Research Article

Stimulated Raman Scattering of X-Mode Laser in a Plasma Channel

Sanjay Babu, Asheel Kumar, Ram Jeet, Arvind Kumar, and Ashish Varma

Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India

Correspondence should be addressed to Asheel Kumar; asheel2002@yahoo.co.in

Received 9 August 2020; Accepted 13 October 2020; Published 5 May 2021

Copyright © 2021 Sanjay Babu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Stimulated Raman forward scattering (SRFS) of an intense X-mode laser pump in a preformed parabolic plasma density profile is investigated. The laser pump excites a plasma wave and one/two electromagnetic sideband waves. In Raman forward scattering, the growth rate of the parametric instability scales as two-third powers of the pump amplitude and increases linearly with cyclotron frequency.

1. Introduction

The propagation of intense laser pulses in plasma [1, 2] is relevant to various applications including laser-driven acceleration [3–5], optical harmonic generation [6, 7], X-ray laser [8], laser fusion [9, 10], and magnetic field generation [11]. The laser-plasma interaction leads to a number of relativistic and nonlinear effects such as self-focusing [12–14], parametric Raman and Brillouin instabilities [15], filamentation and modulational instabilities [16–24], and soliton formation.

Stimulated Raman scattering (SRS) is an important parametric instability in plasmas. In stimulated Raman forward scattering (SRFS), a high phase velocity Langmuir wave is produced that can accelerate electrons to high energy [25–35]. In stimulated Raman backward scattering (SRBS), electron plasma wave (EPW) has smaller phase velocity and can cause bulk heating of electrons. The high-amplitude laser wave enables the development of this instability in plasmas with a density significantly higher than the quarter critical density \(n_c/4 \), which is usually considered as the SRS density limit for lower laser intensities. Shivets et al. [36] have demonstrated that SRS is strongly modified in a plasma channel, where the plasma frequency varies radially through the radial dependence of the plasma density \(n_0(r) \).

Liu et al. [37] have studied forward and backward Raman instabilities of a strong but nonrelativistic laser pump in a preformed plasma channel in the limit when plasma thermal effects may be neglected. Mori et al. [38] have developed an elegant formalism of SRFS in one dimension (1D). Panwar et al. [39] have studied SRFS of an intense pulse in a preformed plasma channel with a sequence of two pulses. They have studied the guiding of the main laser pulse through the plasma channel created by two lasers. Sajal et al. [40] have studied SRFS of a relativistic laser pump in a self-created plasma channel. Hassoon et al. [41] have studied the effect of a transverse static magnetic field on SRFS of a laser in a plasma. The X-mode excites an upper hybrid wave and two sidebands. They found that the growth rate of SRFS increases with the magnetic field. Gupta et al. [42] have investigated SRS of laser in a plasma with energetic drifting electrons generated during laser-plasma interaction. They showed numerically that the relativistic effects increase the growth rate of the Raman instability and enhance the amplitude of the decay waves significantly.

Liu et al. [43] developed 1D Vlasov–Maxwell numerical simulation to examine RBS instability in unmagnetized collisional plasma. Their results showed that RBS is enhanced by electron-ion collisions. Kalmykov et al. [44] have studied RBS in a plasma channel with a radial variation of...
plasma frequency. Paknezhad et al. [45] have investigated RBS of ultrashort laser pulse in a homogeneous cold underdense magnetized plasma by taking into account the relativistic effect of nonlinearity up to third order. The plasma is embedded in a uniform magnetic field. Kaur and Sharma [46] developed nonlocal theory of the SRBS in the propagation of a circularly polarized laser pulse through a hot plasma channel in the presence of a strong axial magnetic field. They established that the growth rate of SRBS of a finite spot size significantly decreases by increasing the magnetic field. Paknezhad et al. [47] have studied the Raman shifted third harmonic backscattering of an intense extraordinary laser wave through a homogeneous transversely magnetized cold plasma. Due to relativistic nonlinearity, the plasma dynamics is modified in the presence of transverse magnetic field, and this can generate the third harmonic scattered wave and electrostatic upper hybrid wave via the Raman scattering process.

In this paper, we examine the SRFS of an X-mode laser pump in a magnetized plasma channel including nonlocal effects. In many experiments in high-power laser-plasma interaction, transverse magnetic fields are self-generated [11]. Laser launched from outside travels in X-mode in such magnetic fields and often creates parabolic density profiles. Thus, the current problem is relevant to experimental situations.

The ponderomotive force due to the front of laser pulse pushes the electrons radially outward on the time scale of a plasma period ω_p^{-1}, creating a radial space charge field, and modifies the electron density, where ω_p is the electron plasma frequency. Laser and the sidebands exert a ponderomotive force on electrons driving the plasma wave. The density perturbation due to plasma wave beats with the oscillatory velocity due to laser pump to produce nonlinear currents, driving the sidebands.

In Section 2, we analyse the SRFS of a laser pump in a preformed channel with nonlocal effects. In Section 3, we discuss our results.

2. Raman Forward Scattering

Consider a two-dimensional plasma channel with a parabolic density profile immersed in a static magnetic field $B_y\hat{z}$. The electron plasma frequency in the channel varies as

$$\omega_p^2 = \omega_{po}^2 \left(1 + \frac{y^2}{L_n^2} \right).$$

where ω_{po} is the plasma frequency at $y=0$ and L_n is the density scale length. An X-mode laser propagates through the channel (cf. Figure 1),

$$E_0 = A_0(y) \left(\frac{\gamma - \epsilon_{0xx}}{\epsilon_{0xx}} \right) e^{-i(\omega_0 t - k_{0x}x)}.$$ \hspace{1cm} (2)

The plasma permittivity at ω_0 is a tensor. Its components are

$$\epsilon_{0xx} = \epsilon_{0yy} = 1 - \frac{\omega_p^2}{(\omega_0^2 - \omega_c^2)}$$

$$\epsilon_{0xy} = -\epsilon_{0yx} = i \frac{\omega_p^2}{\omega_0} \frac{\omega_c^2}{(\omega_0^2 - \omega_c^2)}$$ \hspace{1cm} (3)

$$\epsilon_{0zz} = 1 - \frac{\omega_p^2}{\omega_0}$$

$$\epsilon_{0xz} = \epsilon_{0zx} = \epsilon_{0yz} = \epsilon_{0zy} = 0,$$

where $\omega_c = (eB_y/m)$ is electron cyclotron frequency and e and m are the electronic charge and mass, respectively.

Maxwell’s equations $\nabla \times E_0 = i \omega_0 \epsilon_0 H_0$ and $\nabla \times H_0 = -i \omega_0 \epsilon \epsilon_0 E_0$ combine to give the wave equation

$$\nabla^2 E_0 - \nabla (\nabla \cdot E_0) + \frac{\omega_0^2}{c^2} \epsilon_0 E_0 = 0,$$ \hspace{1cm} (4)

where ϵ_0 is the free space permittivity. Here, we chosen the plasma to be uniform and expressed the spatial-temporal variation of E_0 as $e^{-i(\omega_0 t - k_{0x}x - k_{0y}y)}$ we would obtain from equation (4), on replacing ∇ by $(ik_{0y} \hat{y} + ik_{0x} \hat{x})$,

$$D_0 = \epsilon_0 E_0 = 0,$$ \hspace{1cm} (5)

where $D_0 = (\omega_0^2/c^2) \epsilon_0 - k_{0x}^2 I + k_{0y} k_{0y}$. Its matrix form is expressed as follows:

$$D = \begin{bmatrix}
 \frac{\omega_0^2}{c^2} \epsilon_0xx - k_{0y}^2 & \frac{\omega_0^2}{c^2} \epsilon_0xy + k_{0x} k_{0y} & 0 \\
 \frac{\omega_0^2}{c^2} \epsilon_0xy + k_{0x} k_{0y} & \frac{\omega_0^2}{c^2} \epsilon_0yy - k_{0y}^2 & 0 \\
 0 & 0 & \frac{\omega_0^2}{c^2} \epsilon_0zz - k_{0z}^2
\end{bmatrix}.$$ \hspace{1cm} (6)

The local dispersion relation of the mode is given by $|D_0| = 0$, which can be written as

$$k_{0y}^2 = \frac{\omega_0^2 \epsilon_0xx + \epsilon_0xy}{\epsilon_0xx} - k_{0x}^2 = \frac{\omega_0^2}{c^2} \left[1 - \frac{\omega_p^2}{\omega_0} \frac{\omega_0^2 - \omega_p^2}{\omega_0^2 - \omega_c^2} \right] - k_{0x}^2.$$ \hspace{1cm} (7)

Equation (2) gives $E_{0x} = -(\epsilon_{0xx}/\epsilon_{0xx}) E_{0y}$. To incorporate nonlocal effects, one may deduce the mode structure equation from the above equation by replacing k_{0y} by $(-i \partial/\partial y)$ and operating over E_{0y},

$$\frac{\partial^2 E_{0y}}{\partial y^2} + \left[\frac{\omega_0^2}{c^2} \left(1 - \frac{\omega_p^2}{\omega_0} \frac{\omega_0^2 - \omega_p^2}{\omega_0^2 - \omega_c^2} \right) - k_{0x}^2 \right] E_{0y} = 0.$$ \hspace{1cm} (8)

Define
the eigenfunction is given by
Equation (8) can be written as
Equation (8) can be written as
\[\frac{\partial^2 E_{0y}}{\partial k_0^2} + (\lambda_0 - \xi_0^2) E_{0y} = 0. \] (10)
\[k_{0x}^2 = \frac{\omega_0^2}{c^2} \left[1 - \frac{\omega_0^2}{\omega_0^2 - \omega_p^2 - \omega_e^2} \right] - \rho_0^{(1/2)}. \] (11)
\[\begin{align*}
\phi &= \phi(y) e^{-i(\omega t - kx)}, \\
\text{and two electromagnetic sidebands with electric fields,} \\
E_j &= A_j \left(\frac{\xi_j}{\xi_{1x}} - \frac{\xi_j}{\xi_{1y}} \right) e^{-i(\omega_j t - k_0 y)}, \quad j = 1, 2 \quad \text{and} \quad \omega_{1,2} = \omega \mp \omega_0, \quad k_{1,2} = k \mp k_0. \\
\end{align*} \] (14)
\[\begin{align*}
\nu_{jx} &= -\frac{e}{m} \frac{\omega_j E_{0y}}{(\omega_j^2 - \omega_e^2 - \omega_p^2)}, \\
\nu_{jy} &= -i \frac{e}{m} \frac{(\omega_j^2 - \omega_e^2) E_{0y}}{\omega_j^2 - \omega_e^2 - \omega_p^2}, \\
\nu_{jz} &= 0,
\end{align*} \] (15)
where \(j = 1, 2 \).

The sideband waves couple with the pump to exert a ponderomotive force on electrons at \(\omega, k \),
\[F_{pwx} = -\frac{(m/2)}{V_0 \cdot V_1 + V_1 \cdot V_0 + V_2 \cdot \nabla V_0} - \frac{(e/2)}{V_0 \times B_1 + V_1 \times B_0 + V_2 \times B_3}. \]
In the limit, \(k_x \gg k, k_1 \) and \(k_x \) are largely along \(x \), and the \(x \) and \(y \) components of the ponderomotive force turn out to be
\[\begin{align*}
F_{pwx} &= \frac{\epsilon_0^2 (PE_{0y} E_{1y} + QE_{0y} E_{2y})}{2m \omega_0 \omega_1 \omega_2 \omega_3 \omega_4 \omega_5 \omega_6 \omega_7 \omega_8} \\
F_{pwy} &= \frac{\epsilon_0^2 (RE_{0y} E_{1y} + SE_{0y} E_{2y})}{2m \omega_0 \omega_1 \omega_2 \omega_3 \omega_4 \omega_5 \omega_6 \omega_7 \omega_8},
\end{align*} \] (16)
where
\[\begin{align*}
P &= \omega_2 \left(k_1 - k_0 \right) \omega_1 \omega_2 \omega_3^2 + k_1 \left(\omega_0^2 - \omega_e^2 \right) \left(\omega_1^2 - \omega_e^2 - \omega_p^2 \right) - k_0 \left(\omega_1^2 - \omega_e^2 \right) \left(\omega_0^2 - \omega_e^2 - \omega_p^2 \right), \\
Q &= \omega_1 \left(k_0 - k_1 \right) \omega_1 \omega_2 \omega_3^2 - k_2 \left(\omega_0^2 - \omega_e^2 \right) \left(\omega_2^2 - \omega_e^2 - \omega_p^2 \right) + k_0 \left(\omega_2^2 - \omega_e^2 \right) \left(\omega_0^2 - \omega_e^2 - \omega_p^2 \right), \\
R &= \omega_2 \left(k_0 \omega_1 + k_1 \omega_0 \right) \omega_3^2, \\
S &= \omega_1 \left(k_0 \omega_2 + k_2 \omega_0 \right) \omega_3^2,
\end{align*} \] (17)
For $\omega \ll \omega_0$, $F_{pu} = e\nabla\Phi_p$, one may write

$$\Phi_p = V_0 \left[E_{1y} - \frac{\eta_1 E_{2y}}{\eta_2} \right],$$

where

$$V_0 = \frac{eE_{0y}}{2m\omega_0^2 \left(\omega_0^2 - \omega_c^2 - \omega_p^2 \right) \left(\omega_1^2 - \omega_c^2 - \omega_p^2 \right) \omega_0},$$

(18)

$$\eta_1 = \omega_1^2 \left(\omega_1^2 - \omega_c^2 - \omega_p^2 \right) \left\{ \omega_2 \left(\omega_0^2 - \omega_c^2 \right) \left(\omega_2^2 - \omega_c^2 - \omega_p^2 \right) + \omega_0 \omega_c \omega_p \right\},$$

(19)

$$\eta_2 = \omega_2^2 \left(\omega_2^2 - \omega_c^2 - \omega_p^2 \right) \left\{ \omega_1 \left(\omega_0^2 - \omega_c^2 \right) \left(\omega_1^2 - \omega_c^2 - \omega_p^2 \right) - \omega_0 \omega_c \omega_p \right\}.$$
\[
\begin{align*}
\frac{d^2 E_{1y}}{d \xi_1^2} + (\lambda_1 - \xi_1^2) E_{1y} &= \frac{W_0^2 \omega_0 e^{-\xi_1^2}}{\xi_{10} - \xi_1^2} \left(E_{1y} - \frac{\eta_1}{\eta_2} E_{2y} \right), \\
\frac{d^2 E_{2y}}{d \xi_2^2} + (\lambda_2 - \xi_2^2) E_{2y} &= \frac{W_0^2 \omega_0 e^{-\xi_2^2}}{\xi_{20} - \xi_2^2} \left(E_{2y} - \frac{\eta_2}{\eta_1} E_{1y} \right),
\end{align*}
\]

(26) \hspace{1cm} (27)

\[
\xi_1^2 = \beta_1^{(1/2)} y^2, \\
\xi_2^2 = \beta_2^{(1/2)} y^2,
\]

\[
\xi^2 = \beta_1^{(1/2)} y^2 = \frac{\beta_1^{(1/2)}}{\beta_0^{(1/2)}} \xi_0^2 \\
\xi_1^2 = \frac{\omega_0^2 (\omega_0^2 - \omega_p^2) e_{12}^2 \beta_1^{(1/2)}}{\omega_p^2},
\]

\[
\xi_2^2 = \frac{(\omega_0^2 - \omega_p^2 - \omega_{p0}^2) e_{12}^2 \beta_2^{(1/2)}}{\omega_p^2},
\]

\[
\alpha_1 = \omega_0^2 \left(\omega_1^2 - \omega_0^2 - \omega_{p0}^2 \right)^2 - k_{1x}^2 c^2 \left(\omega_1^2 - \omega_c^2 \right) \left(\omega_1^2 - \omega_0^2 - \omega_{p0}^2 \right) - \omega_c^2 \omega_{p0}^2 c^2 \left(\omega_1^2 - \omega_0^2 - \omega_{p0}^2 \right)
\]

\[
\alpha_2 = \omega_0^2 \left(\omega_2^2 - \omega_0^2 - \omega_{p0}^2 \right)^2 - k_{2x}^2 c^2 \left(\omega_2^2 - \omega_c^2 \right) \left(\omega_2^2 - \omega_0^2 - \omega_{p0}^2 \right) - \omega_c^2 \omega_{p0}^2 c^2 \left(\omega_2^2 - \omega_0^2 - \omega_{p0}^2 \right)
\]

\[
\beta_1 = \omega_0^2 \omega_{p0}^2 \left(2 \omega_1^2 - 2 \omega_0^2 - \omega_{p0}^2 \right) + \omega_0^2 \omega_{p0}^2 \left(\omega_1^2 - \omega_0^2 - \omega_{p0}^2 \right)^2 \frac{c^2 \left(\omega_1^2 - \omega_c^2 \right) \left(\omega_1^2 - \omega_0^2 - \omega_{p0}^2 \right)^2}{12n^2}
\]

\[
\beta_2 = \omega_0^2 \omega_{p0}^2 \left(2 \omega_2^2 - 2 \omega_0^2 - \omega_{p0}^2 \right) + \omega_0^2 \omega_{p0}^2 \left(\omega_2^2 - \omega_0^2 - \omega_{p0}^2 \right)^2 \frac{c^2 \left(\omega_2^2 - \omega_c^2 \right) \left(\omega_2^2 - \omega_0^2 - \omega_{p0}^2 \right)^2}{12n^2}
\]

(28)

\[
\lambda_1 = \frac{\alpha_1}{\beta_1^{(1/2)}} = \frac{\omega_0^2 \left(\omega_1^2 - \omega_0^2 - \omega_{p0}^2 \right)}{c^2 \left(\omega_1^2 - \omega_0^2 - \omega_{p0}^2 \right)^2} - k_{1x}^2 \frac{1}{\beta_1^{(1/2)}},
\]

\[
\lambda_2 = \frac{\alpha_2}{\beta_2^{(1/2)}} = \frac{\omega_0^2 \left(\omega_2^2 - \omega_0^2 - \omega_{p0}^2 \right)}{c^2 \left(\omega_2^2 - \omega_0^2 - \omega_{p0}^2 \right)^2} - k_{2x}^2 \frac{1}{\beta_2^{(1/2)}},
\]

\[
\begin{align*}
V_{01} &= c E_{0y} \left\{ \omega_1 \left(\omega_0^2 - \omega_p^2 \right) \left(\omega_1^2 - \omega_0^2 - \omega_p^2 \right) - \omega_c^2 \omega_{p0}^2 \right\} \\
V_{02} &= -c E_{0y} \left\{ \omega_1 \left(\omega_0^2 - \omega_p^2 \right) \left(\omega_1^2 - \omega_0^2 - \omega_p^2 \right) - \omega_c^2 \omega_{p0}^2 \right\} \eta_1, \\
W_{01} &= \frac{c k^2 E_{0y} L_0^2 \alpha_1}{2 m c^2 \omega_0 \omega_{p0}^2} \left\{ \omega_0^2 \omega_{p0} \omega_{p0}^2 \left(\omega_0^2 - \omega_p^2 \right) \left(\omega_1^2 - \omega_0^2 - \omega_p^2 \right) \left(\omega_0^2 - \omega_p^2 \right) \right\} \\
W_{02} &= \frac{c k^2 E_{0y} L_0^2 \alpha_2}{2 m c^2 \omega_0 \omega_{p0}^2} \left\{ \omega_0^2 \omega_{p0} \omega_{p0}^2 + \omega_2^2 \left(\omega_0^2 - \omega_p^2 \right) \left(\omega_0^2 - \omega_p^2 \right) \right\}.
\end{align*}
\]
We solve equations (26) and (27) by the first-order perturbation theory. In the absence of nonlinear terms, the eigenfunctions for the fundamental mode satisfying equations (26) and (27) are

$$E_{1,2} = A_{1,2} e^{-\xi/2}. \tag{29}$$

Corresponding eigenvalues are $\lambda_{1,2} = 1$. When the RHS of equations (26) and (27) are finite, we assume the eigenfunctions to remain unmodified; only the eigenvalues are changed a little. We substitute for $E_{1,2}$ from equation (29) in equations (26) and (27), multiply the resulting equations by $e^{-\xi/2}$, and integrate over ξ from $-\infty$ to ∞. Then, we obtain

$$\begin{align*}
(\lambda_1 - 1)A_1 &= -W_{01}^2 \frac{Z(\xi_{10} \sqrt{2})}{\xi_{10}} \left(A_1 - \frac{\eta_1}{\eta_2} A_2 \right), \tag{30} \\
(\lambda_2 - 1)A_2 &= -W_{02}^2 \frac{Z(\xi_{10} \sqrt{2})}{\xi_{10}} \left(A_2 - \frac{\eta_2}{\eta_1} A_1 \right). \tag{31}
\end{align*}$$

where $Z(\xi_{10} \sqrt{2})$ is the plasma dispersion function. Equations (30) and (31) give the nonlinear dispersion relation

$$1 = -\frac{Z(\xi_{10} \sqrt{2})}{\xi_{10}} \left(\frac{W_{01}^2}{\lambda_1 - 1} + \frac{W_{02}^2}{\lambda_2 - 1} \right). \tag{32}$$

This nonlinear dispersion relation is a function of the DC magnetic field. The dispersion relation is modified if one changes the value of the DC magnetic field. In the absence of the DC magnetic field,

$$1 = -\frac{Z(\xi_{10} \omega_c = 0 \sqrt{2})}{\xi_{10} (\omega_c = 0)} \left(\frac{W_{01}^2 (\omega_c = 0)}{\lambda_1 (\omega_c = 0) - 1} + \frac{W_{02}^2 (\omega_c = 0)}{\lambda_2 (\omega_c = 0) - 1} \right), \tag{33}$$

where $\beta_{1/4}^0 (\omega_c = 0) = \xi_1 (\omega_c = 0)$, $\beta_{1/4}^2 (\omega_c = 0) = \xi_2 (\omega_c = 0)$, $\beta_{1/4}^0 (\omega_c = 0) = \xi_0 (\omega_c = 0)$.

\[
\xi_{10} (\omega_c = 0) = \frac{\omega^2 - \omega_p^2}{\omega_p^2 - \omega_0^2} L_n^2 \beta_{1/4}^1 (\omega_c = 0),
\]

\[
\lambda_1 (\omega_c = 0) = \frac{\omega_p^2}{\omega_p^2 - \omega_0^2} \left(\frac{\omega_p^2 - \omega_0^2}{\omega_p^2 - \omega_0^2} \right) - k_{2x}^2 \left[\frac{1}{\beta_{1/4}^1 (\omega_c = 0)} \right],
\]

\[
\lambda_2 (\omega_c = 0) = \frac{\omega_p^2}{\omega_p^2 - \omega_0^2} \left(\frac{\omega_p^2 - \omega_0^2}{\omega_p^2 - \omega_0^2} \right) - k_{2x}^2 \left[\frac{1}{\beta_{1/4}^2 (\omega_c = 0)} \right],
\]

\[
\beta_1 (\omega_c = 0) = \frac{\omega_p^2}{\omega_p^2 - \omega_0^2} = \beta_2 (\omega_c = 0) = \beta_0 (\omega_c = 0),
\]

\[
V_{01} (\omega_c = 0) = \frac{c E_0 \{ \omega_1 (\omega_0^2 - \omega_p^2) \} (\omega_1^2 - \omega_p^2)\} {2 m \omega_0^2 \omega_1^2 (\omega_0^2 - \omega_p^2) (\omega_1^2 - \omega_p^2)},
\]

\[
V_{02} (\omega_c = 0) = \frac{c E_0 \{ \omega_1 (\omega_0^2 - \omega_p^2) \} (\omega_1^2 - \omega_p^2)\} \eta_1 (\omega_c = 0),
\]

\[
\eta_1 (\omega_c = 0) = \omega_1^2 (\omega_1^2 - \omega_p^2) \omega_2 (\omega_0^2 - \omega_p^2) (\omega_1^2 - \omega_p^2),
\]

\[
\eta_2 (\omega_c = 0) = \omega_2^2 (\omega_2^2 - \omega_p^2) \omega_1 (\omega_0^2 - \omega_p^2) (\omega_2^2 - \omega_p^2),
\]

\[
W_{01}^2 (\omega_c = 0) = \frac{c \omega_0^2 \omega_1^4 e \omega_p}{2 m \omega_0^2 \omega_p^2 \omega_1^2 (\omega_1^2 - \omega_p^2) (\omega_0^2 - \omega_p^2)},
\]

\[
W_{02}^2 (\omega_c = 0) = \frac{c \omega_0^2 \omega_1^4 e \omega_p}{2 m \omega_0^2 \omega_p^2 \omega_1^2 (\omega_2^2 - \omega_p^2) (\omega_0^2 - \omega_p^2)}.\]
Taylor expanding $\lambda_1 - 1$ with respect to variables ω_1, k_1 and $\lambda_2 - 1$ with respect to variables ω_2, k_2 and substituting in equation (32), one obtains

$$1 = \frac{Z(x_{10} \sqrt{2})}{\xi_{10}} \left(\frac{W_{01}^2}{(\partial \lambda_0/\partial \omega_0)} \right) \left[\frac{1}{(\omega - k_0 \omega_0 + \Delta)} - \frac{1}{(\omega - k_0 \omega_0 - \Delta)} \right],$$

(35)

$$\frac{\partial \omega_0}{\partial k_0} = \frac{\partial \lambda_0}{\partial k_0} = \nu_0,$$

$$\Delta = \frac{\Delta'}{2(\partial \lambda_0/\partial \omega_0)},$$

$$\Delta' = \frac{\partial^2 \lambda_0}{\partial k_0^2} + \frac{\partial^2 \lambda_0}{\partial \omega_0^2},$$

$$\frac{\partial \lambda_0}{\partial \omega_0} = \frac{1}{\sqrt{\beta_0}} \left[\frac{2 \omega_0^2 + 2 \omega_0^2 \Delta_2}{c^2} \Delta_2 - \frac{\omega_0^2 \Delta_4}{L_0 c \Delta_4} \right],$$

$$\frac{\partial^2 \lambda_0}{\partial \omega_0^2} = \frac{1}{\sqrt{\beta_0}} \left[\frac{2 \omega_0^2 \Delta_2}{c^2} - \frac{\omega_0^2 \Delta_4}{L_0 c \Delta_4} \right],$$

$$\frac{\partial \lambda_0}{\partial k_0} = \frac{2k_0}{\sqrt{\beta_0}},$$

$$\frac{\partial^2 \lambda_0}{\partial k_0^2} = -\frac{2}{\sqrt{\beta_0}},$$

$$\Delta_1 = \omega_0 \left\{ w_0^2 - \omega_0^2 - w_0^2 \right\} \left(\omega_0^2 + \omega_0^2 \right) \left(\omega_0^2 - \omega_0^2 \right) \left(\omega_0^2 - \omega_0^2 \right),$$

(36)

$$\Delta_2 = \omega_0 \left(w_0^2 - \omega_0^2 + w_0^2 \right)^2,$$

$$\Delta_3 = -\omega_0 \omega_0^2 \left(w_0^2 - \omega_0^2 - w_0^2 \right),$$

$$\Delta_4 = \left\{ \left(w_0^2 - \omega_0^2 - w_0^2 \right)^2 + \omega_0^2 \left(w_0^2 - w_0^2 \right)^2 \right\}^{1/2} \left(w_0^2 - \omega_0^2 - w_0^2 \right)^2,$$

$$\frac{\partial \Delta_1}{\partial \omega_0} = \Delta_1 = \left(w_0^2 - \omega_0^2 - w_0^2 \right) \left(\omega_0^2 - 6 \omega_0^2 \right) - 2 \omega_0^2 \omega_0^2 \left(\omega_0^2 - \omega_0^2 - w_0^2 \right) \left(\omega_0^2 - \omega_0^2 - w_0^2 \right),$$

$$\frac{\partial \Delta_2}{\partial \omega_0} = \Delta_2 = 2 \omega_0 \left(w_0^2 - \omega_0^2 - w_0^2 \right)^2,$$

$$\frac{\partial \Delta_3}{\partial \omega_0} = \Delta_3 = -\omega_0 \omega_0^2 \left(3 \omega_0^2 + \omega_0^2 - w_0^2 \right),$$

$$\frac{\partial \Delta_4}{\partial \omega_0} = \Delta_4 = 4 \omega_0 \left(w_0^2 - \omega_0^2 - w_0^2 \right) \left\{ \left(w_0^2 - \omega_0^2 - w_0^2 \right)^2 + \omega_0^2 \left(w_0^2 - w_0^2 \right)^2 \right\}^{1/2} \left(w_0^2 - \omega_0^2 - w_0^2 \right) \left(w_0^2 - \omega_0^2 - w_0^2 \right)^2 + \omega_0^2 \omega_0^2 \left(w_0^2 - w_0^2 \right)^2 + \omega_0^2 \omega_0^2 \left(w_0^2 - w_0^2 \right)^2 \right\}^{1/2}.$$
Equation (35) gives
\((\omega - kv_{g0})^2 - \Delta^2 = \frac{2\Delta W_{01}^2 Z(\xi_{10} \sqrt{2})}{(\partial \lambda_c / \partial \omega_0) \xi_{10}} \).
(37)

We substitute the value of \(\xi_{10} \) and \(Z(\xi_{10} \sqrt{2}) \approx -\sqrt{2} \), also write \(\omega = \omega_r + i\gamma \), where \(\omega_r = kv_{g0} = \sqrt{(\omega_c^2 + \omega_p^2)} \), and obtain
\[(-1)^{1/2} \gamma^3 = \frac{2\sqrt{2} W_{01}^2 \omega_p \Delta}{(\partial \lambda_c / \partial \omega_0) L_n \beta_1^2} e^{2i\pi}. \]
(38)

Equation (38) gives the growth rate
\[\gamma = \left[\frac{2\sqrt{2} W_{01}^2 \omega_p \Delta}{(\partial \lambda_c / \partial \omega_0) L_n \beta_1^2} \right]^{1/3} \sin \frac{2\pi}{3}. \]
(39)

For \(l = 1 \), the growth rate turns out to be
\[\gamma = \frac{\sqrt{3}}{2} \left[\frac{2\sqrt{2} W_{01}^2 \omega_p \Delta}{(\partial \lambda_c / \partial \omega_0) L_n \beta_1^2} \right]^{1/3}. \]
(40)

In Figure 2, we have displayed the normalized growth rate \(\gamma/\omega_p \) of the Raman forward scattering instability as a function of normalized pump wave amplitude \(|eE_0/m\omega_c| \) for parameters: \((\omega_p/\omega_0) = 0.2, (L_n\omega_p/c) = 8 \), and \((\omega_c/\omega_p) = 1 \).

Figure 2: Normalized growth rate as a function of normalized amplitude of the pump wave in Raman forward scattering for \((\omega_p/\omega_0) = 0.2, (L_n\omega_p/c) = 8 \), and \((\omega_c/\omega_p) = 1 \).

Figure 3: Normalized growth rate as a function of normalized cyclotron frequency for \((\omega_p/\omega_0) = 0.2, (L_n\omega_p/c) = 8, \) and \(|eE_0/m\omega_c| = 0.1 \).
and $\left(\omega_p/\omega_{p0}\right) = 1$. The growth rate increases with the amplitude of the laser pump. It does not go linearly but nearly as two-third powers of normalized laser amplitude. This is due to the fact that the width of the driven Langmuir mode is dependent on ponderomotive potential hence on pump amplitude. In Figure 3, we have displayed the normalized growth rate $\left(\gamma/\omega_{p0}\right)$ of the Raman forward scattering as a function of normalized static magnetic field ω_p/ω_{p0} for $\left(\omega_{p0}/\omega_0\right) = 0.2$. \cite{37} For typical parameters, $\left(\omega_{p0}/\omega_0\right) = 0.2$, $\left(L_p\omega_{p0}/c\right) = 8$, $\left(\omega_p/\omega_{p0}\right) = 0.5$, and $\left|\varepsilon_{E_0}/\omega_{p0}\right| = 0.1$. The normalized growth rate is 0.026 whereas for $\left(\omega_{p0}/\omega_0\right) = 0.2$, $\left(L_p\omega_{p0}/c\right) = 8$, $\left(\omega_p/\omega_{p0}\right) = 1$, and $\left|\varepsilon_{E_0}/\omega_{p0}\right| = 0.8$, the normalized growth rate is 0.028.

In the earlier work by Liu et al. \cite{37} for the parameters $\left(\omega_{p0}/\omega_0\right) = 0.2$ and $\left(L_p\omega_{p0}/c\right) = 8$, the normalized growth rate is 0.06 whereas in our work for the parameters $\left(\omega_{p0}/\omega_0\right) = 0.2$, $\left(L_p\omega_{p0}/c\right) = 8$, $\left(\omega_p/\omega_{p0}\right) = 1$, and $\left|\varepsilon_{E_0}/\omega_{p0}\right| = 0.6$, the normalized growth rate is 0.025. Clearly, our results are in good agreement with the earlier work by Liu et al.

Data Availability

The data used to support the findings of this study are available upon request from the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

