Supplementary Materials

Antibacterial and Antioxidant Efficacy of Secondary Metabolites from the Roots of *Cyphostemma adenocaule*: A Combined *In Vitro* and *In Silico* Study

Hadush Gebrehiwot¹, Yadessa Melaku¹, Muhdin Aliye¹, Urgessa Ensermu², Aman Dekebo^{1,} ³, Milkyas Endale⁴, Daniel Rentsch⁵ and Mo Hunsen⁶

 ¹Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
²Department of Applied Biology, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
³Institute of Pharmaceutical Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
⁴Traditional and Modern Medicine Research and Development Directorate, Armauer Hansen Research Institute, P.O. Box 1242, Addis Ababa, Ethiopia
⁵Laboratory for Functional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
⁶Department of Chemistry, Kenyon College, Gambier, OH 43022, USA

Correspondence should be addressed to Aman Dekebo; amandekeb@gmail.com

In this file, the tabular and NMR spectral information of all the compounds (**1-6**) used to establish the chemical structures of the isolated compounds from the roots of *C. adenocaule* are depicted in Table S1-6 and Figure S1-31, respectively.

C.	Compoun	β-Sitosterol [32]			
No.	¹ H NMR	¹³ C	COSY	¹ H NMR	¹³ C
		NMR			NMR
1	1.84 (1H, <i>m</i>), 1.07 (1H, <i>m</i>)	37.3	H-2	1.83 (1H, <i>m</i>), 1.08 (1H, <i>m</i>)	37.2
2	1.81 (1H, <i>m</i>), 1.52 (1H, <i>m</i>)	31.7	H-1	1.82 (1H, <i>m</i>), 1.49 (1H, <i>m</i>)	32.6
3	3.51 (1H, <i>m</i>)	71.9	H-4	3.53 (1H, <i>m</i>)	71.8
4	2.27 (1H, <i>m</i>), 2.22 (1H, <i>m</i>)	42.4	H-3	2.28 (1H, <i>m</i>), 2.24 (1H, <i>m</i>)	42.3
5	-	140.8		-	140.7
6	5.34 (1H, <i>m</i>)	121.8	H-7	5.35 (1H, <i>d</i> , <i>J</i> = 4.7)	121.7
7	1.98 (1H, <i>m</i>), 1.94 (1H, <i>m</i>)	32.0	H-6, 8	1.98 (1H, <i>m</i>), 1.56 (1H, <i>m</i>)	31.9
8	1.49 (1H, <i>m</i>)	32.0	H-7	1.46 (1H, <i>m</i>)	31.9
9	0.95 (1H, <i>m</i>)	50.2		0.94 (1H, <i>m</i>)	50.1
10	-	36.6		-	36.5
11	1.45 (1H, <i>m</i>), 1.43 (1H, <i>m</i>)	21.1		1.48 (1H, <i>m</i>), 1.45 (1H, <i>m</i>)	21.0
12	2.00 (1H, <i>m</i>), 1.13 (1H, <i>m</i>)	39.8		1.97 (1H, <i>m</i>), 1.15 (1H, <i>m</i>)	39.8
13	-	42.3		-	42.2
14	1.03 (1H, <i>m</i>)	56.8		1.03 (1H, <i>m</i>)	56.7
15	1.55 (1H, <i>m</i>), 1.05 (1H, <i>m</i>)	24.4		1.55 (1H, <i>m</i>), 1.05 (1H, <i>m</i>)	24.3
16	1.26 (2H, <i>m</i>)	28.3		1.24 (2H, <i>m</i>)	28.2
17	1.10 (1H, <i>m</i>)	56.1		1.13 (1H, <i>m</i>)	56.0
18	0.67 (3H, <i>s</i>)	12.0		0.68 (3H, <i>s</i>)	11.9
19	1.00 (3H, <i>s</i>)	19.5		1.01 (3H, <i>s</i>)	19.4
20	1.33 (1H, <i>m</i>)	36.2	H-21	1.36 (1H, <i>m</i>)	36.1
21	0.91 (3H, d, J = 6.6)	18.8	H-20	0.94 (3H, <i>d</i>)	18.8
22	1.30 (2H, <i>m</i>)	34.0		1.32 (2H, <i>m</i>)	33.9
23	1.14 (2H, <i>m</i>)	26.1		1.15 (2H, <i>m</i>)	26.0
24	0.93 (1H, <i>m</i>)	45.9		0.93 (1H, <i>m</i>)	45.8
25	1.64 (1H, <i>m</i>)	29.2	H-26, 27	1.65 (1H, <i>m</i>)	29.1
26	0.80 (3H, d, J = 6.2)	19.1	H-25	0.82 (3H, d, J = 6.3)	19.0
27	0.81 (3H, d, J = 6.1)	19.9	H-25	0.83 (3H, d, J = 6.1)	19.8
28	1.20 (2H, <i>m</i>)	23.1	H-29	1.22 (2H, <i>m</i>)	23.0
29	0.83 (3H, <i>t</i>)	11.9	H-28	0.85 (3H, <i>t</i>)	11.8

TABLE S1: ¹H, ¹³C, and COSY NMR (400 MHz, CDCl₃, δ in ppm, *J* in Hz) spectral data of compound **1**, and ¹H and ¹³C NMR values of β -sitosterol in the literature.

TABLE S2: ¹H, ¹³C, DEPT-135, COSY, and HMBC NMR (400 MHz, CDCl₃, δ in ppm, *J* in Hz) spectral data of compound **2**, and ¹H and ¹³C NMR values of 3-hydroxy-isoagatholactone in the literature.

C.		3-Hydroxy-isoagatholactone					
INO.		13C	ПЕРТ	COSV	имрс	[33]	130
		C NMR	135	0051	HNIDC		NMR
1	1.94 (1H, <i>m</i>), 1.54 (1H, <i>m</i>)	32.8	-CH ₂ -			1.60 (2H, <i>m</i>)	32.7
2	2.11 (1H, <i>m</i>), 1.56 (1H, <i>m</i>)	25.1	-CH ₂ -	H-3		1.52 (2H, <i>m</i>)	25.0
3	3.42 (1H, t, J = 2.9)	75.8	-CH-O-	H-2		3.42 (1H, t, J = 2.9)	75.7
4	-	37.5	0			-	37.4
5	1.38 (1H, <i>m</i>)	54.1	-CH-		C-7, 20	1.36 (1H, <i>m</i>)	56.6
6	1.46 (1H, <i>m</i>), 1.35 (1H, <i>m</i>)	18.0	-CH ₂ -			1.39 (2H, <i>m</i>)	17.9
7	1.68 (1H, <i>m</i>), 1.66 (1H, <i>m</i>)	40.7	-CH ₂ -			1.45 (2H, <i>m</i>)	40.6
8	-	34.5	0			-	34.4
9	1.43 (1H, <i>m</i>)	51.1	-CH-	H-11		1.36 (1H, <i>m</i>)	51.1
10	-	37.1	0			-	37.0
11	2.37 (1H, dd , $J = 5.6$), 2.32 (1H, dd , $J = 5.7$)	24.2	-CH ₂ -	H-9, 12		2.31 (2H, <i>m</i>)	24.1
12	6.85 (1H, dd , $J = 3.5$, 3.5)	136.4	=СН-	H-11		6.85 (1H, <i>dd</i> , <i>J</i> = 3.5, 3.5)	136.4
13	-	127.0	0			-	127.0
14	2.79 (1H, dd , $J = 8.7$, 4.4)	49.3	-CH-	H-15		2.79 (1H, <i>m</i>)	53.9
15	4.36 (1H, $t, J = 9.2$), 4.03 (1H, $t, J = 9.1$)	67.3	-CH ₂ -O-	H-14	C-13, 16	4.36 (1H, <i>t</i> , <i>J</i> = 9.1), 4.03 (1H, <i>t</i> , <i>J</i> = 9.1)	67.2
16	-	170.3	O (-C=O)		-	-	170.3
17	0.76(3H, s)	14.2	-CH ₃			0.78 (3H, s)	14.1
18	0.92(3H, s)	28.4	-CH ₃			0.94 (3H, s)	28.3
19	0.85 (3H, s)	22.2	-CH ₃			0.97 (3H, s)	22.1
20	0.95 (3H, <i>s</i>)	15.2	-CH ₃			0.87 (3H, s)	15.1
OH	5.28 (1H, <i>brs</i>)	-	-			5.32 (1H, <i>brs</i>)	-

C. No.	Compound 3						ε-Viniferin [33,]	35]
	¹ H NMR	¹³ C	DEPT-	COS	HSQ	HMB	¹ H NMR	¹³ C
		NMR	135	Y	С	С		NMR
1	-	133.8	Q				-	133.8
2/6	7.14 (2H, <i>d</i> , <i>J</i> =8.7)	128.1	=CH-	H-3/5	C-2/6	C-4, 7	7.16 (2H, <i>d</i> , <i>J</i> =	128.2
							8.6)	
3/5	6.78 (2H, <i>d</i> , <i>J</i> = 8.7)	116.4	=CH-	H-2/6	H-3/5	C-2/6	6.79 (2H, $d, J =$	116.3
1		158 5	0				8.0)	150 /
4 7	-537(1H d I - 66)	0/ 8	у СН-О-	Н_8	C-7	C_{-2}	-530(1H d I - 66)	0/ 8
/	5.57(111, a, J = 0.0)	94.0	-011-0-	11-0	C-7	C-2, 6 0	5.59(111, a, J = 0.0)	94.0
8	435(1H d I - 66)	58 3	-CH-	H-7	C-8	0, J C-1	437(1H d I - 66)	58.2
0	+.55(111, a, 5 - 0.0)	50.5	CII	11 /	CO	7 9	4.57 (111, a, 5 - 0.0)	50.2
						10		
						10'.		
						11'.		
						14		
9	-	147.3	Q				-	147.3
10/14	6.18 (2H, s)	107.5	=CH-		C-	C-8,	6.19 (2H, <i>s</i>)	107.6
					10/14	11,		
						12, 13		
11, 13	-	160.0	Q				-	159.9
12	6.21 (1H, <i>s</i>)	102.3	=CH-		C-12		6.18 (1H, <i>s</i>)	102.2
1'	-	131.2	Q				-	131.1
2'/6'	7.03 (2H, d, J = 8.8)	128.8	=CH-	H-	C-	C-4',	7.06 (2H, d, J = 8.7)	128.8
			~~~~	3'/5'	2'/6'	7'		
3'/5'	6.66 (2H, d, J = 8.8)	116.3	=CH-	H-	C-		6.67 (2H, $d, J = 8.8$ )	116.3
41		150.4	0	276	375			150.0
4'		158.4	Q			0 14	-	158.3
1	0.84 (1H, $a$ , $J = 16.7$ )	130.3	=CH-	H-8	C-/*	C-14	0.84 (IH, $d, J = 16.4$ )	130.3
01	10.7	102.6		11 7'	$C $ $e^{i}$	C	10.4)	1026
0	$0.37$ (1 $\Pi$ , $a$ , $J = 16.2$ )	125.0	=Сп-	П-/	C-8	C-	$0.39 (I\Pi, a, J = 16.5)$	125.0
	10.5)					2,0, 0'	10.3)	
<b>Q'</b>	_	136.8	0			9	_	136.8
10'	-	120.0	X O				-	120.0
11'	-	162.7	× 0				-	162.7
12'	6.26(1H.s)	96.9	≺ =CH-		C-12'		6.25 (1H, s)	96.8
13'	-	159.7	0		~ 12		-	159.7
14'	6.64 (1H, <i>s</i> )	104.3	=CH-		C-14'		6.63 (1H, <i>s</i> )	104.3

TABLE S3: ¹H, ¹³C, DEPT-135, COSY, HSQC, and HMBC NMR (400 MHz, CD₃OD,  $\delta$  in ppm, *J* in Hz) spectral data of compound **3**, and ¹H and ¹³C NMR values of  $\varepsilon$ -viniferin in the literature.

C. No.		Compound 4				Myricetin [37]		
	¹ H NMR	¹³ C	DEPT-	HSQ	HMB	¹ H NMR	¹³ C	
		NMR	135	С	С		NMR	
1	-	-	-			-	-	
2	-	147.9	Q			-	148.0	
3	-	137.3	Q			-	137.0	
4	-	177.2	Q (-C=O)			-	177.3	
5	-	162.4	Q			-	162.5	
6	6.18 (1H, <i>d</i> , <i>J</i> = 2.0)	99.2	=CH-	C-6	C-8, 10	6.17 (1H, <i>d</i> , <i>J</i> = 2.1)	99.3	
7	-	165.5	Q			-	165.6	
8	6.38 (1H, <i>d</i> , <i>J</i> = 2.0)	94.3	=CH-	C-8	C-6, 10	6.37 (1H, <i>d</i> , <i>J</i> =2.1)	94.4	
9	-	158.1	Q			-	158.2	
10	-	104.4	Q			-	104.5	
1'	-	123.0	Q			-	123.2	
2'	7.35 (1H, <i>s</i> )	108.5	=CH-	C-2'	C-1', 2, 3', 4' 6'	7.34 (1H, <i>s</i> )	108.6	
3'	-	146.7	0		1,0,	-	146.8	
4'	-	136.9	Õ			-	137.4	
5'	_	146.7	Õ			-	146.8	
6'	7.35 (1H, <i>s</i> )	108.5	=CH-	C-6'	C-1', 2, 2' 4', 5'	7.34 (1H, <i>s</i> )	108.6	

TABLE S4: ¹H, ¹³C, DEPT-135, HSQC, and HMBC NMR (400 MHz, CD₃OD,  $\delta$  in ppm, *J* in Hz) spectral data of compound **4**, and ¹H and ¹³C NMR values of myricetin in the literature.

✓ The spectra have some diethyl phthalate contaminant at  $\delta_{\rm H}$  7.71, 7.60, 4.33 and 1.34, and  $\delta_{\rm C}$  169.2, 132.3, 129.8, 62.8 and 14.3.

TABLE S5: ¹H, ¹³C, DEPT-135, COSY, HSQC, and HMBC NMR (400 MHz, CD₃OD,  $\delta$  in ppm, *J* in Hz) spectral data of compound **5**, and ¹H and ¹³C NMR values of tricuspidatol A in the literature.

C. No.	Compound 5					Tricuspidatol A [33, 38]			
	¹ H NMR	¹³ C	DEPT-	COS	HSQ	HMB	¹ H NMR	¹³ C	
		NMR	135	Y	С	С		NMR	
1,1'	-	133.8	Q				-	133.9	
2/2'	7.28 (2H, d, J = 8.6)	128.8	=CH-	H-3	C-2/2'	C-4,	7.27 (2H, <i>d</i> , <i>J</i> =	128.8	
				/3'		6, 7/4', 6', 7'	8.4)		
3/3'	6.77 (2H, <i>d</i> , <i>J</i> = 8.6)	116.0	=CH-	H-2 /2'	C-3/3'	C-1, 4, /1', 4'	6.76 (2H, <i>d</i> , <i>J</i> = 8.4)	116.1	
4, 4'	-	157.9	Q				-	158.0	
5/5'	6.77 (2H, <i>d</i> , <i>J</i> = 8.6)	116.0	=CH-	H-6 /6'	C-5/5'	C-1, 4, /1', 4'	6.76 (2H, <i>d</i> , <i>J</i> = 8.4)	116.1	
6/6'	7.28 (2H, <i>d</i> , <i>J</i> = 8.6)	128.8	=CH-	H-5 /5'	C-6/6'	C-1, 4, 7/1', 4', 7'	7.27 (2H, <i>d</i> , <i>J</i> = 8.4)	128.8	
7/7'	5.41 (2H, <i>d</i> , <i>J</i> = 6.5)	85.9	-CH-O-	H-8 /8'	C-7/7'	- , ,	5.40 (2H, <i>d</i> , <i>J</i> = 4.4)	85.9	
8/8'	3.59 (2H, <i>d</i> , <i>J</i> = 6.7)	59.0	-CH-	H-7 /7'	C-8/8'	C-10, 14, /10', 14'	3.58 (2H, <i>d</i> , <i>J</i> = 4.4)	59.0	
9, 9'	-	142.1	Q				-	142.1	
10/10'	6.03 (2H, <i>s</i> )	108.9	=CH-		C- 10/10'	C-8, 12, /8', 12'	6.02 (2H, <i>s</i> )	109.0	
11, 11'	-	158.7	Q				-	158.8	
12/12'	5.98 (2H, s)	101.8	=CH-		C- 12/12'		6.23 (2H, <i>s</i> )	101.8	
13, 13'	-	158.7	Q				-	158.8	
14/14'	6.03 (2H, <i>s</i> )	108.9	=CH-		C- 14/14'	C-8, 12, /8', 12'	6.02 (2H, <i>s</i> )	109.0	

C. No.	Compound 6					Parthenocissin A [3				
	¹ H NMR	¹³ C	DEPT-	COS	HSO	HMB	¹ H NMR	¹³ C		
		NMR	135	Y	C	С		NMR		
1	-	130.5	Q				-	129.9		
2/6	7.19 (2H, <i>d</i> , <i>J</i> = 8.5)	130.8	=CH-	H-	C-2/6	C-1,	7.20 (2H, <i>d</i> , <i>J</i> =	130.6		
				3/5		4,7	8.3)			
3/5	6.78 (2H, <i>d</i> , <i>J</i> = 8.5)	116.1	=CH-	H-	C-3/5	C-2/6	6.72 (2H, <i>d</i> , <i>J</i> =	115.8		
				2/6			8.3)			
4	-	157.4	Q				-	157.1		
7	6.25 (1H, <i>s</i> )	125.6	=CH-		C-7	C-2/6	6.31 (1H, <i>s</i> )	125.2		
8	-	150.2	Q				-	149.8		
9	-	143.4	Q				-	142.8		
10	-	128.3	Q				-	128.0		
11	-	155.6	Q				-	155.4		
12	6.18 (1H, <i>s</i> )	104.2	=CH-		C-12		6.26 (1H, <i>d</i> , <i>J</i> = 1.5)	104.1		
13	-	158.4	Q				-	158.4		
14	6.45 (1H, <i>s</i> )	103.6	=CH-		C-14	C-12	6.52 (1H, <i>d</i> , <i>J</i> = 1.5)	103.1		
1'	-	138.1	Q				-	137.4		
2'/6'	6.94 (2H, <i>d</i> , <i>J</i> = 8.5)	129.1	=CH-	H-	C-	C-4',	6.99 (2H, <i>d</i> , <i>J</i> = 8.8)	128.9		
				3'/5'	2'/6'	7'				
3'/5'	6.69 (2H, <i>d</i> , <i>J</i> = 8.6)	115.9	=CH-	H-	C-	C-1'	6.80 (2H, d, J = 8.8)	115.8		
				2'/6'	3'/5'					
4'	-	156.4	Q				-	156.4		
7'	4.19 (1H, <i>d</i> , <i>J</i> = 2.7)	55.6	-CH-	H-8'	C-7'	C-1',	4.26 (1H, <i>d</i> , <i>J</i> = 1.8)	54.9		
						9'				
8'	3.68 (1H, <i>d</i> , <i>J</i> = 2.2)	65.1	-CH-	H-7'	C-8'	C-9',	3.45 (1H, brs)	64.4		
						10',14				
						'				
9'	-	146.2	Q				-	145.6		
10'/14'	6.14 (2H, <i>s</i> )	106.9	=CH-		C-		6.19 (2H, <i>s</i> )	106.9		
					10'/14					
					'					
11', 13'	-	159.3	Q				-	159.3		
12'	6 11 (1H s)	101 5	=CH-		C-12'		6.19(1H s)	101 4		

TABLE S6: ¹H, ¹³C, DEPT-135, COSY, HSQC, and HMBC NMR (400 MHz, CD₃OD,  $\delta$  in ppm, *J* in Hz) spectral data of compound **6** and ¹H and ¹³C NMR values of parthenocissin A in the literature.

✓ The spectra also showed an acrylate contaminant at  $\delta_{\rm H}$  6.04, 6.00, 5.49, and 1.90, and at  $\delta_{\rm C}$  175.2, 136.7, 125.0 and 24.2. Preparative TLCs are made up of silica gel, and to adhere it to the glass, some manufacturers use acrylates as an adhering agent. There is a likely probability that these adhering agents were detected by NMR considering the fact that the final purification in our case was done by PTLC. During filtration acetone and methanol solvents were used, and acetone likely broke down the acrylic polymer used as a binding agent and possibly the acrylates mixed with the filtrate.



FIGURE S1: ¹H NMR spectrum of compound **1**.







FIGURE S3: COSY spectrum of compound 1.



FIGURE S4: ¹H NMR spectrum of compound **2**.



FIGURE S6: DEPT-135 spectrum of compound 2.



FIGURE S8: HMBC spectrum of compound 2.



 $\frac{1}{20} \frac{1}{210} \frac{1}{200} \frac{1}{190} \frac{1}{180} \frac{1}{170} \frac{1}{160} \frac{1}{150} \frac{1}{140} \frac{1}{130} \frac{1}{120} \frac{1}{110} \frac{1}{100} \frac{1}{90} \frac{1}{80} \frac{1}{70} \frac{1}{60} \frac{1}{50} \frac{1}{40} \frac{1}{30} \frac{1}{20} \frac{1}{10} \frac{1}{100} \frac{1}{90} \frac{1}{80} \frac{1}{70} \frac{1}{60} \frac{1}{50} \frac{1}{100} \frac{1}{100}$ 













FIGURE S16: ¹³C NMR spectrum of compound **4**.



FIGURE S18: HSQC spectrum of compound 4.



FIGURE S19: HMBC spectrum of compound 4.



FIGURE S20: ¹H NMR spectrum of compound **5**.



FIGURE S22: DEPT-135 spectrum of compound 5.



FIGURE S23: COSY spectrum of compound 5.



FIGURE S24: HSQC spectrum of compound **5**.



FIGURE S25: HMBC spectrum of compound 5.



FIGURE S26: ¹H NMR spectrum of compound **6**.







FIGURE S29: COSY spectrum of compound 6.



FIGURE S30: HSQC spectrum of compound 6.



FIGURE S31: HMBC spectrum of compound 6.