Supporting information

Landscape genetics and species delimitation in the Andean Palm Rocket Frog (Aromobatidae, *Rheobates*).

Gabrielle Genty^{1*}, Carlos E. Guarnizo¹, Juan P. Ramírez¹², Lucas S. Barrientos¹³, Andrew J. Crawford¹

¹ Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia.

²Department of Biology, San Diego State University, San Diego, CA, 92182, USA.

³Universidad del Rosario, Departamento de Biología, Bogotá, 111221, Colombia.

The Supplementary Materials contain sample data, primers used for DNA sequence amplification, evolutionary genetic analyses performed, and substitution models selected for each gene. We provide figures for the maximum likelihood (ML) phylogenetic inference trees using RAxML applied to either the concatenated mitochondrial genes or nuclear genes only, and species tree analysis applied to all genes using StarBEAST2.

Supporting material includes Table S1, Table S2, and Table S3; Figure S1, Figure S2, Figure S3 and Figure S4, plus details of the species tree and BPP analyses.

Table S1 Species, field, and institutional numbers, locality, geographical coordinates, GenBank accession numbers for ingroups and outgroups samples, and the new data amplified for this study (represented by the GenBank accession numbers starting with 'MW' and in bold). Abbreviations for field series: AAV, Álvaro Andrés Velásquez; AJC, Andrew J. Crawford; CG, Carlos E. Guarnizo; LSB, Lucas Santiago Barrientos; MAR, Marco Antonio Rada. Acronyms for museums are: ANDES-A and ANDES-T, Amphibians Collection and Tissues Collection, Museo de Historia Natural C.J. Marinkelle, Universidad de los Andes, Bogotá, Colombia; MHUA, Museo de Herpetología de la Universidad de Antioquia, Colombia. Explanation of letter codes: eEC (eastern flank Eastern Cordillera), CC (Central Cordillera), wEC (western flank Eastern Cordillera).

Species	Locality (m a.s.l.)	Geographic region	Clade	Latitude	Longitude	Field number	Institutional number	COI	16S	РОМС	SF232	SF328	SF412
Rheobates palmatus	Santa María (870)	eEC	SM	4.848	-73.272	AJC 4235	ANDES-A 1486	KJ130 682	MW5 96297	KJ130 740	MW5 96289	MW5 96300	MW5 96247
	Santa María (870)	eEC	SM	4.848	-73.272	AJC 4239	ANDES-A 1487	KJ130 683	KJ130 718	KJ130 742	MW5 96271	MW5 96301	MW5 96250
	Santa María (870)	eEC	SM	4.858	-73.264	AJC 4232	ANDES-A 1485	-	MW5 96298	-	MW5 96272	MW5 96322	MW5 96248
	Santa María (870)	eEC	SM	4.858	-73.264	AJC 4233	-	MW5 96296	MW5 96299	MW59 6292	MW5 96290	MW5 96302	MW5 96249
Rheobates pseudopalmatus	Amalfi (1550)	CC	CC	6.800	-75.086	MHUA 4732	MHUA 4732	KJ130 692	KJ130 726	KJ130 746	MW5 96288	MW5 96303	MW5 96251
	San Rafael (1250)	CC	CC	6.390	-75.011	LSB 337	Voucher lost	KJ130 679	KJ130 715	KJ130 738	-	-	MW5 96252
	Maceo (575)	CC	CC	6.547	-74.644	MHUA 4348	MHUA 4348	KJ130 678	KJ130 713	KJ130 737	MW5 96276	MW5 96318	MW5 96253
	Anorí (1530)	CC	CC	6.978	-75.111	MHUA 5162	MHUA 5162	KJ130 694	KJ130 727	KJ130 747	MW5 96277	MW5 96319	MW5 96254
	Anorí (1530)	CC	CC	6.978	-75.111	MHUA 5357	MHUA 5357	KJ130 695	KJ130 728	MW59 6293	MW5 96287	MW5 96320	MW5 96255
Rheobates palmatus	San Vicente (300)	wEC	EC	7.079	-73.552	AJC 3526	ANDES-A 1481	KJ130 670	KJ130 706	KJ130 733	MW5 96278	MW5 96309	MW5 96258
	Virolín (1748)	wEC	EC	6.105	-73.199	CG 001	ANDES-T 2350	KJ130 681	KJ130 716	KJ130 739	MW5 96283	MW5 96317	MW5 96259
	Puente Nacional (1623)	wEC	EC	5.882	-73.678	AJC 3398	ANDES-A 1476	KJ130 665	KJ130 701	KJ130 729	MW5 96284	MW5 96314	MW5 96260
	Puente Nacional (1623)	wEC	EC	5.882	-73.678	AJC 3403	ANDES-A 1478	KJ130 690	KJ130 724	MW59 6294	MW5 96285	MW5 96315	MW5 96261
	Puente Nacional (1623)	wEC	EC	5.882	-73.678	AJC 3404	ANDES-A 1479	KJ130 676	KJ130 711	MW59 6295	MW5 96286	MW5 96316	MW5 96262
	Piedecuesta (940)	wEC	EN	6.783	-73.017	AAV153	ANDES-A 1472	KJ130 685	KJ130 720	KJ130 743	MW5 96279	MW5 96304	MW5 96263
	Piedecuesta (940)	wEC	EN	6.783	-73.017	AAV 154	ANDES-A 1473	KJ130 688	KJ130 722	KJ130 744	MW5 96281	MW5 96306	MW5 96265

	Piedecuesta (940)	wEC	EN	6.783	-73.017	AJC 3860	ANDES-A 1482	KJ130 666	KJ130 702	KJ130 730	-	MW5 96305	MW5 96266
	Suratá (1740)	wEC	EN	7.367	-72.983	CG 003	ANDES-T 2352	KJ130 675	KJ130 709	KJ130 735	MW5 96280	MW5 96307	MW5 96264
	Suratá (1740)	wEC	EN	7.367	-72.983	CG 004	ANDES-T 2353	KJ130 672	KJ130 708	-	MW5 96282	MW5 96308	MW5 96267
	San Francisco (1749)	wEC	ES	4.996	-74.270	AAV 167	AAV 167	KJ130 669	-	KJ130 732	-	MW5 96321	MW5 96270
	Icononzo (1285)	wEC	ES	4.185	-74.547	MAR217 5	MAR2175	-	KJ130 717	KJ130 741	MW5 96273	MW5 96310	MW5 96268
	Cáqueza (1515)	eEC	ES	4.414	-73.948	CG 007	ANDES-T 2354	KJ130 684	KJ130 719	KJ871 617	MW5 96274	MW5 96311	MW5 96256
	Cáqueza (1515)	eEC	ES	4.414	-73.948	CG 013	ANDES-T 2355	KJ130 677	KJ130 712	KJ130 736	MW5 96291	MW5 96312	MW5 96269
	Las Brisas (2000)	eEC	ES	4.437	-73.919	AJC 2106	ANDES-A 1474	KJ130 668	KJ130 704	KJ130 731	MW5 96275	MW5 96313	MW5 96257
Allobates aff. juanii	Sabanalarga (320)	-	Out group	4.773	-73.038	AJC 3383	ANDES-A 1073	KJ130 661	KJ130 697	KJ871 619	-	-	-
Allobates femoralis	El Once (90)	-	Out group	4.117	-69.950	AJC 3598	ANDES-A 1471	KJ130 660	KJ130 696	KJ871 618	-	-	-

Table S2 Conditions used for PCR amplification. For the mitochondrial and POMC markers, the same conditions used by Muñoz-Ortíz *et al.* (2015) were implemented here (Appendix S1; Table S2). To amplify the other three nuclear genes, we used an initial denaturing step of 2 min at 95 °C followed by 30 amplification cycles (30 s at 95 °C, 30 s at 51 °C, 60 s at 73 °C) and a final extension of 20 min at 72 °C. PCR products were cleaned with exonuclease I and SAP enzymes (Werle *et al.* 1994), and sequenced directly with Sanger technology.

Gene region	Primer	Primer sequence (5'-3')	Source
Mitochondrial		GGT CAA CAA ATC ATA	(Meyer &
<i>COI</i> (658 bp)	dgLCO-1490	AAG AYA TYG G	Paulay, 2005)
		TAA ACT TCA GGG TGA	
	dhHCO-2198	CCA AAR AAY CA	
		TYT CWA CWA AYC AYA	(Che et al.,
	Chmf4	AAG AYA TCG G	2012)
		ACY TCR GGR TGR CCR	
	Chmr4	AAR AAT CA	
Mitochondrial		CGC CTG TTT ATC AAA	(Kessing et al.,
16S (569 bp)	Sar-L	AAC AT	2004)
		CCG GTC TGA ACT CAG	
	Sbr-H	ATC ACG T	
Nuclear		GGR RTT YTT GAA WAG	(Vieites et al.,
<i>POMC</i> (472	POMC_DRV_R1	AGT CAT TAG WGG	2007)
bp)		ATA TGT CAT GAS CCA	
	POMC_DRV_F1	YTT YCG CTG GAA	
	SE333 E	AGT CAT AAT GGT GCC	(Tezuka et al.,
Nuclear SF232	51/2521	ACT AAA AG	2012)
(375 bp)	SE737 D	TGT GGT CCT TGT ATG	
	57252 K	GGT TG	
	SE338 E	CCC AAA AGA AGT TTT	(Tezuka et al.,
Nuclear SF328	5Г526 Г	GCT GA	2012)
(404 bp)	SE378 P	GCC TCA CAA ACA ACC	
	51 520 K	ACA GA	
	SE412 E	ACC ATC CTC ACT GTG	(Tezuka et al.,
Nuclear SF412	51 412 1	ACA CC	2012)
(352 bp)	SF412 R	TCT TTG GCA AAC TGG	
	51' 4 12 K	ACC TT	

Table S3 Best-fit partitioning scheme and models of nucleotide substitution for each of the partitions of the genes included in this study, as inferred by the corrected Akaike information criterion (AICc) implemented in PartitionFinder 2. The abbreviation 'pos.' refers to codon position.

Partition number	Partition	Best model
1	16S	$GTR + \Gamma$
2	COI pos. 3	$TRN + \Gamma$
3	COI pos. 1	TRNEF +Γ
4	COI pos. 2	$F81 + \Gamma$
5	POMC pos. 2	TRN + I
6	POMC pos. 3	SYM
7	POMC pos. 1	НКҮ
8	SF412 pos. 3	$HKY + \Gamma$
9	SF412 pos. 1, SF412 pos. 2	F81 + I
10	SF328	$K81 + I + \Gamma$
11	SF232 pos. 3	TVMEF + I
12	SF232 pos. 1	F81
13	SF232 pos. 2	F81 + I

Figure S1. ML concatenated tree inferred for the mitochondrial genes, 16S and COI, of the populations of *Rheobates* spp., as inferred using the software RAxML. The phylogenetic tree was constructed using the standard GTRGAMMA substitution model for each of the partitions recommended by PartitionFinder2. Tree searching involved 1000 replicate searches to find the optimal ML tree, followed by a bootstrap analysis using the autoMRE option, which automatically determines a sufficient number of bootstrap replicates. Numbers next to each node indicate bootstrap support values. The scale bar represents the inferred number of substitutions per site or branch length. Specimens are indicated by their field or museum voucher number, as summarized in supporting Table S1.

Figure S2. ML concatenated gene tree inferred for the four nuclear genomic markers, POMC, SF232, SF328, and SF412 from populations of *Rheobates* spp., as inferred using the software RAxML. The phylogenetic tree was constructed using the standard GTRGAMMA substitution model for each of the partitions recovered by PartitionFinder2. Tree searches involved 1000 replicate searches to find the optimal ML tree, followed by a bootstrap analysis using the autoMRE option, which automatically determines a sufficient number of bootstrap replicates. Numbers above each branch indicate bootstrap support values for the descending node. The scale bar represents the average number of substitutions per site or branch length. Specimens are indicated by their field or museum voucher number, as summarized in supporting Table S1.

Figure S3. StarBEAST2 multispecies coalescent tree of the five major clades of the frog genus *Rheobates* inferred in this study, as obtained from the sequences of two mitochondrial genes (16S and COI) and four nuclear genes (POMC, SF232, SF328, and SF412). See main text for details of the analysis. Numbers to the right of each node correspond to the Bayesian posterior probabilities of the subtended clade. The scale bar represents the average number of substitutions per site or branch length. Specimens are indicated by their field or museum voucher number, as summarized in supporting Table S1.

Figure S4. a. Relationship between geographic distance in kilometers (km) and mitochondrial DNA distance (concatenated COI and 16S genes). **b.** Relationship between environmental distance based on WorldClim layers and mitochondrial distances (COI+16S).

Species tree inference

We estimated the posterior distribution of trees, including dates and rates, by assuming a birth-death model tree prior (a diversification model that considers both speciation and extinction; Gernhard, 2018) and a random local clock model of evolution (Drummond & Suchard, 2010). Our prior distribution on the substitution rate of the mitochondrial genes assumed a lognormal distribution with a mean of 0.0155 substitutions per lineage per million years (Gehara, Summers & Brown, 2013) with upper and lower bounds of the central 95% prior density of 0.0131 and 0.0182, respectively. We set StarBEAST2 to estimate the substitution rate of each nuclear gene under a 1/X distribution with an offset of 0.

Species delimitation analysis (BPP)

To test for the species delimitation we used Bayesian Phylogenetics and Phylogeography (BPP) version 3.2 (Yang, 2015). We assumed three contrasting sets of prior distributions on demographic parameters representing three types of histories: small population size with shallow divergence among species $\theta \sim \Gamma(2, 2000)$, $\tau 0 \sim \Gamma(2, 2000)$; large population size with deep divergence $\theta \sim \Gamma(1, 10)$, $\tau 0 \sim \Gamma(1, 10)$; and large population size with shallow divergences $\theta \sim \Gamma(1, 10)$, $\tau 0 \sim \Gamma(2, 2000)$, where θ is the population mutation rate (proportional to population size), τ is the population divergence time, and Γ indicates a gamma distribution with (shape, scale) parameters (Flouri, Jiao, Rannala & Yang, 2018; Yang, 2015). For other divergence time parameters, we assigned a Dirichlet prior (Yang & Rannala, 2010: equation 2). We used the 'A10' analysis (species delimitation = 1, species tree = 0) which uses the reversible-jump MCMC algorithm and used the uniform rooted tree (species model prior = 1), and left the automatic fine-tuning of the MCMC. Considering that estimating different mutation rates would

not affect the Bayesian comparison and would instead be more of a computational burden, we decided to assume the same mutation rate for all loci (locus rate = 0). Given that the reversible jump MCMC algorithm can exhibit mixing problems in some datasets (Yang, 2015; Rannala & Yang, 2013; Yang & Rannala, 2010), we repeated the analysis under each scenario three times, with different starting seeds, to confirm consistency among runs.

References

- Drummond, A. J., & Suchard, M. A. (2010). Bayesian random local clocks, or one rate to rule them all. *BMC Biology*, 8(1), 1-12. DOI: 10.1186/1741-7007-8-114
- Flouri, T., Jiao, X., Rannala, B., & Yang, Z. (2018). Species tree Inference with BPP using genomic sequences and the multispecies coalescent. *Molecular Biology and Evolution*, 35(10), 2585–2593. DOI: 10.1093/molbev/msy147
- Gehara, M., Summers, K., & Brown, J. L. (2013). Population expansion, isolation and selection: novel insights on the evolution of color diversity in the strawberry poison frog. *Evolutionary Ecology*, 27(4), 797-824. DOI: 10.1007/s10682-013-9652-0
- Gernhard, T. (2008). The conditioned reconstructed process. *Journal of Theoretical Biology*, 253(4), 769–778. DOI: 10.1016/j.jtbi.2008.04.005
- Rannala, B., & Yang, Z. (2013). Improved reversible jump algorithms for Bayesian species delimitation. *Genetics*, 194(1), 245–253. DOI: 10.1534/genetics.112.149039
- Yang, Z. (2015). The BPP program for species tree estimation and species delimitation. *Current Zoology*, 61(5), 854–865. DOI: 10.1093/czoolo/61.5.854
- Yang, Z., & Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data.
 Proceedings of the National Academy of Sciences, 107(20), 9264–9269. DOI: 10.1073/pnas.0913022107