better binding
afnity in our study (Table 3).

3.4. Analysis of Molecular Docking Results by Swissdock.
Based on full ftness and estimated ΔG score, 16 small
molecules showed higher binding energy than the control
drug. Besides, four of them had a binding estimated ΔG
lower than −8.0 kcal/mol. Among them, CHEMBL1237
(Figure 1), CHEMBL1237119 (Figure 2), CHEMBL2018096
(Figure 3), and CHEMBL3916717 (Figure 4) were selected
considering all features as potential drug candidates for
Acinetobacter baumannii (Table 3).

3.5. Analysis of MD Simulation by GROMACS. In this re-
search, the conformational stability of protein-ligand complexes
was assessed employing molecular dynamics analysis. Te
average outcomes of the characteristics considered are recorded
in Table 4.

Te binding stability of four drugs with target proteins
was examined using the root mean square deviation (RMSD)
method. Te RMSD fuctuation for the protein and ligand
complex structures in the MD simulation trajectory is
thoroughly analyzed, and the complex is considered stable if
the fuctuation is less than 4 nm. Figure 5(a) demonstrates
the RMSD of protein-ligand complexes: Doxycycline,
CHEMBL1237, CHEMBL1237119, CHEMBL2018096, and
CHEMBL39167178. Te average RMSD values of the
protein-ligand complexes of CHEMBL1237,
CHEMBL1237119, CHEMBL2018096, CHEMBL3916717,
and Doxycycline were 0.292741261, 0.372786232,
0.328247228, 0.354916442, and 0.28501144 nm, respectively.
Between 85 ns and 100 ns timescales, CHEMBL1237 showed
a similar tendency to the control Doxycycline at about
0.3 nm. On the contrary, CHEMBL1237119,
CHEMBL2018096, and CHEMBL3916717 complex had an
increased RMSD value more than 0.3 nm after 40 ns. Al-
teration in the conformation of the Cα backbone of the
systems was assessed using root mean square fuctuation
(RMSF) analysis per residue. CHEMBL1237,
CHEMBL1237119, CHEMBL2018096, CHEMBL3916717,
and Doxycycline have average RMSFs of 0.18, 0.19, 0.18, 0.17,
and 0.18 nm, respectively, confrming strong conformational
interaction between protein and ligands (Figure 5(b)).
However, the higher CHEMBL1237119 RMSF fuctuation
revealed the presence of a loop in this site. Te radius of
gyration was used to detect the changes in compactness
following ligand interaction to receptors. Figure 5(c) shows
the radius of gyration of CHEMBL1237, CHEMBL1237119,
CHEMBL2018096, CHEMBL3916717, and Doxycycline.Te
average Rg values of CHEMBL1237, CHEMBL1237119,
CHEMBL2018096, CHEMBL3916717, and Doxycycline
were 1.591054436, 1.575640969, 1.620291858, 1.586389291,
and 1.614269121 nm, respectively, suggesting that the
CHEMBL1237 complex is more compact. Te average SASA
values of CHEMBL1237, CHEMBL1237119,
CHEMBL2018096, CHEMBL3916717, and Doxycycline
were 89.80918282, 87.57855544, 94.80261938, 90.62411988,
and 93.36690809 nm2, respectively, as shown in Figure 5(d).
Figure 5(e) demonstrates that the average hydrogen bond
interactions for the complexes CHEMBL1237,
CHEMBL1237119, CHEMBL2018096, CHEMBL3916717,
and Doxycycline were 142.0, 139.0, 137.0, 134.0, and 139.0.

3.6. Analysis of MD Simulation and Postsimulation
MM-GBSA by Desmond. We retrieved RMSD, RMSF,

Table 1: Drug-like properties of the top lead compounds and
doxycycline from QikProp module of Schrödinger software.

Name MW
(g/mol) AlogP HBA HBD RB PSA (Å2)

CHEMBL1237 390.5131 4.41 3 2 10 86.99
CHEMBL1237119 390.5131 4.41 3 2 10 86.99
CHEMBL2018096 404.4518 2.26 5 4 4 118.39
CHEMBL39167178 445.4921 3.8751 5 1 6 90.52
Doxycycline 444.43 −0.28 9 6 2 181.62
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ligand behaviour, and protein-ligand interaction repre-
sentation from the MD profle. Data analysis of the root
mean square diference (RMSD) plot reveals the stabi-
lization of complexes. Te average RMSD of the com-
plexes such as Shikimate kinase_CHEMBL1237,
Shikimate kinase_CHEMBL1237119, Shikimate kin-
ase_CHEMBL2018096, and Shikimate kin-
ase_CHEMBL3916717 were 2.17, 2.19, 2.52, and 1.99 Å.
Te variation curve remained below 4.00 Å throughout
100 ns period, indicating a stable protein-ligand union.
All complexes had fuctuations of less than 4.00 during
a timeframe of 100 ns. It indicates that the ligands
(Doxycycline, CHEMBL1237, CHEMBL1237119,
CHEMBL2018096, and CHEMBL39167178) remained
within the active pocket of shikimate kinase. A higher
fuctuation around 3 Å was evident from 118 to 130
residues (loop region) (Figure 6).

Te nonbonded contacts between the proteins and
ligands were evaluated during the 100 ns timeframe.
Ligand CHEMBL1237 produces MET27 (Hydrogen
Bonds), ALA29 (hydrogen bonds and water bridges),
GLY30 (hydrogen bonds and water bridges), GLN126
(hydrophobic, ionic bonds, and water bridges), ARG130
(hydrogen bonds, ionic bonds, and water bridges),
ARG134 (hydrogen bonds, ionic bonds, and water
bridges) contacts with shikimate kinase for 100%, 90%,
160%, 60%, 80%, and 175% of 100 ns timescale. Ligand
CHEMBL1237119 completes bonds with THR128 (ionic

bonds, hydrogen bonds, and water bridges), TYR129
(ionic bonds, hydrophobic, hydrogen bonds, and water
bridges), ARG130 (hydrogen bonds, ionic bonds, and
Water Bridges) for 50%, 140%, and 60% of simulation.
Troughout the simulation period, ligand
CHEMBL2018096 formed bonds with four amino acids -
THR128, TYR129, GLN138, and PRO142. Te types of
bonds formed with each amino acid were hydrogen
bonds, hydrophobic interactions, and water bridges for
THR128 and TYR129, while GLN138 and PRO142 had
hydrophobic interactions and hydrogen bonds. Specif-
cally, the ligand completed these bonds for 55%, 65%,
45%, and 50% of the simulation period with THR128,
TYR129, GLN138, and PRO142, respectively. Ligand
CHEMBL39167178 interacts with PHE65 (hydrogen
bonds, ionic bonds, and water bridges), and ARG130
(hydrogen bonds, ionic bonds, and water bridges) for
55% and 40% of simulation. On the other hand, Doxy-
cycline forms interactions with PHE15 (hydrogen bonds
and water bridges), THR17 (hydrogen bonds and water
bridges), TYR22 (hydrogen bonds, ionic bonds, and
water bridges), and ARG87 (hydrogen bonds, hydro-
phobic bonds, and water bridges) for 110%, 90%, 155%,
and 155% of simulation (Figure 7). Analyzing the after-
simulation MM-GBSA, we found free binding energy of
−47.50 ± 16.33, −48.60 ± 14.39, −32.55 ± 22.29, and
−42.13 ± 10.01 kcal mol−1 for Shikimate kin-
ase_CHEMBL1237, Shikimate kinase_CHEMBL1237119,

(a)

(c) (d)

(b)

Unfavorable Donor-Donor
Pi-Alkyl

Interactions
Conventional Hydrogen Bond
Carbon Hydrogen Bond
Halogen (Fluorine)

Figure 1: Schematic representation of Shikimate kinase_CHEMBL1237 complex. (a) Pose view of Shikimate kinase_CHEMBL123 complex.
(b) Surface view of Shikimate kinase_CHEMBL123 complex. Here, protein is in red, yellow, and green color and ligand is in blue color. (c, d)
3D and 2D interaction of Shikimate kinase_CHEMBL123 complex. Here, protein is in green color and ligand is in blue color.
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Shikimate kinase_CHEMBL2018096, and Shikimate
kinase_CHEMBL3916717 complexes. On the contrary,
Shikimate kinase_Doxycycline complex had a binding-
free score of −33.50 ± 3.10 kcal mol−1 (Table 5). It in-
dicates that our predicted ligand hits have greater binding
interactions with the shikimate kinase compared with the
control compound.

4. Discussion

A. baumannii is considered to be one of the world’s most
notorious superbugs, and the bacteria are listed as one of the
most critical pathogens [8]. Te organism has extended its
spread throughout and from human to cattle to additional
animal species. A novel drug is a must to combat A. bau-
mannii. Te resistance mechanism existed in A. baumannii
is very efcient to hydrolyse currently used antibiotics.
Terefore, the treatment option is limiting day-by-day.
However, there is no progress regarding new efective drugs
against it.

After the emergence of the multidrug-resistant variant of
Acinetobacter baumannii, the race for a breakthrough in
therapeutic research accelerated. Last-resort antibiotics:
aminoglycosides, broad-spectrum cephalosporins, carba-
penems, tigecycline, and colistin acquired resistance against
A. baumannii. Our study is designed to identify potential
small drug-like molecules against A. baumannii by

employing a structure-based drug development (SDD)
strategy [10]. Computational techniques are vital resources
for evaluating and conducting research to speed up the
development of antibiotic drugs [8]. SDD approach in-
corporates building protein structures, optimizing ligand
molecules, evaluating drug-likeness properties and phar-
macokinetic properties, binding interaction and afnity
prediction, and validating structural stability and
compactness [22].

Computer-aided drug discovery is one of the efective
means to screen database and identify novel therapeutic
agents against multidrug-resistant A. baumannii. In addi-
tion, the determination of novel drug targets is another
important phase in the drug discovery process. Analysis of
structural and functional roles of important proteins and
identifcation of potential drug targets suggest possible
targets for a new antimicrobial development. Moreover,
diferent features such as screening, ADMET properties,
permeability, Lipinski’s rule of fve, and drug likeliness
enhance the acceptance, safety, and efciency of a suggested
drug-like compound. Te stability of target protein-druglike
compound refers to higher possibilities of a compound to
work on a certain target [22]. Furthermore, the prediction of
absorption of an oral drug is well determined using Caco-
2 cell models derived from human colon carcinoma cells
[23]. Our selected ligands such as CHEMBL1237,
CHEMBL1237119, CHEMBL2018096, and

(a) (b)

(c) (d)

Unfavorable Donor-Donor
Pi-Alkyl

Interactions
Conventional Hydrogen Bond
Carbon Hydrogen Bond
Halogen (Fluorine)

Figure 2: Schematic representation of Shikimate kinase_CHEMBL1237119 complex. (a) Pose view of Shikimate kinase_CHEMBL1237119
complex. (b) Surface view of Shikimate kinase_CHEMBL1237119 complex. Here, protein is in red, yellow, and green color and ligand is in
blue color. (c, d) 3D and 2D interaction of Shikimate kinase_CHEMBL1237119 complex. Here, protein is in green color and ligand is in
blue color.
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CHEMBL39167178 qualifed either of the criteria (Lipinski’s
rule of fve and ADMET rules).

Identifying putative drug targets in the drug design
approach is vital for the downstream study [24]. We
selected shikimate kinase as a possible target due to its
role in the chemical process of the shikimate pathway,
which is necessary for the formation of chorismate, an
important biochemical intermediate in the shikimate
pathway that acts as a source of aromatic amino acids
[2, 25]. Tis process considerably reduces the possibility
of the incursion of resistance due to the inclusion of
several targets in the same metabolic pathway. Previous
research on Mycobacterium tuberculosis identifed shi-
kimate Kinase as a potential therapeutic target [25]. Te
large dataset of 2,041 chemical and phytochemical
compounds was created with antimicrobial activity. A
potential drug molecule should follow the physico-
chemical parameters enlisted in Lipinski’s Rule of Five. A
total of 1065 drug-like molecules comply with the
guideline (hydrogen bond acceptors ≤10, hydrogen bond
donors ≤5, logP <5, molecular mass <500, rotatable
bonds <10, and polar surface area ≤140 Å) [26]. Given the
compounds satisfy the key criteria, they might have better
physicochemical characteristics and bioavailability in the
metabolic activities. Following the drug-like property
study, the toxicity and pharmacokinetic features of the
small ligands were analyzed. It is widely accepted to
evaluate ADMET (absorption, distribution, metabolism,

excretion, and toxicity) properties before clinical trials of
drugs as highly toxic and poor pharmacokinetics could
ruin the expensive phases of drug designing [27]. We
selected 125 small molecules from the pkCSM server
based on pharmacokinetics and toxicity. Molecular
docking is a well-established structure-based computa-
tional approach commonly utilized in drug
designing [28].

Te binding afnity and interaction of the chosen ligands
were successfully predicted using multistep molecular
docking. One of the previous studies revealed that natural
epiestriol-16 showed potential inhibitory activity against
Acinetobacter baumannii with −7.3, −8.0, and −6.0 kcal/mol
against Pyr E, Pyr F, and Omp38 proteins [24]. Another
research identifed ligand ZINC01155930 (XP G-score:
−4.953 kcal/mol) as a potential drug candidate for the efux
pump of Acinetobacter baumannii [23]. Regarding the most
promising ligands, we analyzed binding energy and hy-
drogen bonds to determine their optimal binding interaction
between protein and ligand. After a thorough analysis uti-
lizing the structure-based drug development (SDD) pro-
cedure, we identifed CHEMBL1237, CHEMBL1237119,
CHEMBL2018096, and CHEMBL3916717 as the potential
drug candidates. Ligands such as CHEMBL1237,
CHEMBL1237119, CHEMBL2018096, and
CHEMBL3916717 have a binding energy of −13.0, −13.1,
−13.3, and −12.9 kcal/mol with 4 (GLY28, LYS31, ARG130),
1 (ARG130), 6 (THR128, VAL139, GLN138, LEU137,

(a) (b)

(c) (d)

Unfavorable Donor-Donor
Pi-Alkyl

Interactions
Conventional Hydrogen Bond
Carbon Hydrogen Bond
Halogen (Fluorine)

Figure 3: Schematic representation of Shikimate kinase_CHEMBL2018096 complex. (a) Pose view of Shikimate kinase_CHEMBL2018096
complex. (b) Surface view of Shikimate kinase_CHEMBL2018096 complex. Here, protein is in red, yellow, and green color and ligand is in
blue color. (c, d) 3D and 2D interaction of Shikimate kinase_CHEMBL2018096 complex. Here, protein is in green color and ligand is in
blue color.
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(a) (b)

(c) (d)

Unfavorable Donor-Donor
Pi-Alkyl

Interactions
Conventional Hydrogen Bond
Carbon Hydrogen Bond
Halogen (Fluorine)

Figure 4: Schematic representation of Shikimate kinase_CHEMBL3916717 complex. (a) Pose view of Shikimate kinase_CHEMBL3916717
complex. (b) Surface view of Shikimate kinase_CHEMBL3916717 complex. Here, protein is in red, yellow, and green color and ligand is in
blue color. (c, d) 3D and 2D interaction of Shikimate kinase_CHEMBL3916717 complex. Here, protein is in green color and ligand is in
blue color.

Table 4: Average values of simulated ligand-protein complexes at 100 nanoseconds.

Characteristics CHEMBL1237 CHEMBL1237119 CHEMBL2018096 CHEMBL39167178 Doxycycline
RMSD (nm) 0.2927 0.3728 0.3282 0.3549 0.2850
RMSF (nm) 0.18 0.19 0.18 0.17 0.18
Rg (nm) 1.5911 1.5756 1.6203 1.5864 1.6143
SASA (nm2) 89.8092 87.5786 94.8024 90.6241 93.3669
H-bonds 142 139 137 134 139
Te values represent average of each of the features of root mean square deviation (RMSD), root mean square fuctuation (RMSF), the radius of gyration (Rg),
solvent-accessible surface area (SASA), and hydrogen bonds (H-bonds).
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Figure 5: Continued.
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GLN138, ARG130), and 5 (ARG134, ARG130, GLY170,
GLY28, THR33) hydrogen bonds. Similarly, they had an
estimated ΔG value of −8.16, 8.42, and −8.14 kcal/mol. In
comparison to earlier research, the results revealed that our
therapeutic candidates have a greater binding afnity. A
comparison study with the control drug Doxycycline helps
identify the best ligand hits. One can estimate how distinct

parts of the biomolecule fuctuate at equilibrium and ex-
perience structural variations by looking at a simulation of
a structure. Te study can also highlight the dynamic be-
haviour of water and salt ions, both of which are necessary
for protein activity and small molecule attachment [23]. Te
results from simulation data conveyed that all of the four
ligands remained stable throughout the 100 ns timescale.
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Figure 5: Schematic presentation of simulation plots.Te plots represent features of (a) root mean square deviation (RMSD), (b) root mean
square fuctuation (RMSF), (c) radius of gyration (Rg), (d) solvent-accessible surface area (SASA), and (e) hydrogen bonds (H-bonds) at
100 nanoseconds of molecular dynamics simulation using the GROMACS software.
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Figure 6: Graphical presentation of simulation curves.Te plots represent features of (a, b) root mean square deviation (RMSD) and (c) root
mean square fuctuation (RMSF), at 100 nanoseconds of molecular dynamics simulation using Desmond software.
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Figure 7: Diagram of protein-ligand complex chart of (a) Shikimate kinase_CHEMBL1237, (b) Shikimate kinase_CHEMBL1237119, (c)
Shikimate kinase_CHEMBL2018096, (d) Shikimate kinase_CHEMBL3916717, and (e) Shikimate kinase_Doxycycline complexes.

Table 5: Postsimulation binding-free calculation (MM-GBSA).

Name of complex
MM-GBSA (kcal·mol−1)

ΔGbind ΔGbind range
Shikimate kinase_CHEMBL1237 complex −47.50± 16.33 −63.83 to −31.19
Shikimate kinase_CHEMBL1237119 complex −48.60± 14.39 −62.99 to −34.21
Shikimate kinase_CHEMBL2018096 complex −32.55± 22.29 −54.84 to −10.27
Shikimate kinase_CHEMBL3916717 complex −42.13± 10.01 −52.14 to −33.13
Shikimate kinase_Doxycycline complex −33.50± 3.10 −36.61 to −30.40
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However, CHEMBL1237 (Lisinopril) has the most stable
interaction with the protein. Te RMSF plot shows that all
ligands are only fuctuating within loop regions except
CHEMBL1237119. Analysis from the Rg plot portrays that
CHEMBL2018096 and Doxycycline are less stable compared
to other ligands. As the protein begins to unfold during
conformational changes, its hydrophobic, nonpolar in-
teractions become exposed to the solvent. As a consequence,
the composition of the protein becomes increasingly un-
stable. Protein solvent accessibility is identifed using SASA
calculation. Te SASA study confrms that the ligands are
stable upon binding with the protein. Te number of hy-
drogen bonds always predicts the stability of protein-ligand
complexes [29]. CHEMBL1237 (Lisinopril) has the highest
number of hydrogen bonds, confrming its robust binding
with the protein. Further analyzing the RMSD, RMSF,
protein-ligand interaction diagram, and MM-GBSA evalu-
ation from Desmond simulation, we found similar trend for
CHEMBL1237 (Lisinopril) with a strong binding interaction
with shikimate kinase. However, further studies are needed
to confrm the potency and efcacy of the in silico evaluated
compounds.

5. Conclusions

Te current work focuses on screening available databases to
fnd new drug-like compounds against A. baumannii based
on the computational approaches. Research included the
phyto and chemical compounds against a potent target,
shikimate kinase of the organism, and characterised the
features of the compounds so that they can be exploited for
developing new drugs against the bacteria. In silico evalu-
ation of the compounds suggested four drug-like molecules,
CHEMBL1237, CHEMBL1237119, CHEMBL2018096, and
CHEMBL3916717, in comparison to Doxycycline, that have
met the physical properties and biological acceptance of
a drug. Molecular docking results of the ligands with shi-
kimate kinase suggested that the compounds have binding
pockets on further evaluation using MD simulation showed
that the complexes have high afnities and stability, thereby
suggesting their potentiality to act as drugs. Te present
fndings can be the basis of starting new drug development
work; however, further in vitro and in vivo studies are es-
sential to validate the efectivity of the compounds and to
develop new therapeutic agents against A. baumannii.
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