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Friction stir welding is a method used to weld together materials considered challenging by fusion welding. FSW is primarily a
solid phase method that has been proven efficient due to its ability to manufacture low-cost, low-distortion welds. The quality
of weld and stresses can be determined by calculating the amount of heat transferred. Recently, many researchers have
developed algorithms to optimize manufacturing techniques. These machine learning techniques have been applied to FSW,
which allows it to predict the defect before its occurrence. ML methods such as the adaptive neurofuzzy interference system,
regression model, support vector machine, and artificial neural networks were studied to predict the error percentage for the
friction stir welding technique. This article examines machine learning applications in FSW by utilizing an artificial neural
network (ANN) to control fracture failure and a convolutional neural network (CNN) to detect faults. The ultimate tensile
strength is predicted using a regression and classification model, a decision tree model, a support vector machine for defecting
classification, and Gaussian process regression (UTS). Machine learning implementation mainly promotes uniformity in the
process and precision and maximally averts human error and involvement.

1. Introduction

Friction stir welding is perfect for joining commercially
available alloys in aerospace, shipbuilding, electronics, and
rails. Most alloys are difficult to weld by traditional methods
such as the fusion process. The friction produced by the rub-

bing action of the tool on the workpiece produces heat. Low
temperatures make the process more energy-efficient while
still stopping the workpiece from shrinking [1]. The process
reduces the number of workers as it is easy to automate the
tool and can be repeated many times. Friction stir welding
has been studied extensively over decades, returning to its
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infancy. Most research has focused on microstructural prop-
erties, material weldability, and mechanical properties after
welding. The FSW method has recently been applied to
machine learning techniques. Various machine learning
models and neural networks effectively detected defects and
assessed UTS in friction stir welding. Some of the significant
readings and data were studied for further analysis. As a result,
many sets of algorithms, including classification, regression,
and clustering models, have limited accuracy to a certain
extent. The FSW cell environment evaluates K-nearest neigh-
bor, multilayer perceptron, principal component analysis, and
random forest methods. Rotational speed, forging speed,
travel speed, transverse and longitudinal forces, and specific
energy and torque are the process parameters given as input
in the machine learning model. The defect index is produced
as an output [2]. Process parameters for FSW can be easily
determined with less error than 5% using machine learning.
Process parameters for FSW can be easily determined with less
error percentage of less than 5%. Thus, it proved to be more
accurate and robust.

To create a high upright deformity-free weld, RPM of the
shoulder-pin arrangement, traverse speed, descending pro-
ducing power, and apparatus pin configuration should be
picked cautiously. To create a high uprightness deformity-
free weld, measure factors RPM of the shoulder-pin arrange-
ment, traverse speed, the descending producing power, and
apparatus pin configuration should be picked cautiously [3].

2. Understanding the Process

In friction stir welding, measuring a cylinder-shaped device
with a profiled probe is pivoted and, bit by bit, inserted
between two bits of sheet or plate materials to be welded
together to frame a joint. The pieces should be clasped onto
a back bar so that the adjoining joint appearances are not
pulled separated or pushed strange in some other manner.
Wear-resistant welding instruments and workpiece material
produce frictional heat. The heat softens the workpiece to
reach the necessary temperature, allowing the machine to
cross the weld boundary. The subsequent plasticized sub-
stance is moved from the top to the following edge of the
device. It is joined together by the contact between the shoul-
der of the device and the pin’s top, making a solid phase asso-
ciation between the two sections. Friction stir welding (FSW)
is a solid-state joining measure that uses a nonconsumable
apparatus to join two confronting plates or workpieces with-
out softening the material. Friction between the pivoting sys-
tem and the workpiece generates heat, resulting in a soft area
in the workpiece near the FSW apparatus. As the apparatus
moves, it combines the two separate bits of metal, which pro-
duce the hot and mollified metal by utilizing a mechanical
pressing factor through the apparatus comparable to joining
clay. High-dissolving temperature materials required for
FSW apparatus materials require high hardness for scraped
area obstruction, alongside substance steadiness and good
sturdiness at high temperature. For working with various
apparatus materials, advances are progressing quickly, and
every material gives explicit benefits to different applications.

2.1. Friction Stir Welding. Figure 1 shows the different regions
formed at the time of welding. The heat produced by friction
stir welding and the plastic flow causes refined crystallized
grains to be formed in the weld zone. In the thermomechani-
cally affected region, recovered grains are seen in the weld. In
terms of metalworking zones, there consists 5 stages: the pre-
heat stage followed by forging, extrusion, initial deformation,
and the postheat or cool down process [4]. Therefore, the pro-
cesses involved in FSW can be summarised as given in Figure 2.

2.1.1. FSW of Aluminum Alloys. Friction stir welding can now
quickly weld magnesium, copper, aluminum, and stainless
steel alloys previously challenging to weld using traditional
welding methods. Researchers have found that the FSW pro-
cess allows materials such as AA 2195 aluminum alloy to be
joined quickly, which is usually laborious to undergo a fusion
welding process. The quality of weld and stresses can be deter-
mined by calculating the amount of heat transferred. The heat
lost during the friction stir welding process (FSW) is just 5%
(95% efficiency), i.e., the rest of the heat produced is trans-
ferred to the workpiece and provides a good quality weld.
FSW can now weld even the Al alloy Al7075, which is consid-
ered nonweldable. This welding technique’s present applica-
tions include high-speed train manufacturing, shipbuilding,
and even aviation. A cylindrical tool is used in the friction stir
butt-welding procedure when two plates with comparatively
less thickness are used, and a conical tool is used for thicker
plates. This process is also successful in welding plates made
of zinc and was considered not easy to weld or even nonweld-
able by the conventional methods. Aluminum plates that are
as much as 100mm thick can also be joined through this pro-
cess by double-sided welding. Friction stir welding can also be
done underwater since it is a solid-state welding method.

One of the most extensive weld defects is the wormhole
defect. One of the leading causes of this defect is increased
welding speed while the rotating tool’s rpm does not change.
Tool geometry also affects this defect significantly. The micro-
structural changes that occur during friction stir welding are of
two types which are the following:

(1) FSW is done on materials with low recrystallization
rates (e.g., Al alloys)

(2) FSW looked at materials with faster recrystallization
rates (Ag austenitic stainless steels and Ti alloys) and
discovered that they have two distinct zones: the
HAZ and the stirred zone

The peak temperatures in the stirred zone vary from 0.6
to 0.95Tm. The tool design influences the peak temperature,
material, and operating conditions [6, 7]. The purpose of
fabricating components through the FSW of aluminum has
opted in recent times. The heat produced from the FSW pro-
cess is sufficient to produce microstructural variation in
hardened alloys. FSW proves to be a highly energy-efficient
process. FSW produces high-strength alloys [8].

2.1.2. FSW of Aluminum Alloys with Steel. One of the most
significant factors for converting aluminum alloys with steel
through conventional methods to friction stir welding was
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reducing fuel usage and benefitting the solid-state joining
process. The stirred zone is majorly formed on aluminum.
The attempt to weld Al alloys with steel was made through
FSW. The tool is plunged into the aluminum then moved
towards the surface of the steel. To prevent overheating,
the tool is offset towards the aluminum alloy. At an offset
of 0.2mm, a joint with maximum strength was obtained. It
is always accomplished to ensure that the melting tempera-
ture of the components to be welded together is still higher
than the base material melting point [9]. Aluminum bonds
to the steel surface in a semisolid paste-like form because
of its heat rotating tool. In this case, the tool pin is plunged
into the aluminum’s soft surface and not on the two metals’
junction. It is done to prevent the insufficient stirring of the

aluminum and steel, which occurs because of the reduced tool
life. Also, this method provides minimal wear to the rotating
pin as the pin only acts on the soft surface of the aluminum.
When the pin rotation speed was set at 250 rpm, the tool life
improved drastically, and a good joint was made (at
250 rpm, a joint was produced with 86% tensile strength of
the aluminum metal). When the pin rotation speed was set
at 100 rpm, the tool was worn out quickly, and a successful
weld was not made. When the pin rpm was set to 500, the
weld’s surface morphology appeared to be the same as when
pin rotation of 250 rpm was used, but the joint’s strength
was much less than that of 250 rpm. The weld could not be
completed at an even faster pin rotation of 1250 rpm. Burning
was observed at an rpm of 1250. The pin size of the rotating
tool should also be just right. Pins less than 2mm in diameter
could not produce a good weld. The aluminum plate must be
mounted at the retreating side; otherwise, the weld cannot be
produced [10, 11]. The interface region is mainly divided into
two sections: the mixed and intermetallic compound layers. A
vortex-like structure was observed in the mixed layer. The alu-
minum part’s cooling rate was lower than the steel part’s cool-
ing rate. A vortex-like structure was observed on the interface
when 304 austenitic stainless steel and 6056 Al alloy were
welded together [9]. When X5CrNi18-10 stainless steel and
6013-T4 Al alloy were welded together, the plate thickness
for both of these products was 4mm. The traverse speed was
80mm/min, and the tool rotation speed was set to 800 rpm.
On the stainless steel’s surface, coarse austenitic grains were
evident. One of the main outcomes of this study was that it
was proved that Al 6013 could be welded with different stain-
less steels by the FSWmethod. The microstructure of the weld
zone was divided into 6 welding zones which are the following:

(1) HAZ in advancing side

(2) Weld nugget

(3) TMAZ in the advancing side

(4) TMAZ in the retreating side

(5) HAZ in the retreating side

Tool shoulder

Backing bar

Work piece

a − unaffected material

b − HAZ

c − TMAZ

d − weld nugget
a

b
b

a
cd

Figure 1: Friction stir welding process.

Process stages
involved in FSW

The tool applies thrust
over the initial joint on the

workpiece which
undergoes axial force in
the downward direction

At this stage enough heat
is generated at the top of
the tool and workpiece
which results in plastic

deformation.

In continuation with traverse force at
constant speed, the welding action
takes place along the desired joint

line. The plastic material flowing as a
result of the process advances on to

the backside of the pin

Towards the end of the
joint line the tools is

withdrawn and an exit
hole formation is seen

Plunging

Dwelling

Welding

Retraction

Figure 2: Stepwise description of processes involved in FSW [5].
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(6) Parent aluminum alloy

(7) Parent stainless steel

In [12], it was detected that the amount of flash pro-
duced decreased as the speed of the weld was increased.
The maximum amount of flash was formed during the start-
ing of slow welding. As the welding speed rises, the solidity
level also increases. It was also seen that the cooling rate
was much faster at the edges of the weld nugget. It suggests
that the weld nugget’s hardness was stronger at the edges. A
sharp decrease in the hardness value from TMAZ of the steel
towards the retreating side’s weld nugget was observed. The
weld nugget contained coarse stainless steel fragments,
resulting in nonuniform weld hardness [13].

2.1.3. FSW Effects of Microstructure and Fatigue. The micro-
structures of friction stir welded regions largely vary w.r.t.
grain formation among the weld zones, i.e., stir zone, ther-
momechanically affected zone, heat-affected zone, and the
base material. At the interfaces of the shoulder and pin, the
heat produced from the friction is the highest because of
the close distance to the FSW action, and this temperature
decreases as it progresses towards the base material. The
temperature ranges in the regions are as follows:

(i) Stir zone peak temperature range: 0.9 to 0.75 melt-
ing temperature (Tm)

(ii) Thermomechanically affected zone peak tempera-
ture range:0.7-0.6 Tm

(iii) Heat affected zone peak temperature range: 0.55Tm to
surrounding temperatures from the other two zones

The pin height is set according to the width of the plates
that have to be welded together, as it was seen that this greatly
affects the microstructure of the weld. The stirring action of a
pin causes thermomechanical deformation. The flat grains (of
parent metal) are attracted to the weld nugget region. When
we speak about the disparity in hardness numbers between
welds, the top side has lower hardness numbers because it is
in contact with the tool shoulder. The backside is connected
with the backplate and thus acts as a heat sink. Observations
were taken when the rpm was between 300 and 500, and the
traverse speed was taken as 120mm per minute [14]. In the
initial deformation stage, flow stress increases as the disloca-
tions multiply. This also causes a rise in the recovery rate as
the dislocations start rearranging themselves and producing
low-angle boundaries. The flow stress and the recovery rate
gradually enter a state of equilibrium. Microstructures can be
studied using various methods, including orientation imaging
microscopy and transmission electron microscopy [15].

The connection between measure boundaries and the
width of remuneration interlayer strips has played a signifi-
cant role in influencing welded joints’ microstructural and
mechanical properties [16].

Deformation of the pin is always broader on the retreat-
ing side due to the clockwise rotation of the tool. Onion
rings or fine-grained bands are seen under polarised light,
producing different crystallographic orientations (formed

behind the tool). The grain structure in the immediate front
of the tool has the highest thermal gradient. The plastic zone
was observed to be formed <1mm in front of the tool instead
of the weld’s advancing side; the retreating side’s deformation
zone is more significant. This occurs due to the tool’s direction
of rotation; as the tool rotates in a clockwise direction, the
material is extruded onto the weld’s withdrawing side. Because
of the tool’s clockwise rotation, the parent grains in a thermo-
mechanical affected zone are sheared forward towards the
welding direction on the advancing side [17].

When workpiece-2195 aluminum-lithium, rotational
speed of 180 revolutions/min was used, the grain structure
observed was defined as deformation and mechanical pro-
cesses. When the material is brushed across the welding tool,
it leads to the formation of refined grains that originate from
the fcc sheer texture that in turn forms a modified texture [18].

The highest weld temperature is observed to be directly
related to the rotation speed of the tool. A sharp rise in max-
imum temperature is observed till 2000 rpm, and after this,
there is a gradual temperature rise. High temperatures and
intensive strains cause dynamically recrystallized grains to
get nucleated. The grain size of the microstructure was also
found to increase with temperature. No significant increase
in hardness was observed at different rotation speeds in the
welds [19]. Improving the rotational and traverse speeds
can lead to a no-defect weld as the welding’s final result.
Studying the grain TEM microstructure (transmission elec-
tron microscopy) is compared with the aluminum workpiece
before the welding process [20].

The heat produced by friction stir welding and the plas-
tic flow causes refined crystallized grains to be formed in the
weld zone. In the thermomechanically affected region,
recovered grains are seen in the weld. Precipitation sequence
during FSW processes in the softened regions, where precip-
itates are dissolved at temperatures above 675K [21].

The grains formed in the weld center were fine due to the
high deformation leading to crystallization. The grains formed
from recrystallization are 2-4 micrometers. This solid-state
process allows the welding of alloys considered impossible to
be welded using traditional welding methods [22].

Table 1 depicts the variations in the formation of micro-
structures of different metals welded. In the case of carbon
steel welding, although martensite formation leads to an
increase in strength, it causes a decline in sturdiness and
malleability. This can be improved by decelerating the cool-
ing rates to acquire desirable results. The finer the grain size
in the stir zone for magnesium alloys, the better the joint
hardness improvisation.

2.1.4. Thermal and Mechanical Modeling of FSW. The fric-
tion stir welds’ surface structure can correspond well with
the same plastic strain disseminations on the top surface
[28]. The friction produced by the pin on the material and
the friction built by the shoulder on the workpieces’ surfaces
are all factors that influence the heat increase in FSW.
According to some research, pin friction and plastic strain
are slightly less than the shoulder’s heat [29]. AlSI 1018 steel
was welded using a tungsten tool. The thermal conductivity
of the tool was found to be around four times the thermal
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conductivity of steel; therefore, a notable amount of heat was
passed on to the tool. More heat is built farther from the rotat-
ing tool’s axis compared with the heat generated at the axis. It
happens because the tool’s relative velocity is much more on
the outside than on the axis. It can be seen that there occurs a
significant amount of heat transfer and plastic flow close to
the tool where convective heat transfer was observed to be
the main source of heat transfer. It was also seen that there
was a slight unevenness of temperature profiles near the tool.
The combined impact of the tool rotation direction and the tra-
verse direction was responsible for this [30]. Thermal modeling
has been an integral part of friction stir welding since the late
1990s. The most significant cause is that almost all weld fea-
tures result from a workpiece’s thermal history. FSW highly
depends on heat generation and flow. Once the solidus temper-
ature was reached, the yield stress was significantly reduced. A
self-stabilizing effect occurs when the material’s temperature is
lower than the solidus temperature. To obtain steady-state con-
ditions, the contact stress should always be balanced withmate-
rial yield shear stress. It was also seen that the heat generation
for material depends on its flow stress, strain, and strain rate
for a given temperature [31]. Aluminum alloy 6061-T6 was
used to analyze the butt-welding process using a 3-D model
based on finite element analysis. Friction between rotating
tools, welded plates, and plastic deformation of the material
around the tool led to heat transfer. The thermal and mechan-
ical solutions during FEA are integrated to improve themodel’s
accuracy. The X-ray diffraction method was applied to deter-
mine residual stresses. The expansion of material during heat-
ing of the welded plates led to stress formation in the weld [32].
Experimental procedures are tedious to analyze the welds’
complex geometry and properties; therefore, a numerical anal-
ysis method is chosen to study the weld joints. The numerical
method allows the determination of residual stresses and
distortions. Hybrid processes produce a new technique by
combining different FSW techniques to produce stronger welds
and improve structural behavior [33]. FSW’s nature of joints
depends mainly on the progression of materials in the mixed

zone. Accordingly, specialists attempted various endeavors to
build the progression of material in a mixing region by shifting
solder or pin geometry. Preheating the workpiece before weld-
ing can be set up is another option. Preheating relaxes materials
and expands materials’ progression in the mixed region and
accordingly diminishes the welding powers and improves pro-
ductivity. It was seen that in FSW, the strength of joints incre-
ments by 8% when contrasted with regular FSW through
preheating. Preheating improves the material stream and
peripheral change in disfigurement conduct, bringing about
the nugget zone’s expanding hardness. Inferable from extra
warmth, HAZ increases, and TMAZ diminishes [34].

Thermal models support the theory that the connection
between temperature proportion and energy is normal for
aluminum alloys that ration equal thermal diffusivities. A
thermal model can produce trademark temperature bends.
A composite’s most incredible welding temperature might
be assessed beforehand to know its thermal diffusivity, weld-
ing boundaries, and apparatus geometry [35].

Base material thickness and welding speed are auxiliary
boundaries overseeing torque and temperature. Their
impact on force is recognizable when enormous shoulder
instruments are utilized and thick welding plates [36].

2.1.5. Defects in FSW. Figure 3 indicates dendrite formation
in an ongoing friction stir welding process because of unsta-
ble solidification of the alloying materials.

Using conventional methods like fusion welding on alu-
minum alloys causes many problems like forming blowholes
(entrapment of hydrogen gas). It joins materials below their
melting point. This way prevents the formation of blowholes
as the material never melts. The length of the tool pin always
has to be less than that of the plates that are to be welded
together. In a study, the tool pin’s length was taken as
3.9mm, and the thickness of the plate was 4mm. A good
joint was obtained when the tool’s downforce was set to be
6.9 kN, and the traverse speed was set to be 250mm/min.
A cavity was detected in the joint when traverse speed was

Table 1: Explanation of variation in microstructures for different metals.

S.no. FSW material composition The characteristic feature of the microstructure Ref.

1 Carbon steels
A gradual transformation occurs in the microstructure from austenite to
martensite, increasing carbon content above 0.2%. The joint hardness is

improved
[23]

2 Stainless steel (304 austenitic stainless steel)
Ferrite form and sigma form were observed. The ferrite form was mainly formed
at the grain borders of austenite, which is recrystallized due to the high cooling

rates, whereas the sigma phase was seen due to a decrease in cooling rate
[24]

3 AZ61 magnesium alloy

Stir zone: grains are well cultivated as a result of recrystallization. Compared to
the base metal, the grain dimensions decrease as it goes onto the other weld

zones, i.e., TMAZ and SZ
TMAZ region: distorted grain pattern is observed

[25]

4 Dissimilar aluminum alloy joints
Finer grains are formed near the interfaces of the two dissimilar alloys. The stir
zone of dissimilar Al alloys consists of various grain sizes depending on the

intermixing of two metals during FSW
[26]

5
Dissimilar magnesium alloys

(A5052P-O and AZ31B-O alloys)

The differing microstructure is introduced near the bonded interface. It is visible
by the zigzag pattern near the interface. With increasing tool speed, the surface

structure turns smoother
[27]
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increased to 500mm/min. As the welding speed was increased
even further, a groove-like defect was discovered (750mm/
min). When friction stir welding was performed outside of
the optimum conditions, mainly three types of defects were
observed, which are listed below:

(1) Because of abnormal stirring, a cavity was produced

(2) Because of excessive heat input, flash was produced

(3) Because of insufficient heating, a groove-like defect
was seen

The material worked upon was ADC12, and the tool was
made up of SKD61. It was observed that when a high down-
force of 14.2 kN was used, the range for obtaining the opti-
mum conditions was enlarged [37].

It was seen that weld parameters highly influence defect
formation. Defects are also caused due to irregular mixing or
disproportionate input of heat. Unnecessary heat generation
because of low advancing speed and high rotating speed
makes workpiece material soft and can lead to several voids
on the advancing side [38]. Considering the correlation
between the transverse speed of FSW and the weld defects,
if the transverse speed is more than recommended, then it
is observed that defects are more prominent. The tempera-
ture increases along with it, which contributes to the forma-
tion of plastic deformation. The main reason for defect
formation with increased transverse speed is that the tool
experiences a low, stirring effect.

2.1.6. Tools Used in FSW. Three types of tools are present,
namely,

(1) fixed: has a fixed probe length and can weld only a
piece with a persistent thickness

(2) adjustable: the tool pin and the shoulder are sepa-
rate, and any one of the two can be replaced if it
breaks

(3) self-reacting comprising three pieces: the probe,
shoulder, and bottom shoulder. Backing of the anvil
is not required in this one (it is required in the other
two types)

There are three types of shoulder end surfaces:

(1) Flat shoulder: the only disadvantage with this type of
shoulder is that it does not trap the plasticized mate-
rial fully, and the material spills out, creating exces-
sive flash

(2) Concave shoulder: this type of shoulder is good at
trapping flowing materials and has become quite
popular

(3) Convex shoulder

The material friction can also be increased by choosing
the suitable material for the shoulder.

Figure 4 demonstrates the flat bottom probe, which is
currently most commonly used in the industry. One of the sig-
nificant disadvantages of a flat bottom probe is that it increases
forge force drastically compared to a doom-shaped probe.
Tool wear in the flat bottom probe is much faster than the
doom bottomed probe. The most optimum condition is that
the doom bottom probe’s radius is made to be 75% of the tool
pin’s total diameter. The chances of defect generation increase
because of tool wear. The tool material mainly used affects the
weld and grain structure quality [39].

The weld quality is dependent on the tool material proper-
ties like hardness, thermal conductivity, and fracture tough-
ness. The reactive nature of the tool with air also plays a key
role in influencing the joint formation quality [40]. The taper
threaded pin tool projected comparably better tensile and flex-
ural strength. On the other hand, the cylindrical threaded pin
tool projected more impact strength and hardness [41].

2.1.7. General Properties and Features of Friction Stir Welding.
When opposed to other systems, FSW is considered to be
environmentally friendly. One of the main factors influencing
heat input, material flow, and weld produced is tool geometry.
It was noted that the size of the defect decreased as interfer-
ence increased. The fluid flows into the spinning shoulder as
the material’s surface is welded on and the tool shoulders
rub against each other. The amount of material flow directly
depends on the load applied. Onion rings in FSW are formed
because of the vertical movement of material and the pin-
made material flow’s geometric nature [42]. Thermal manage-
ment plays a crucial role in the welding process. An ideal weld-
ing process has strong weld formation. The FSW process is a
solid phase process due to which problems such as resolidifica-
tion could be avoided. The FSW tool design determines the
amount of heat transferred, and an ideal tool design must pro-
vide stable force for varying plunge depths. The friction stir
spot welding method joins lightweight materials that are iden-
tical. Also, this process reduces energy consumption to a great
extent [43]. To achieve a proper weld, the tool shoulder should
always be in proper contact with the material’s surface. The
plasticized material will spill out if the shoulder even lifts
upwards for a small time. Even at low welding speeds, one
can achieve a proper weld [44]. Until the melting point, weld-
ing pressures are directly proportional to welding temperature.
Also, up to a saturation point, the rotational speed directly
influences welding temperature, after which the relationship
between the two parameters becomes inversely proportional
[45]. Friction stir welding processes are suitable for joining

Elongated
dendrites

FSP tool

Deformed region
(nugget zone)

Redefined dendrites

Figure 3: Visual representation of dendrite formation in FSW.
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alloys used for commercial purposes, such as aerospace. Below
are the significant factors that affect weld output:

(1) The rotation rate of the tool

(2) Welding speed

(3) Spindle tilt angle

(4) Target depth

To generate lap joints and butt joints, the FSW process is
a feasible and more accessible method. The weld regions of
the weld are the nugget region (plastic deformation caused
by high temp.), equiaxed recrystallized grains, uncrystallized
grains, and the HAZ (heat-affected region). The high melt-
ing point and low ductility allow the FSW process to join
metals like copper, titanium steel, and magnesium [46].
Hardness depends on the density of dislocation. The tensile
strength of FSW copper joints improves the weld’s quality
compared to electron beam welding [47]. Balram et al. uti-
lized three extraordinary welding boundaries: pivot speed,
travel speed, and distance across the shoulder. The last esti-
mation of an outstanding rigidity was 140MPa. This explo-
ration showed that the calculation of the instrument impacts
the miniature underlying properties of the butt joints [48].

Deformation occurs in an equiaxed structure throughout
the FSW process while the pin and nib slide along the weld
seam. The faying surface tracer is used for tracking the metal
flow, which flows in a helical manner due to the gyral
motion where the nib and the pin are mounted. The welds’
differences caused by the interactivity between the lower
and upper regions cause the material to flow in clockwise
and counterclockwise directions [49].

Typically, instruments face significant impacts during
welding: rough wear, high temperature, and dynamic impacts.
Hence, device materials have accompanying properties: high
wear opposition, high-temperature strength, temper obstruc-
tion, and excellent durability. Two significant FSW instrument
configuration fields are geometry and apparatus material [50].

In FSW, properties of the base metal, for example, yield
strength, malleability, and hardness, influence the plastic

progression of the material under the activity of pivoting
nonconsumable apparatus [51].

Apparatus, rpm, and traverse speed offer equivalent
impacts on the elastic attributes of the weld. An increment
or decline in traverse speed produces more heat, hugely
impacting the weld joint’s mechanical characteristics [52].

The base material properties control the material stream
during welding. The instrument and workpiece interface’s
contact conditions also autonomously influence base mate-
rial properties; nonblemished joints might be delivered when
the average sticking fraction is more than half [53].

3. Machine Learning Implementations in
Friction Stir Casting

Machine learning is a part of computer science that makes
computers act without being programmed. Machine learn-
ing algorithms can improve the algorithm’s ability by
increasing the number of samples. ML is now widely used
in image recognition, medical, manufacturing, and many
other fields. The applications of ML are now coming into
use in manufacturing for quality and risk analysis. ML can
predict any failures before manufacturers can go into pro-
duction, preventing financial losses for companies. ML is
now popularly being used to optimize the process of friction
stir welding. Researchers and manufacturers are now using
ML to foresee the weld quality and tensile strength based
on process parameters.

3.1. An Overview of Support Vector Machines in Friction Stir
Casting. Support vector machine (SVM) is an algorithm
used to analyze data either for regression or classification
[54]. The capacity of an SVM to achieve data classification
patterns that are precise and consistent is its strength. An
SVM decision function is a hyperplane used to classify
observations into multiple classes based on feature patterns.
The features used to infer the hyperplane are derivative data
that have been interpolated during the feature selection
stage. SVM entails balancing two complementary goals:

(1) Increasing the percentage of correct labels during the
classifier’s classification of new cases

(2) Ensuring that the classifier can accurately classify
fresh data (i.e., improving its reproducibility) [55]

SVM permits a model’s generalization capabilities to be
maximized. The goal of the structural risk minimization
principle is to permit a limit on a model’s generalization
error to be minimized [56]. The separating and maximum
margin hyperplane, soft margin, and kernel function are
the four key principles needed to grasp the notion of
SVM classification. SVM can be applied to friction stir
welding to solve tool misalignment and excessive flash
problems. SVM can also be used to find the ultimate tensile
strength over a multivariate set of input variables like rota-
tional speed, welding speed, temperature, and various other
factors affecting FSW quality. Manufacturers can identify
the best possible parameters for FSW in different materials
using SVM.

Travel

Rotation

Plunge force

Pin tool

Workpiece

Backing anvil

Figure 4: The flat bottom tool pin geometry.
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3.1.1. The Separating Hyperplane. If the data is assumed, one
can draw a line on a graph between the two classes. It is easy
to categorize separation by a straight line, as shown in
Figure 5.

The purpose of support vector machines (SVMs) is to
place this hyperplane as far away from both classes’ nearest
members as feasible [57]. Support vectors are the data points
that lie close to the separating hyperplane.

3.1.2. The MaximumMargin Hyperplane.Many lines separate
the two classes, but the nearest expression vector or the sup-
port vector is separated from the hyperplane by the maximum
distance possible, defined as the margin. The role of the SVM
is to maximize the said margin [54]. In FSW, the hyperplane
may give us valuable insight into faulty and nonfaulty welds
based on different input parameters. Multiple SVM can also
determine the effect of all the factors on the final weld, which
is also useful information to manufacturers.

3.1.3. The Soft Margin. If the data chosen is assumed to be lin-
early separable by a straight hyperplane, it must allow for a
certain soft margin that allows certain data to either side of
the hyperplane without changing the outcome [54]. FSW
may have certain anomalous data points due to defects in
metals, although this problem can be overcome if a soft mar-
gin is applied to the SVM to account for anomalous data.

3.1.4. The Kernel Function. Kernel functions are mainly used
to increase computing efficiency; they also translate data into
higher dimensions to fit different classification situations. As
shown in Figure 6, a kernel matrix is used with dimension-
ality equal to the number of observations when classification
is nonlinear. Using the kernel matrix over raw data allows
the SVM classifier to train using the matrix, making it easier
to achieve the required classification in linear and nonlinear
classification scenarios [55]. Support vector machines are
very flexible, which is of great use in welding; kernel func-
tions can be picked based on the manufacturer’s input
parameters or which the researcher is experimenting with.
With SVMs, one can opt for a multivariate study or focus
on a single parameter as per our application.

3.1.5. Weld Classification Using SVM. SVM is a tool best
used in weld classification and can accurately predict the
presence of defects in friction stir welds which proves
invaluable to a manufacturer. SVM was able to classify fric-
tion stir welds with input of weld surface images [58]. SVM
can also smartly be used in combination with ANN to clas-
sify as well as locate the defect in the weld and has proven to
be one of the most successful in doing the same [59].

3.1.6. Temperature Prediction of Weld Pool Using SVM.
Maintaining the optimal temperature of the weld pool is
essential to maintaining a strong weld. Using input parame-
ters such as weld speed, tool rotational speed, and tool angle,
an SVM is able to predict the maximum temperature a weld
could reach which is invaluable information for a researcher
or manufacturer [60]; a modified version of SVM known as
LSVM is also used to obtain temperature signals of different
frequency bands [61].

3.2. An Overview of Artificial Neural Networks in Friction Stir
Casting. A convolutional neural network takes in a tensor or a
multidimensional matrix, which in most cases is an image, as
seen in the input layer of Figure 7. In the case of FSW, the
CNNs were trained to work with pictures of the weld pool,
which were passed through multiple convolution filters, pool-
ing, and activation functions. Each function can be considered
a neural network layer, which takes in a tensor and returns
another, passing through the subsequent layer. The convolu-
tion filters contain weights, which can be trained using back-
propagation (gradient descent) [62]. These weights give the
network a different perspective of the image, thus enabling it
to gain more insights from the input tensor (an image in the
case of most CNNs). The tensors, once parsed, are usually flat-
tened or converted to a vector by reshaping them. This makes
the data compatible with fully connected layers, containing
dense neurons [63] and highlighting more specific details.
The final layer, also known as the output layer, is usually a fully
connected layer, on top of which sits an activation function,
which is decided by the required output of the neural network.

3.2.1. Pooling Layers. The goal of pooling layers is to com-
press the data of the input tensor in order to make it easier
for the succeeding layer to parse it. This is usually done by
max pooling or by average-pooling. The max pool layer
takes the largest value in a given region and forwards it to
the next layer, whereas the average-pool layer takes the mean
value of every cell in the region to forward it to the next
layer. The average/maximum values from the regions are
arranged similarly to that of the input tensor to maintain
logical consistency. This is especially useful in the case of
FSW, as the resolution shot by the cameras mounted near
the workspace was higher than required, which adds to the
computational requirements with less gain in accuracy.

3.2.2. Activation Functions. Following the universal approx-
imation theorem [64], there is a need to introduce nonline-
arity to approximate any relationship between the input
and the output by looking at the training data. That is the
role of the activation layers. They take inputs from the pre-
vious layer, which is usually linear, and transform them into
nonlinear equations to better fit the real-world conditions.

3.2.3. Convolution Filters. Convolution filters can be consid-
ered a weighted average over regions of a cuboidal region
over the tensor, then placed in its corresponding location
in the output tensor. The kernel function in Figure 8 acts
on the central point of the image to produce the output.
Multiple such images of the same dimension of the kernel
are extracted from the previous tensor and arranged in the
same order, which is decided by the stride. These weights
are initialized to completely arbitrary values but are then
trained using gradient descent to maximize the insights it
can extract and store from the data. They are also called fil-
ters as they filter out parts of the image that do not resemble
it as much as compared to the parts of the image that do
match with it (which would result in a higher magnitude
in the dot product and hence a higher intensity in that cor-
responding region in the tensor). In the case of FSW, the
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filters could resemble the shape of the weld bead or the seam.
Shapes of cracks and crevices, common in welds that have
gone wrong, could also be stored in the said filters. These fil-
ters can also associate a higher weight to a certain channel or
color in an image to filter out features that are expressed bet-
ter in those channels. Such filters could be used along with a
thermal or infrared camera, which would give the model
much data about the quality of the weld joint. A large num-
ber of these filters work in conjunction to filter out a large
number of shapes and colors to gather insights before pass-
ing it to the next layer to derive more insights. The complex-
ity of the filters and the shapes they look for keep increasing
as the data travels deeper through the network, increasing
the specificity of the insights gathered from the data while
reducing ambiguity. The filters in Figure 9, also known as
kernels, are 3 × 3 filters, as they contain 3 rows and columns.
Increasing the filter size reduces the output image size unless

padding is applied. However, it allows CNN to gather more
information and store larger patterns to search.

3.2.4. Fully Connected (FC) Layer. FC layers consist of neurons
or perceptrons [65]. All neurons in a layer are connected to
every other neuron in the previous layer. In other words, each
neuron has a vector of weights associated with each of the neu-
rons from the preceding layer. The outputs from the neurons
belonging to the previous layers [66] are arranged to form a
vector and a dot multiplied by the weights of every neuron. It
can be looked at as a linear transformation, the corresponding
matrix of which can be formed by aligning the weight vectors of
each neuron. Finally, a biasing vector is added to the transfor-
mation to ensure more flexibility while training. Fully con-
nected layers usually contain many weights, requiring much
computational power to be applied.

Moreover, since all neurons are connected to all the other
ones in the previous layer, it is difficult to identify patterns
such as shapes and colors that might occur multiple times in
the same image, as the weights are not shared. Hence, most
CNNs use convolution filters to filter out required data and
pass the specific insights over to the FC layers, which process
the data further to get the required relationship between the
input data and the output. These FC layers are used along with
activation functions to perform certain tasks such as regres-
sion (predicting the mean tensile strength) or classification
(classifying the penetration stage of the friction stir welding
pin). When it comes to numerical data, like the rotational
and the translational speed of the pin and/or the force applied
by the pin, one can use fully connected layers alone to perform
regression or classification. Such neural networks are known
as fully connected neural networks (FCNNs).

3.2.5. UTS Prediction Using Neural Networks.Applying theUTS
prediction neural network considering the input parameters
includes rotational speed, translational speed, and the axial
force as seen in the input layer from Figure 10. The overall tool
fault diagnosis result obtained is 96%. Local discontinuity,
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Figure 5: Representation of the best hyperplane that separates the classes.
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which is normal in plasticized materials, is also a root cause of
equipment failure, as it provides enough hidden layers in the
UTS output. The Bayesian neural network and decision tree
classifier with three types of the input dataset with unprocessed
welding parameters, numerical model, and computed parame-
ters are inputs. Various other parameters are also taken under
the FCNN input layer, including an axial force of the material
and welding and rotational speed [67–69]. Every FCNN model
was involved in backpropagation on both aspects, with the
selected parameter under the input layer keeping tensile
strength in the output layer. A fully connected neural network
(FCNN) model was produced to investigate and reproduce
the relationship between aluminum (Al) plates’ FSW bound-
aries. The input boundaries of the model comprise weld speed
and instrument turn speed (TRS). The FCNN model yields
include the property boundaries: rigidity, yield strength, prolon-
gation, and HAZ hardness [70]. Then, examining the created
support vector machine (SVM) model with the artificial neural
network (ANN) model and other basic regression models con-
cludes that the forecast execution of SVR is better than any
other general regression models and ANN. The proposed work
is adjusted for effective use, progressively demonstrating friction
stir welding measures [71].

3.2.6. Fault Detection with Convolution Neural Network.Then,
the processing image was primarily performed with convolu-
tion neural networks, undergoing various feature extraction
with filters. A model is able to detect the defects and faults in
the FSW, which usually undergoes three processes, including
the mathematical process of convolution, feature extraction
to detect the defects at any corner, max pooling to reduce
the dimension, the addition of fully connected layers, and then
the softmax function to determine the probability of defects
and faults [72]. The model determining the correlation

between rotational tool speeds, sample extracted position,
and thermal data can be trained to obtain.

3.3. Influence of Regression and Classification Model on FSW
Process. Various regression and classification models of sk-
learn are feasible for application to FSW. To determine
and find out process parameters that majorly affect the
FSW process, a commonly used supervised learning algo-
rithm for analysis and classification includes logistic, multi-
ple linear regression, SVM, ANNs, and ANFIS; ANFIS
performed well to obtain more accuracy and minor error
[73]. In the study, all the recent machine learning models
were reviewed and compared in the hope of obtaining better
results in FSW and FSSW process parameters which include
ANNs and SVM.

Eachmodel was compared to another, considering its mate-
rial, process, input parameters, and DOE. Three distinct parts,
like Pearson VII, polykernel (PK), and radial-based kernel func-
tion (RBF), are utilized with GPR and SVM regression [74].

The response surface technique is utilized to build up the
regression model to foresee the elasticity of joints. The inves-
tigation of the different strategies is utilized to get to the
ampleness of the created model. The results demonstrated
that FSW of aluminum alloys at an apparatus pivot speed
of 1050min-1, 40mm/min welding velocity, and a shoulder
width of 17.5mm would deliver less imperfect joint with
higher rigidity [75].

3.4. Fracture Detection with Decision Tree Model. The deci-
sion is a widely used supervised learning algorithm for clas-
sification problems. It is commonly used to detect fracture
and predict UTS for FSW [59, 72]. It is based on the princi-
ple that it uses parent nodes to make decisions and leaf
nodes for their output. Finally, it classifies or predicts the
output with multiple branches.

Decision trees have been widely used next to ANN to
determine tool failure and defects. Various parameters prone
to effect include flow stress, temperature, torque, and strain
rate. Peak temperature and traverse force have less influence
on tool failure and can be considered input to the decision
tree [67, 69]. The fracture location can also be easily deter-
mined with a decision tree with the lowest possible score
of 0.5 [59]. Random forest built with multiple decision trees
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Figure 7: Representation of a convolutional neural network (CNN) and its layers.
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was the best regarding accuracy and errors. Thus, random
forest is preferred over decision trees in all cases.

3.5. Reinforcement Learning (RL) for Friction Stir Welding.
Reinforcement learning is a method used to teach an agent
(usually a neural network) how to perform a certain task
by interacting with the environment. The agent is awarded
points for going in the right direction, which could be com-
pleting subtasks by performing actions in the given set of
actions (A) it can perform in its current state. Unwanted
behavior results in the agent being given a penalty. The agent
aims to reach the goal state while maximizing the reward
and minimizing the penalty.

3.5.1. The Environment and the Agent. The RL model [76]
consists of a set of discrete and abstract states, S, which is
modeled after the dynamic environment that the agent will
be interacting with. The elements in S describe the relevant
information about the status of the environment and the
agent. The agent can use this information to decide its inter-
action with the environment to achieve the desired state. It
does so by performing actions from the set of actions, A.
Each element in A is an abstraction of each agent’s actions
to interact and navigate through the environment. In the
case of FSW, the environment contains everything in the

workspace that impacts the final output. It contains elements
ranging from perception such as cameras and sensors to tools
like the pin, which the agent will use to interact with the envi-
ronment. As shown in Figure 11, there is a loop where the
agent receives the state and a reward from the environment,
which it uses to decide the action it has to perform.

3.5.2. Rewards and Penalties. While the agent learns how to
reach the goal state(s) or perform a particular task, it requires
guidance from the environment, which gives feedback in terms
of rewards and penalties. Rewards provide positive reinforce-
ment to encourage the agent to go on the right path. Penalties
ensure that the agent does not engage in unwanted actions. The
agent starts performing random actions while slowly modeling
them by observing the feedback given by the environment. Its
goal is tomaximize the rewards while minimizing the penalties.
Rewards and penalties are themeans that the environment uses
to communicate the agent’s effectiveness. The user can suggest
trends, such as penalizing low weld speeds, as it would affect
the production time or reward stronger tensile strengths to
increase the quality of the products.

3.5.3. The Markov Decision Process (MDP). The MDP [77] is
the mathematical framework on top of which the models for
the sets which describe the environmental states, actions,
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Figure 9: Summarisation for SVM prediction.
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Figure 10: Graphical representation of the neural network used for UTS prediction.
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rewards, and penalties were built. The MDP is also responsi-
ble for the proper training of the agent [76, 77]. It helps find
the right trade-off between exploration and exploitation.
This ensures that the agent does not exploit one set of
actions to get the highest reward with the lowest possible
penalty it has encountered in a training session. Rather, it
forces the agent to explore the entire set of actions on the
off chance that it could find a higher reward in the long
run at the expense of a low cost for a short period.

3.6. UTS Prediction with Gaussian Process Regression. It is pri-
marily used to forecast ultimate tensile strength (UTS) by
using welding speed as an input parameter for training and
constructing the model while eliminating tunnel errors and
intermittent irregularities [78, 79]. This technique proves to
be more effective in predicting ultimate tensile strength.

4. Results and Discussion

Table 2 depicts the use of various materials and process
parameters for the friction stir welding process. The tools
are given below: The fixed probe tool consists of a shoulder
and probe as a single piece that can only weld at a constant
thickness. The adjustable tool comprises a probe and shoul-
der independently. This allows the tool’s free movement
about the workpiece’s thickness and length, and the probe
material can vary and easily be replaced. The bobbin type
tool comprises three parts, i.e., shoulder, probe, and bottom
shoulder. The flexible probe length between the top and bot-
tom shoulders allows the tool to work on workpieces with
various gauge thickness joints [39].

The microstructural region zones are the following:

(i) Nugget region: consists of crystals with axes of
almost similar lengths and recrystallized grains at
high temperatures

(ii) Thermomechanically affected zone: uncrystallized
grains formed at medium temperature

(iii) Heat-affected zone: precipitate coarsening takes
place [46]

The formation of equiaxed, fine grains at the welding
core and dynamic recrystallization increase fracture durabil-
ity and mechanical properties. Pressure applied during weld-
ing directly influences the welding temperatures. The
rotational speed is also directly proportional to welding tem-
perature [45].

The shear friction factor can be considered for process
analysis similar to the hot working of metals [82]. To stay away
from overinfiltration, the length of the probe should be con-
trolled. Simultaneously, the probe might not have complex cal-
culations; thus, the heat produced from the probe is decreased.
This implies that shoulder friction should be reimbursed by
giving a significant part of the welding’s warmth. Higher rota-
tional and lower cross rates might be utilized for better out-
comes, making up for the more significant energy losses.
Likewise, the small size of workpieces implies that more critical
consideration is expected to guarantee that clamping power
does not cause deformation of the welded parts. The tensile
strength of Al combinations has been lower than that in parent
material for various kinds of welding devices. In contrast, form-
ability has been discovered to be like the base material [83]. It is
crucial to consider all the FSW parameters, including fixture
clamping condition, traverse speed, shoulder immersing depth,
spindle tilt angle, and tool rotation speed [84].

Table 3 depicts the variation in hardness of welds in the
case of aluminum alloys w.r.t. tool design, welding speed,
and grain size. 304 austenitic stainless steel and A 6056-T4
alloy were friction stir welded. Findings show an aluminum
alloy sheet with deformed and stainless steel parts that have
diffused. A persistent layer with less than 1-micrometer
thickness was built in the middle of the mixed layer and
the recrystallized Al alloy [9].

During FSW of A5083 and SS400, a pin rotation speed of
250 rpm, 25mm/min welding, and a pin offset of 0.2 speed
were optimum as they produced a sound weld [10].

Environment
State

Action

Reward

Agent

Figure 11: RL agent and environment.
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Ti-6Al-4V friction stir butt-welded plates could be effec-
tively welded using a tool characterized by a bigger tool
diameter to plate thickness ratio and lesser shoulder to pin
ratio [87].

The aluminum alloy 7050-T7451 was friction stir welded at
100-120mm per minute traverse speed and 300-500 rotations
per minute tool rotation speed. Because fine recrystallized
grains formed in the weld nugget region, it was concluded that
a sound weld was produced (i.e., dynamic recrystallization
occurred). It was also discovered that there was partial recrys-
tallization in the parent alloy’s microstructure [14].

Metals joined in a pure solid state have more excellent
mechanical properties than those joined in a liquid state
[32]. Shoulder-pin-driven material flows are those in which
the material is moved layer by layer by the pin. On the other
hand, the material shifts as a whole by the shoulder [42].

An additional expansion of the prediction precision is
prescribed to improve the preparation information’s quality
in future examination work. Identifying the pits in the welds
utilized for preparing the CNNs through staged exhibit
ultrasonics or registered tomography outputs could funda-
mentally build the precision. However, it will likewise signif-

icantly raise the expense for the weld examination. While
assessing the exactness accomplished when utilizing artificial
neural networks (ANNs), whether the welds were named
consistently or fragment astute should be thought of [88].

Various machine learning approaches, including K-near-
est neighbor, fuzzy KNN, and along artificial bee colony
(ABC), have been used to predict the quality of FSW. Param-
eters for training the model include spindle rotational speed,
plunge force, speed rate, ratio, and empirical force index
(EFI). On testing between KNN and FKNN algorithm in
which KNN outperformed the latter, by increasing the num-
ber of fold accuracy, it also increased accordingly. ABC was
employed to improve the classification accuracy further [89].

Machine learning proves very effective in handling the
failures and monitoring the FSW process for industrial
needs. Various research and discussions were undergoing
to improve its potential further and attain maximum out
of it. In all sectors, automating processes and working with
data help to improve process efficiency. Determining the
process factors and causative variables for tool failure of
FSW was put to an end by neural network models with high
accuracy of over 96% [67].

Table 2: FSW process parameters for various materials used.

S.no. Material
Rotational
speed

Welding
speed

Temperature
Tensile
strength

Yield
stress

Tool material/geometry References

1 S70C (0.72 wt.% C) 100-800 rpm 25-40mm/s 723°C 817MPa 365MPa PCBN [80]

2 1018 steel
450 to 650
revolutions
per minute

1 to 4 in./min
Close to
1000°C

463MPa 310MPa
Molybdenum-based and
tungsten-based alloy tool

butt joint
[81]

3 AA2195 plates 240 rpm 2.36mm/sec <450°C 600MPa 570MPa M2 tool steel [7]

4
S12C—carbon steel

with a small proportion
of pearlite

400 rpm 100mm/min 790°C 317MPa 202MPa WC-based material [46]

5 IF steel 400 rpm 100mm/min 839°C 284 155 WC-based material [46]

6 S35C 400 rpm 100mm/min 653°C 533 327 WC-based material [80]

Table 3: FSW grain size variation for different materials w.r.t. design and welding speed.

Type of material to be welded Tool design
Welding speed
(mm/min)

Grain size
(μm)

Hardness
(HV)

References

Dissimilar AA5083-AA6061
aluminum alloy

Square probe tool 60 6 76.3 [85]

Dissimilar AA5083-AA6061
aluminum alloy

Circular threaded probe tool 40 5 76.87 [85]

Dissimilar AA5083-AA6061
aluminum alloy

Circular threaded probe tool 31.5 6 82.13 [85]

Al5083 and AL6061 A cylindrical tool with tapered pin 45 5.0 43.26 [85]

AA2014-T6 aluminum alloy
Left hand threaded tapered

cylindrical pin
40 12 125 [85]

AA2519-T87 aluminum alloy Straight threaded cylindrical pin 30 17.5 78 [86]

AA2519-T87 aluminum alloy Taper threaded cylindrical pin 30 15 80 [86]
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e
en
ou

gh
to

ca
pt
ur
e
al
l
th
e
de
ta
ils

fr
om

th
e
tr
ai
ni
ng

da
ta

(2
)
V
er
y
fe
w
fi
lte
rs

of
si
ze
s
5
or

le
ss

w
er
e
us
ed
.

T
hi
s
pr
ev
en
ts
th
e
C
N
N

fr
om

ge
tt
in
g
en
ou

gh
br
ea
th
in
g
sp
ac
e
to

le
ar
n
th
e
fi
ne
r
de
ta
ils

fr
om

th
e
im

ag
es

In
pu

t:
an

im
ag
e,
w
hi
ch

w
as

th
e
to
p
vi
ew

of
th
e

w
el
d
po

ol
O
ut
pu

t:
a
fl
oa
ti
ng

po
in
t
nu

m
be
r
re
pr
es
en
ti
ng

th
e
ba
ck

si
de

be
ad

w
id
th

T
ra
in
in
g
da
ta
:2
26
87

im
ag
es

T
es
ti
ng

da
ta
:2
90
5
im

ag
es

V
al
id
at
io
n
da
ta
:2
90
5
im

ag
es

[9
1–
93
]

A
C
N
N

w
it
h
5
la
ye
rs

w
it
h
fi
lte
r
si
ze
s
5
in

ev
er
y

la
ye
r.
T
he

co
nv
ol
ut
ed

la
ye
rs

ha
d
8,
16
,3
2,
64
,

an
d
12
8
la
ye
rs
,r
es
pe
ct
iv
el
y.
O
n
to
p
of

w
hi
ch

3
FC

la
ye
rs

w
er
e
st
ac
ke
d.

T
he

go
al
of

th
e
C
N
N

w
as

to
cl
as
si
fy

th
e
im

ag
es

in
to

3
di
ff
er
en
t

pe
ne
tr
at
io
n
st
ag
es
,a
s
it
is
di
ffi
cu
lt
fo
r
a
hu

m
an

to
do

so

T
he

C
N
N

is
gi
ve
n
m
or
e
fe
at
ur
es

to
w
or
k
w
it
h,

i.e
.,
th
e
to
p
an
d
ba
ck

im
ag
e,
w
hi
ch

m
ak
es

th
e

al
re
ad
y
ea
sy

ta
sk

of
cl
as
si
fi
ca
ti
on

ea
si
er

B
at
ch
no

rm
or

dr
op

ou
t
la
ye
rs

w
er
e
no

t
us
ed
.

T
ha
t
co
up

le
d
w
it
h
an

ov
er
w
he
lm

in
g
nu

m
be
r
of

pa
ra
m
et
er
s
in
cr
ea
se
s
th
e
od

ds
of

ov
er
fi
tt
in
g

In
pu

t:
2
im

ag
es
,t
he

to
p
vi
ew

an
d
th
e
ba
ck

si
de

vi
ew

of
th
e
w
el
di
ng

po
ol

O
ut
pu

t:
a
on

e
ho

te
nc
od

ed
ve
ct
or

of
si
ze

3,
w
it
h

ea
ch

el
em

en
tr
ep
re
se
nt
in
g
th
e
pe
ne
tr
at
io
n
st
ag
e

in
th
e
w
el
d
po

ol
.

T
ra
in
in
g
da
ta
:2
05
73

se
ts
of

2
im

ag
es

T
es
ti
ng

da
ta
:2

57
0
se
ts
of

2
im

ag
es

V
al
id
at
io
n
da
ta
:2
57
0
se
ts
of

2
im

ag
es

[9
3,
94
]

T
o
in
cr
ea
se

th
e
si
gn
al
-t
o-
no

is
e
ra
ti
o
(S
N
R
)
an
d

fa
ul
t
pr
ob
in
g
de
pt
hs

of
tr
an
si
en
t
th
er
m
og
ra
ph

y
in
sp
ec
ti
on

fo
r
al
um

in
um

sh
ee
ts
an
d
FS
W
,a

m
ul
ti
la
ye
r
pe
rc
ep
tr
on

fe
ed
fo
rw

ar
d
N
N

w
it
h

fe
at
ur
e
ex
tr
ac
ti
on

m
et
ho

ds
is
us
ed
.

Fo
llo
w
in
g
da
ta

pr
ep
ar
at
io
n,

st
at
is
ti
ca
l

m
om

en
ts
,P
C
T
,o
r
T
SL
M

(t
he
rm

og
ra
ph

ic
si
gn
al

lin
ea
r
m
od

el
in
g)

is
us
ed

to
ex
tr
ac
t
fe
at
ur
es
,a
nd

th
e
da
ta

is
th
en

pr
ep
ar
ed

fo
r
su
pe
rv
is
ed

le
ar
ni
ng
.T

he
cl
as
si
fy
in
g
m
od

el
is
a
B
er
no

ul
li

di
st
ri
bu

te
d
is
su
e.

E
ac
h
ne
tw
or
k
co
ns
is
ts
of

te
n
in
pu

tn
eu
ro
ns
,o
ne

hi
dd

en
la
ye
r
w
it
h
a
no

nl
in
ea
r
ac
ti
va
ti
on

fu
nc
ti
on

,a
nd

on
e
ne
ur
on

w
it
h
a
lo
gi
st
ic

ac
ti
va
ti
on

fu
nc
ti
on

in
th
e
ou

tp
ut

la
ye
r

(1
)
T
he

M
L
ap
pr
oa
ch

w
as

su
cc
es
sf
ul

in
ra
is
in
g

th
e
fl
aw

pr
ob
in
g
de
pt
h
to

2.
2
m
m

w
it
h
a
tr
ue

po
si
ti
ve

ra
te

of
97
.2
pe
rc
en
t

(2
)
T
he

C
N
N

is
pr
ov
id
ed

w
it
h
pr
oc
es
se
d
da
ta

us
in
g
T
SL
M
,w

hi
ch

de
m
on

st
ra
te
s
an

en
ha
nc
ed

si
gn
al
-t
o-
no

is
e
ra
ti
o
an
d
a
co
ns
id
er
ab
ly

m
or
e

ac
cu
ra
te

cl
as
si
fi
ca
ti
on

at
hi
gh
er

de
pt
hs

of
th
e

w
el
d

(1
)
T
he

tr
ai
ni
ng

da
ta

pr
ov
id
ed

fo
r
th
e
FS

sh
ee
t

is
of

lo
w
er

qu
al
it
y
th
an

th
at
pr
ov
id
ed

fo
r
th
e
A
L

sh
ee
t;
he
nc
e,
th
e
m
od

el
ap
pe
ar
s
to

be
le
ss

ac
cu
ra
te

in
th
e
FS

sh
e e
t
th
an

in
th
e
A
L
sh
ee
t

(2
)
T
he

al
go
ri
th
m

em
pl
oy
ed

fo
r
w
ei
gh
t

op
ti
m
iz
at
io
n
do

es
no

t
gu
ar
an
te
e
th
at

th
e
gl
ob
al

m
in
im

um
w
ill

be
fo
un

d

In
pu

t:
10

fe
at
ur
es

O
ut
pu

t:
0
or

1
w
he
re

0
re
pr
es
en
ts
no

fl
aw

an
d
1

re
pr
es
en
ts
a
fl
aw

.
T
ra
in
in
g
da
ta
:n

ot
pr
ov
id
ed

T
es
ti
ng

da
ta
:n

ot
pr
ov
id
ed

V
al
id
at
io
n
da
ta
:3
0
po

in
ts

[9
5]

A
n
R
L
al
go
ri
th
m

im
pl
em

en
ta
ti
on

us
in
g
a
4×

4
Q
ta
bl
e.
T
he

go
al
of

th
is
al
go
ri
th
m

w
as

to
id
en
ti
fy

th
e
pa
ra
m
et
er
s,
w
el
di
ng

sp
ee
d,

an
d

ro
ta
ti
on

al
sp
ee
d
to

ge
t
th
e
be
st
po

ss
ib
le

ou
tc
om

e
or

th
e
st
ro
ng
es
t
po

ss
ib
le
w
el
d.

T
he

w
el
d
qu

al
it
y
w
as

as
se
ss
ed

w
it
h
th
e
he
lp

of
2

w
hi
te

LE
D
s
w
ho

se
lig
ht

w
as

re
fl
ec
te
d
off

of
th
e

w
el
ds

to
be

ca
pt
ur
ed

by
a
C
M
O
S
se
ns
or
,t
he

da
ta

fr
om

w
hi
ch

w
as

us
ed

to
as
se
ss

th
e
qu

al
it
y

an
d
th
e
st
re
ng
th

of
th
e
w
el
d
po

ol

(1
)
T
he

R
L
ag
en
t
le
ar
ns

co
m
pl
et
el
y
on

it
s
ow

n,
w
it
ho

ut
an
y
ai
d
fr
om

hu
m
an

ob
se
rv
er
s

(2
)
T
he

al
go
ri
th
m

ca
n
be

us
ed

to
op

ti
m
iz
e
bo
th

th
e
qu

al
it
y
of

th
e
w
el
ds

an
d
th
e
pr
oc
es
s

pr
od

uc
ti
vi
ty
,b
y
pe
na
liz
in
g
sl
ow

w
el
di
ng

sp
ee
ds

T
he

op
ti
m
iz
at
io
n
pr
ob
le
m

w
as

no
ts
ol
ve
d
in

th
e

m
os
t
effi

ci
en
t
m
an
ne
r.
M
ax
im

iz
in
g
th
e

ex
pe
ct
ed

va
lu
e
of

an
in
fi
ni
te

su
m

of
ra
nd

om
va
ri
ab
le
s
is
a
ve
ry

ti
m
e-
co
ns
um

in
g
m
et
ho

d

T
he
re

is
no

t
a
re
qu

ir
em

en
t
fo
r
a
da
ta
se
t,
as

R
L

al
go
ri
th
m
s
le
ar
n
by

ex
pl
or
in
g
th
e
en
vi
ro
nm

en
t.

T
o
as
se
ss
w
hi
ch

ac
ti
on

s
aff
ec
t
th
e
st
at
e
in

or
de
r

to
ge
t
a
hi
gh
er

re
w
ar
d,

w
hi
le
m
in
im

iz
in
g
th
e

pe
na
lti
es
.W

hi
ch

es
se
nt
ia
lly

m
ea
ns

th
at

th
e

al
go
ri
th
m

cr
ea
te
s
it
s
ow

n
da
ta
se
t

[6
8,
96
]

R
SM

an
d
a
fu
zz
y
lo
gi
c
m
od

el
w
it
h
fo
ur

st
ep
s.

Fu
zz
y
lo
gi
c
is
us
ed

to
fo
re
ca
st
w
el
d
qu

al
it
y
in

te
rm

s
of

U
T
S
an
d
pe
rc
en
ta
ge

el
on

ga
ti
on

(1
)
T
he

A
N
FI
S
is
a
hy
br
id

sy
st
em

th
at
co
m
bi
ne
s

th
e
be
ne
fi
ts
of

ar
ti
fi
ci
al
ne
ur
al
ne
tw
or
ks

an
d

fu
zz
y
in
fe
re
nc
e
m
et
ho

ds
.(
2)

T
he

A
N
FI
S
ha
s
a

nu
m
be
r
of

be
ne
fi
ts
,i
nc
lu
di
ng

th
e
ab
ili
ty

to

(1
)
A
N
FI
S
is
lim

it
ed

by
th
e
cu
rs
e
of

di
m
en
si
on

al
it
y
w
hi
ch

is
th
e
in
cr
ea
se

in
er
ro
r

w
it
h
in
cr
ea
se

in
fe
at
ur
es
;t
he
re
fo
re
,t
he

m
od

el

In
pu

t:
4
fe
at
ur
es
;t
oo
lp

in
ge
om

et
ry
,T

R
S,
W
S,

an
d
to
ol

ti
lt
an
gl
e

O
ut
pu

t:
w
el
d
qu

al
it
y

T
ra
in
in
g
da
ta
:3
1
da
ta

po
in
ts

[5
8,
97
]
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T
a
bl
e
4:
C
on

ti
nu

ed
.

A
lg
or
it
hm

A
dv
an
ta
ge
s

D
is
ad
va
nt
ag
es

D
at
as
et
,f
ea
tu
re
s,
an
d
ou

tp
ut
s

R
ef
s.

ca
pt
ur
e
a
pr
oc
es
s’
no

nl
in
ea
r
st
ru
ct
ur
e,

ad
ap
ta
bi
lit
y,
an
d
ra
pi
d
le
ar
ni
ng

ca
pa
ci
ty

ca
nn

ot
be

em
pl
oy
ed

if
th
e
pr
og
ra
m
m
er

w
as

to
in
cl
ud

e
a
la
rg
er

nu
m
be
r
of

in
pu

ts
T
es
ti
ng

da
ta
:5

da
ta

po
in
ts

V
al
id
at
io
n
da
ta
:5

da
ta

po
in
ts

W
av
el
et

an
al
ys
is
an
d
su
pp

or
t
ve
ct
or

m
ac
hi
ne
s

ar
e
us
ed

to
cl
as
si
fy
fr
ic
ti
on

st
ir
w
el
ds

us
in
g
w
el
d

su
rf
ac
e
im

ag
es
.

G
au
ss
ia
n
an
d
po

ly
no

m
ia
lk

er
ne
ls
ar
e
us
ed

in
th
e
SV

M
cl
as
si
fi
ca
ti
on

al
go
ri
th
m

(1
)
T
he

em
pl
oy
ed

G
au
ss
ia
n
ke
rn
el
is
m
or
e

ac
cu
ra
te
th
an

m
or
e
co
m
m
on

ly
us
ed

po
ly
no

m
ia
l

ke
rn
el
s

(2
)
M
ul
ti
pl
e
SV

M
s
w
er
e
us
ed

fo
r
th
e
di
ff
er
en
t

ou
tp
ut
s

(1
)
O
ne

of
th
e
m
et
ho

d’
s
dr
aw

ba
ck
s
is
th
at

on
ly

th
e
m
os
t
ob
vi
ou

s
fa
ul
ts
ar
e
de
te
ct
ed

du
ri
ng

cl
as
si
fi
ca
ti
on

In
pu

t:
3
fe
at
ur
es
:T

R
S
(r
pm

),
W
S
(m

m
/s
),
an
d

P
D

(m
m
)

O
ut
pu

t:
en
er
gy
,v
ar
ia
nc
e,
an
d
en
tr
op

y
T
ra
in
in
g
da
ta
:1
12

po
in
ts
fo
r
ea
ch

go
od

an
d

de
fe
ct
iv
e
w
el
d,

re
sp
ec
ti
ve
ly

T
es
ti
ng

da
ta
:7
0
da
ta

po
in
ts
fr
om

ea
ch

of
th
e

ab
ov
e
cl
as
se
s

V
al
id
at
io
n
da
ta
:4
2
da
ta

po
in
ts

[5
8,
98
]

T
he

m
os
t
im

po
rt
an
t
el
em

en
ts
in
fl
ue
nc
in
g

th
e
pe
rf
or
m
an
ce

of
FS
SW

jo
in
ts
ha
ve

be
en

di
sc
ov
er
ed
.

A
fo
ur
-f
ac
to
r,
fi
ve
-l
ev
el
fa
ct
or
ia
ld

es
ig
n

m
at
ri
x
w
it
h
a
ce
nt
er

co
m
po

si
te

ro
ta
ta
bl
e

m
at
ri
x
w
as

us
ed

to
ac
co
un

t
fo
r
th
e
w
id
e
ra
ng
e

of
fe
at
ur
es
.T

o
de
te
rm

in
e
th
e
in
fl
ue
nc
in
g
na
tu
re

an
d
id
ea
lc
on

di
ti
on

of
th
e
pr
oc
es
s
on

T
SF
L,

su
rf
ac
e
pl
ot
s
an
d
co
nt
ou

r
pl
ot
s,
w
hi
ch

ar
e

si
gn
al
s
of

pr
ob
ab
le
fa
ct
or

in
de
pe
nd

en
ce
,

w
er
e
cr
ea
te
d

(1
)
R
SM

is
a
po

w
er
fu
l
to
ol

fo
r
fi
ne
-t
un

in
g

FS
W

pr
oc
es
s
pa
ra
m
et
er
s

(2
)
T
he

di
sc
re
pa
nc
y
in

st
re
ng
th

be
tw
ee
n

th
e
pr
ed
ic
te
d
an
d
ex
pe
ri
m
en
ta
lv

al
ue
s
is

on
ly
5%

.T
he

R
SM

is
m
or
e
ac
cu
ra
te

in
th
e

m
od

el
in
g
an
d
op

ti
m
iz
at
io
n
pr
oc
es
se
s

(1
)
P
hy
si
ca
le
xa
m
in
at
io
n
of

co
nt
ou

r
pl
ot
s
is
re
qu

ir
ed
;h

en
ce
,t
he

m
et
ho

d
is

no
t
fu
lly

au
to
m
at
ed

In
pu

t:
4
fe
at
ur
es
:T

R
S
(r
pm

),
P
D

(m
m
),

pl
un

ge
ra
te

(m
m
/m

in
),
D
T
(s
)

O
ut
pu

t:
te
ns
ile

sh
ea
r
fr
ac
tu
re

lo
ad

(T
SF
L)

T
ra
in
in
g
da
ta
:1
6
da
ta

po
in
ts

T
es
ti
ng

da
ta
:8

da
ta

po
in
ts

V
al
id
at
io
n
da
ta
:6

da
ta

po
in
ts

[5
8,
98
,

99
]

A
G
au
ss
ia
n
pr
oc
es
s
re
du

ct
io
n
(G

P
R
)
al
go
ri
th
m

w
as

us
ed

to
pr
ed
ic
t
th
e
m
ax
im

um
te
m
pe
ra
tu
re

th
at

th
e
w
el
d
po

ol
w
ou

ld
re
ac
h

G
P
R
al
go
ri
th
m
s
ar
e
ve
ry

effi
ci
en
t
in

te
rm

s
of

da
ta

re
qu

ir
ed

to
tr
ai
n
th
e
al
go
ri
th
m
.O

ne
ca
n

re
ac
h
a
ve
ry

go
od

fi
t
w
it
ho

ut
a
lo
t
of

da
ta
.W

it
h

ve
ry

le
ss

da
ta
,t
he

ti
m
e
re
qu

ir
ed

to
tr
ai
n
th
e

m
od

el
is
ve
ry

le
ss
,w

hi
ch

m
ak
es

it
pe
rf
ec
t
fo
r

pr
ot
ot
yp
in
g

T
he

ru
nn

in
g
ti
m
e
of

th
e
G
P
R
al
go
ri
th
m

sc
al
es

cu
bi
ca
lly

w
it
h
n,

w
he
re

n
is
th
e
nu

m
be
r
of

da
ta

po
in
ts
.T

hi
s
m
ak
es

it
ha
rd

to
w
or
k
w
it
h
la
rg
e

da
ta
se
ts

In
pu

t:
3
nu

m
er
ic
al
fe
at
ur
es
;w

el
d
sp
ee
d,

to
ol

ro
ta
ti
on

al
sp
ee
d,

an
d
to
ol

an
gl
e

O
ut
pu

t:
pe
ak

te
m
pe
ra
tu
re

T
ra
in
in
g
da
ta
:1
7
da
ta

po
in
ts

T
es
ti
ng

da
ta
:n

ot
us
ed

V
al
id
at
io
n
da
ta
:n

ot
us
ed

[6
0]

A
n
SV

M
w
as

us
ed

to
pr
ed
ic
t
th
e
m
ax
im

um
te
m
pe
ra
tu
re

th
at

th
e
w
el
d
po

ol
w
ou

ld
re
ac
h.

T
he

ou
tp
ut

fr
om

th
is
w
ou

ld
be

us
ed

to
co
nt
ro
l

th
e
pa
ra
m
et
er
s
th
at

aff
ec
t
th
e
te
m
pe
ra
tu
re

(t
he

in
pu

t
fe
at
ur
es
)
so

as
to

re
ac
h
th
e
op

ti
m
al

te
m
pe
ra
tu
re

an
d
ke
ep

th
e
pa
re
nt

m
et
al
s
in

th
e

th
re
sh
ol
d
w
he
re

it
st
ay
s
in

th
e
pl
as
ti
c
st
at
e
to

en
su
re

th
e
st
ro
ng
es
t
po

ss
ib
le
w
el
d

SV
M
s
ha
ve

th
e
sa
m
e
ru
n
ti
m
e
ir
re
sp
ec
ti
ve

of
th
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Table 4 shows the application of various models to the
friction stir welding process. The optimum parameter with
the required value of UTS avoids any defects. The tensor
flow model’s prediction of UTS with rotational speed has
been researched by considering mean squared error of loss
and stochastic gradient descent as an optimizer [67]. Later
improvement with the same resulted in better results with
ANN (artificial neural network) with sigmoid activation
function. In contrast, it depends on significant factors,
including tool rotational speed, axial force, and tool traverse
speed [68]. This model and the superior result reduce the
cost and time of the experiment compared to others. More-
over, Verma et al. analyzed the results by comparing the pre-
dicted UTS value vs. the actual UTS value; UTS prediction I
FSW are shown in Table 5. When all three techniques were
computed, the Gaussian process regression method depicted
lower variation between predicted and actual values [90].

To predict parameters such as yield strength and hard-
ness of AA 7075-T6 joints, Maleki et al. implemented the
backward propagation method. Under the neural network
architecture, the input layers, in this case, are rotational
speed, axial force, welding speed, shoulder diameter, pin
diameter, and tool hardness. The hidden layers compute to
give out output layer data: yield strength, hardness, and ten-
sile strength [90], as shown in Figure 12. The framework has
four layers: input, hidden, and output layers. The first layer
comprises every one of the information factors. Data from
the first layer is prepared throughout two hidden layers, fol-
lowing the output vector figured in the last layer [114].

Deeply discuss the correlation between process parame-
ters and mechanical properties of the welded AA5754 alumi-
num plates with a simulation model using an artificial neural
network. The parameter considered for training the model
includes 1. Tool rotational and travel speed is 2. Position
of the sample extracted is 3. Thermal data of various analy-
ses, including visual and tensile tests, have been performed
to evaluate the effects on output parameters. By imple-
menting the mean absolute percentage error, the outputs
for microlevel hardness were obtained to be 0.29%, and that
for UTS was found to be 9.57%. This clearly defines the way
to analyze, predict, and control all manufacturing technolo-
gies [115].

The ANN model has been developed and backpropaga-
tion on both aspects with the selected parameter under the
input layer, keeping tensile strength in the output layer.
The model can also predict the tensile strength of the welded
aluminum with the mentioned parameters. The model
proved high accuracy and results an R value of 0.99954 for
test samples after iterating for 1000 epochs [116].

The tensile test can also be predicted using the SVM
model (Figure 9) where the input data is trained, and fur-
ther, a model is developed which undergoes testing to pre-
dict or interpret the final results. Armansyah et al. found
that 100% accuracy is obtained w.r.t. to predict tensile
strength using the SVM method [117].

Artificial neural networks can also predict the grain size
of the joints. To determine the grain size, input parameters
considered are temperature, Zener-Hollomon, strain, and
strain rate [118]. The end goal is to train the neural network

to have calculated results, and predicted results must have
less variation. This, in turn, allows determining joint resis-
tance. The following technique proved to apply on lap, T,
and butt joints.

Analyzing the effects of welding speed on UTS with the
Gaussian process proved that an increase in welding speed
makes prediction more erroneous. It also proved most
potent in predicting UTS than the other models [79].

Table 6 indicates that machine learning has impacted
almost all welding processes and has made them more effi-
cient in various aspects. Researches were made to monitor
defects’ early detection and control in friction stir welding.
Processing the defective images and extracting the feature
lead to proper classification with SVM (support vector
machine). On the topic of research, the relationship between
surface appearance and tensile strength indicates that weld
joints with irregular and imperfect surfaces have substan-
tially lower tensile strength. SVM could predict and classify
the good one with greater than 95.8% accuracy [119, 125,
126]. Monitoring helps in reducing defects, especially in alu-
minum fabrication. SVM strategy is utilized as the example
arrangement procedure that measures the similitudes
between input information and the information put away
in the information base. The entire expectation framework
has two significant stages: the training and testing stages.
Complete accuracy for every test and training system was
observed [112].

Apart from this, image pyramids and image reconstruc-
tions were used to analyze the defects on various weld sam-
ples. Convolution neural networks are proved to be another
best model for detecting defective vs. nondefective welds by
processing their images on the production line [72]. This
system obtains better results in both offline and online mon-
itoring processes. Extension rate and normal fracture
strength of given mechanical segment and image processing
calculations can be easily applied for defect identification in
the mechanical segments [127].

Various results show that inappropriate setting of rota-
tional speed and other parameters may lead to increased
flash formation and surface galling. Bayesian optimization
helps obtain better parameters easily with the multitask
approach than the single-task one [68].

Flaw detection in FSW with transient thermography has
become popular in recent times. Transient thermography
was processed using thermographic signal linear modeling
(TSLM) and feature extraction without hyperparameters.
Researches have been done with halogen lamps of 1600W
with appropriate mounting and orientation for IR thermog-
raphy experiment in the reflection mode [95]. It clearly
shows that NDTE and TSLM techniques could also improve
the subsurface flaw-probing depth to further mm.

When FSW considered utilizing computerized reasoning
strategies were inspected, it was also noted that more than
81% of the utilized materials were aluminum composites,
and 23% were made with divergent materials [117].

Various ML models were investigated to implement
optimized techniques to determine the relation between ten-
sile strength and FSW parameters by testing austenitic stain-
less steel and Ck 45 steel using the ANN method. Studies
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Figure 12: Artificial neural network architecture.

Table 6: Impact of machine learning on different types of welding process.

Welding type Target output
Machine
learning

model used
Parameter considered Result Ref.

Resistance
spot welding

Prediction of nugget
size

Finite
element
model
(FEM)

Temperatures, electrode
displacements, and
electric voltage drops

Much simulation offers many labeled
data due to physics-based simulation
data. There is no measurement sensor
precision issue in data generated from a

simulation model

[119]

Laser beam
welding

During deep
penetration welding,
the capillary depth of

the keyhole is
calculated

Optical
coherence
tomography

(OCT)

Laser power, welding
speed, radiation mode,
angle of incidence

Discrete wavelet transformation helps to
classify the weld quality based on height
parameter, and low pass Chebyshev

helps in reducing the amount of process

[120, 121]

Resistance
spot welding [52]

Nugget width
prediction

Deep neural
network

Strength and weight of
the material, cost,

manufacturability, and
environmentalism

In RSW joints, DNN has much higher
precision and lower variation for nugget
width prediction because RSW data is

highly nonlinear and complex

[122]

Ultrasonic metal
welding

Prediction of USMW
joint strength

Regression
model,

ANN, and
ANFIS

Weld pressure, vibration
amplitude, weld time,
and T-peel failure loads

The number of neurons, learning rate,
and momentum facture of the ANN set

to 10, 0.08, and 0.6. MFs are also
counted as 4 in the ANFIS system

[123]

Submerged arc
welding

Prediction of transient
temperature in SAW

process

Multilinear
regression

Voltage, trolley speed,
stick out, current

Proves to be the robust method since
computation cost was less and the

estimation of transient temperature was
good. Also, help to a swift resolution of

several decision processes

[124]
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from Celik et al. investigations showed less variation between
the actual and predicted values of UTS [90].

Mishra et al. carried out the convolutional neural net-
work to recognize conventional welded joints and friction
stir welded joints’ surfaces. Macias et al. set up a connection
between the acoustic discharge signals and the difference
principle boundaries of friction stir welding measure depen-
dent on artificial neural networks (ANNs) prepared on
Levenberg-Marquardt calculation [90].

5. Summary

Machine learning (ML), which is a subset of data science, is a
set of algorithms using which a machine learns to predict the
outcomes of specific situations with the help of historical
data. Unlike expert systems [128], the programmer pro-
grams if-else conditions based on their knowledge. It does
so without being explicitly programmed to do so. ML appli-
cations are used when the relationship between the input
and the output is not that clear or too convoluted to spend
time designing the system, to derive the formulae and the
rules that will govern the expert system.

ML algorithms learn to predict relationships by looking
at previous data to build a model of how the relationship
might look based on it. Unlike expert systems, they are sel-
dom 100% accurate, but an experienced ML engineer can
bring the model’s accuracy close to 100% by tuning model
hyperparameters, feature engineering, etc.

In friction stir welding (FSW), ML is used to optimize
the process by various means. One of the most common
use cases of ML in FSW was quality assurance. Various
models such as convoluted neural networks (CNNs), sup-
port vector machines (SVMs), random forests were given
data from cameras (top and side views of the weld pool),
or numeric data related to the probe (rotational and transla-
tional speeds), in order to predict the bead width, penetra-
tion stage, or the tensile strength. These outputs make the
process of quality checking and assurance easier and safer.

The insights can be used to improve productivity and quality
in factories or parse and slot into a control system to per-
form minor adjustments on the go to get a better weld.

ML was also used to identify the parameters that most
affect the FSW process. This was done using reinforcement
learning, in which the agent was trained to set the rotational
and translational speeds of the probe to get the best possible
weld in terms of time taken and strength. Using RSM
(response surface methodology), other implementations were
done to find the elements that most impacted the FSW joints.
Another use case was dimensionality reduction. The sensor
outputs, which were multimodal or multidimensional, had to
be reduced before they could be passed through a control sys-
tem. This was done inherently in many neural networks.

Recent studies in machine learning have proved that it can
be used effectively in FSW and is becoming a more popular
technique. Researchers are now able to predict responses
based on the input parameters. This can be of great help as it
gives us an insight into weld quality and strength before the
manufacturing process. It can help manufacturers and
researchers save materials and time by working on the weld
with the insights provided by machine learning algorithms.
This review is aimed at gathering all the techniques and algo-
rithms suggested by researchers in one platform.

6. Conclusions

6.1. Open Issues

(i) If we talk of the benefits friction stir welding process
gives over the conventional processes, there are
many:

(a) In FSW, the heat input is comparatively lower
than in other processes. This reduces the loss of
mechanical properties

(b) Cracking and porosity problems are not experi-
enced in this process as it is a solid-state welding
process

(c) No further machining is required after this pro-
cess on the weld

(d) A filler material is not required in this process

Some of the disadvantages include the following:

(a) It is a relatively slow process

(b) This process can only use weld materials that have a
low melting point and low strength

(c) Metals joined in a pure solid state have greater
mechanical properties than those joined in a liquid
state

(d) With a rise in tool velocity, the hardness profile of
weld smoothers out near the nugget zone. As a
result, inhomogeneity is reduced. Creating a thermal
model of FSW also allows the user to predict the
weakened zones in the weld

Fe
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A -> best case scenario for KNN
B - > worst case scenario for KNN
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Figure 13: The best- and worst-case scenarios in a KNN.
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(e) If the right FSW parameters are used, defects such as
tunnel, porosity, defective tightness, large or tiny
void, surface groove, and crack-like root-flaw can
be avoided entirely

(f) Local discontinuity is common in the flow area of
plasticized materials and a common cause of equip-
ment failure

(g) The grain size of the microstructure was also found
to increase with temperature

(h) Thermal models support the theory that the connec-
tion between temperature and energy levels is nor-
mal for aluminum alloys that ration comparable
thermal diffusivities

(i) Shearing of the grains is in the same direction as pin
rotation, and the pin deformation is more on the
retreating side because of the clockwise rotation of
the tool

(j) The rotational speed significantly differs in the
welds’ tensile strength formed during FSW of dis-
similar alloys. An intermetallic compound is formed
between the dissimilar alloys during the welding
process. The weld in the middle was exceptionally
tough. The compound was formed due to the consti-
tutional liquidation of dismissal alloys during FSW

(k) Prediction of UTS and detection of faults for FSW
were cumbersome due to more experimental obser-
vations and readings, making it difficult to process
on a small scale

(l) The accuracy obtained at the result without any
defect was less for FSW of AL and other metals when
compared to a few other welding types on the same
metal [129]

6.2. ML Algorithms. In FSW, ML is used primarily to achieve
2 outcomes, namely, better-quality assurance and automa-
tion. Quality checking was done mainly using CNNs, which
worked with photos of the weld pool to ensure the absence
of defects. The neural networks also took in nominal and
numerical data like the material type or the rotational and
translational speed of the FSW pin.

CNNs were used to get the back bead width, the weld’s
penetration stage using the LeNET architecture, and a
generic CNN with 5 layers containing 5 × 5 shaped filters
with the number of filters increasing with depth. Their per-
formances cannot be compared as each model’s assigned
tasks were different. However, by looking at the performance
of the generic CNN, which had a test accuracy of 97.5%, we
could surmise that the bead width could have been predicted
with much more ease. The dataset was abundant, but the
LeNET architecture lacked the required number of filters
to learn all the features from the input image that would
affect the output.

CNNs were also used for process control. The input
from the camera was used to predict the penetration state
and hence feed a control system command to control the

pin speed and transversal speed to get the best possible
UTS. The input from the camera was also used to find
defects in the weld, which drastically changes the way quality
checking and assurance can be done, thus improving the
quality of the end product.

SVM can be effectively implemented to predict the max-
imum temperature of the weld pool using various input
parameters which is an essential quality control measure to
maintain the best weld quality.

Another vital implementation of ML in FSW was ulti-
mate tensile strength (UTS) prediction. Various regression
models include support vector machines, random forests,
and fully connected neural networks. One common issue
that all the implementations of UTS prediction had was
the lack of data, lacking a validation dataset. Training ML
algorithms with fewer data will lead to the weights getting
overfitted, which will make the algorithm less accurate when
given inputs that are not from the training dataset. The lack
of a validation dataset also reduces the potency of the model
in the face of previously unseen inputs, as the job of the val-
idation dataset is to eliminate the programmer’s bias while
setting the model’s hyperparameters. The problems above
make the reported accuracy metrics slightly unreliable.

However, in the given models, the highest accuracy was
observed in the random forest algorithm. Closely following
the FCNN and the SVM would easily outperform the ran-
dom forest giving more data to gather insights and train its
weights. Moreover, the least performing algorithm turned
out to be the decision tree as the hierarchy of the attributes
checked is highly dependent on information gain, which
may cause it to neglect some other attributes that seem insig-
nificant when viewed through the scope of the information
gain, and the k-nearest neighbor’s algorithm, as it does not
learn anything but rather memorizes the input data, which
makes it perform very badly in edge cases as in Figure 13
and relatively better when the input data is closer to a lot
of the data points. While all the models that predict the
UTS will benefit from more data, the rate of accuracy will
reduce irrespective of the more data being appended for
most of them. The only models which will benefit from a
large dataset would be the FCNNs, as they have the most
versatile and robust training loops.

One of the main problems, i.e., the lack of data, can be
remedied by using self-learning or exploratory algorithms,
such as RL and Bayesian estimation. As highlighted, these
algorithms do not require data to learn the relationship
between the input and the output, making it more effective.
RL has been used to set parameters such as the rotational
and translational speed of the FSW pin to get the best possi-
ble weld in the least possible time. These algorithms had very
high accuracy rates, which can be trusted as the algorithms
explore the environment extensively to gain mastery over
controlling the agent in the best possible way. The only issue
with RL or other self-learning algorithms is that the compu-
tational resources and the time required are very high.

Another limitation in most models is that they are not
given information about temperature. Temperature control
is critical in FSW, as the metals have to be heated to the right
temperature where they are in a plastic state and do not melt
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so that they can be cast together with the least possible
deformities and reductions to their ultimate tensile strength.
The RL model seemed to pick up on that on its own. Never-
theless, input from a thermal camera during the welding
process to all the previously mentioned models will drasti-
cally increase performances.

6.3. Future Directions. One can avoid void formation of FSW
with proper tuning of weld parameters such as temperature,
torque, and shear stress. The abovementioned decision tree
model already proved 90% accuracy [69]. By further extend-
ing the dataset size and preprocessing with proper handling
of class imbalance, one could obtain more accuracy around
96% by considering the parameters concerning tool pin-
like temperature, torque, and maximum shear stress [90].
This will ultimately reduce the chances of defective welds
to less than 4%. Recent development in ANN and image
processing techniques significantly reduce the cost and time
of FSW [67].

Further improvement in the model will provide the
scope of making the process much feasible and faster. Rota-
tional, feed rate, and travel speed were the major parameters
that affect the ultimate tensile strength. The correlation
occurs between the tensile strength and the surface appear-
ance and relates to various input and process parameters
[67, 78, 125]. It proves over 95 percent accurate in detecting
the good and bad welds, which helps greater in online mon-
itoring and feedback systems [58, 103, 131–136]. A modified
LSVM is also being used to obtain temperature signals of dif-
ferent frequency bands another step towards obtaining more
data to check what predicts better weld quality [137–144].
SVMs were also used in combination with ANN to classify
weld defects as well as locate them when provided with sur-
face weld images which can serve useful to automate quality
control. In the application of SVM methods to FSW process
characteristics, there is a lot of room for improvement and
research gaps. There is a great demand for machine learning
algorithms to forecast the behavior of process parameters in
FSW, based on the knowledge of prescribed work.
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