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In this study, the static deflection of non-prismatic axial function graded tapered beam (A-FGB) under distribution load has been
analyzed using ANSYS workbench (17.2). According to a power-law model, the elastic modulus of the beam varies continuously
in the axial direction of the beam. Also, the beam’s geometry, i.e., width, thickness, or both width and thickness of the beam, varies
linearly in the axial direction with different values of non-uniformity parameter (1, 0.5,0, −0.5, and −0.75). The effects of martial
distribution, i.e., power-law index, and non-uniformity parameter on the static deflection for A-FGB with different boundary
conditions, in such free-clamped, clamped-free, and simply-supported, are studied. This research deals with functionally
graded materials FGMs in more than one aspect in terms of using different boundary conditions; in addition, it studies the
response of the non-prismatic beam non-uniformity parameter (α); therefore, this research studies comprehensively the
deflection of the beam. The results show that the increase in power-law index causes decreasing in dimensionless deflection
and its rate of change depends on the supporting types of the beam and non-uniformity parameters. The variation in both
width and thickness for a free-clamped axial function–graded beam gives a significant decrease in dimensionless deflection at
decreasing in non-uniformity parameter, whereas the variation in thickness for clamped-free axial function graded beam gives
a significant decrease in dimensionless deflection at decreasing of non-uniformity parameter.

1. Introduction

Composite materials are new materials that have a combina-
tion of mechanical properties that cannot be achieved in
original or pure materials individually. Composite materials
can be divided into several types according to the reinforcing
material shape, such as fiber, laminate, and particles-
composite. The obvious disadvantage of conventional com-
posite materials is the discontinuity in physical and mechan-
ical properties. To overcome this defect, functionally graded
materials (FGMs) are used in several engineering applica-
tions like aerospace industries, automotive industries,
defense industries, and biomedical engineering. FGMs are
a type of composite materials in which the material proper-
ties are engineered to differ continuously and steadily from

one surface to others to minimize discontinuity effects in
properties [1–4].

Generally, beams and plates are the main structural
components that can be fabricated as FGMs to improve
the mechanical behaviors of such structures. In comparison,
non-uniform cross-section beams are commonly used due to
space limitations and advantageous construction.

Researchers studied the effects of using both variable
cross-section FGMs on the static and dynamic responses,
the vibration of the beam, and many applications [5–9].
The functional grade beams (FGB) can be divided into two
types: varying material properties through-thickness and it
is denoted as T-FGB, and varying material properties axially
that are designated as A-FGB. Several studies have been car-
ried out to study the static response of T-FGB [10–12].
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Baker [13] measured the static deflection of a slender
tapered cantilever beam under randomly dispersed loads
for non-prismatic beams by solving the governing differen-
tial equation with the weight residual process. Lee et al.
[14] investigated, experimentally and theoretically, tapered
cantilever beams with a large displacement. They solved
the governing differential equations numerically using
Runge–Kutta method. Brojan et al. [15] calculated the
deformed shape of non-prismatic cantilever beams using
the generalized Ludwick law under a tipping moment. Attar-
nejad et al. [16] derived the displacement functions of
tapered Timoshenko beams to study the free vibration by
solving the governing equations of motion.

Many publications analyzed FGM structures that were
subjected to different loadings and discussed the effects of
the material distribution of FGM on axial and transverse dis-
placements. Sankar [17] derived an elasticity solution for T-
FGBs under a static transverse load based on Euler–Ber-
noulli beam theory. Kadoli et al. [18] investigated the static
behavior of. FGM beams under ambient temperature using
the higher-order shear deformation beam theory. Singh
and Li [19] suggested a model for calculating buckling loads

of non-uniform A-FGM columns. Kang and Li [20, 21]
derived expressions for displacements of a nonlinear T-
FGM cantilever under a transverse tip load and a tip
moment. Alshorbagy et al. [22] used the finite element
method to calculate the natural frequencies of both T-FGB
and A-FGB considering Euler-Bernoulli beam theory. Wat-
tanasakulpong et al. [23] used the Ritz method to study the
thermal buckling and elastic vibration of T-FGB by consid-
ering the third-order shear deformation theory. Shahba
et al. [24] calculated the critical loads and vibration charac-
teristics of tapered Timoshenko A-FGB by formulating the
mass and stiffness matrices considering the homogeneous
solution of a uniform Timoshenko segment that was
adopted from [25]. Nguyen et al. [26] studied the static anal-
ysis of tapered beam with T-FGM and A-FGM analytically
under transverse load considering the Euler–Bernoulli beam
theory and the principle of virtual work. Nguyen [27] used
the finite element method to calculate the large displacement
response of a tapered cantilever A-FGB. He studied the
effects of taper type, taper ratio, and length to height ratio
on the axial and transverse displacements of the beam. Padhi
et al. [28] adopted the finite element principle and the first-
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Figure 1: Mechanical and physical property distribution in the axial direction of FGB.
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Figure 2: Three cases of non-prismatic beams studied in this work: case 1 (a) thickness variation only; case 2 (b) width variation only; case 3
(c) thickness and width variation.
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order shear deformation principle to study the static and
dynamic behavior of a simply-supported sigmoid function-
ally graded ordinary beam. Rajasekaran and Khaniki [29]
presented a comprehensive study on mechanical behaviors
of non-homogenous non-uniform size-dependent A-FGB
with different types of materials using the finite element
method.

Most literature has not considered studying the effects of
changing the boundary conditions, i.e., support’s type of the
beam, on the deflection response under load; therefore, in
this study, the static deflection of tapered A-FGBs with three
different boundary conditions, i.e., free-clamped, clamped-
free, and simply-supported, were investigated using ANSYS
workbench (version 17.2). Also, the effects of taper ratio,
taper type, and power-law index on the static deflection were
studied.

2. Materials and Methods

2.1. Functionally Graded Beam FGB. The mechanical prop-
erties of FGB have been distributed axially (A-FGM) as
shown in Figure 1. It can be represented according to the
power-law model (Equation (1)) [30]:

P xð Þ = PL − PRð Þ ∗ 1 − x
l

� �K
� �

+ PR, ð1Þ

where,
PR and PL are properties at the right and left ends of the

tapered beam, respectively; K is the power-law index; l is the

length of the tapered beam; and x is the distance along the
length of the beam.

It is worthy to mention that the material properties are
considered a ceramic on the left side of the beam, whereas
it is considered a pure metal on the right side of the beam.
Material properties are considered to be changed gradually
in between the ends. In other words, the variation of
mechanical and physical properties depends on the value
of the power-law index (K) and the properties of the two
parent’s materials, i.e., the ceramic and metal, at the beam’s
ends. A beam theory was adopted to formulate the equations
of this research. More information can be found in Refer-
ence [31].

2.2. Dimensions of Non-Prismatic A-FGB. In this work, three
types of non-prismatic are considered. It can be represented
as varying in thickness, width, or both the thickness and
width of the beam. Equations (2) and (3) [26] state these
variations as

h xð Þ = h0 ∗ 1 + αh ∗
x
l

� �� �
, ð2Þ

b xð Þ = b0 ∗ 1 + αb ∗
x
l

� �� �
, ð3Þ

where,
hðxÞ and bðxÞ are the thickness and width of the beam,

respectively, as a function of distance (x) along the length
of the beam. h0 and b0 are the thickness and width, respec-
tively, of the beam at the left end. αh and αb are the non-
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Figure 3: Effect of the number of segments in ANSYS A-FGB models: (a) free-clamped; (b) clamped-free; (c) simply-supported.
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uniformity parameter in thickness and width directions,
respectively.

Also, the three variations that were considered in this
study are as follows:

(1) Thickness variation only: The width of the beam is
considered a constant, and it equals to (b0), i.e., αb
= 0, as shown in Figure 2(a)

(2) Width variation only: The thickness of the beam is
considered a constant, and it equals to (h0), i.e., αh
= 0, as shown in Figure 2(b)

(3) Both width and thickness variation: Both width and
thickness of the tapered beam are considered varied
together with the same slope, i.e., αh = αb, as shown
in Figure 2(c)

2.3. ANSYS Model. ANSYS workbench (version 17.2) was
utilized to model the static deflection of tapered A-FGBs
with three different boundary conditions, i.e., free-clamped,
clamped-free, and simply-supported.

To simulate the axial variations in mechanical and phys-
ical properties, the length of the beam is divided into (N)
segments, and the properties of each segment are equal to
the average of start and end properties of the segment as
shown in the following equation:

P xð Þ½ �ð i−seg: = PStart xð Þ½ �i−seg: + PEnd xð Þ½ �i−seg:
� �

/2: ð4Þ

To examine the effects of changing the number of N seg-
ments on the static deflection of the model, a uniform A-
FGB was simulated. The model was examined at different
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Figure 4: Validation of ANSYS model: (a) free-clamped A-FGB when αb = 1; (b) free-clamped A-FGB when αb = −0:5; (c) simply-supported
A-FGB when αb = 1; and (d) simply-supported A-FGB when αb = −0:5.

Table 1: Discrepancy percentages between results of the present model and that of Nguyen et al. [26].

Non-uniformity parameter
Free-clamped A-FGB Simply-supported A-FGB

Discrepancy percentages Discrepancy percentages
Max. Min. Max. Min.

α = 1 12.4865 6.6504 1.0769 -9.5907

α = −0:5 −10.2437 −14.5467 4.0751 −1.64305
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boundary conditions, i.e., different types of supports, in such
free-clamped, clamped-free, and simply-supported, with dif-
ferent power-law index K. Figure 3 illustrates the number of
segments N against the deflection of FGB for each type of
support. The number of segments (N) does not significantly
affect the results of static deflection when the number of seg-
ments (N) is greater than (10). Therefore, a model with 20
segments was adopted in this research.

To build the model, the first step in the finite element
procedure is to split the domain of the model into compo-
nents, i.e., discretization. The distribution of the mechanical
component is called mesh elements, which join in points set
of nodes [32]. The characteristics of loads and boundary con-
ditions are considered in the model. In the current research, a
static deflection is used, and a series of equations are solved
using numerical analysis rather than ordinary differential
equations to simulate the physical problem of the model.

Shell181 element types [32, 33] with edge element size
(10mm) are used to mesh the problem’s domain, i.e., the
beam. The number of elements in the non-prismatic beam
is about 1300-1500, while the number of nodes is about
2000-2400, which is dependent on the non-uniformity
parameters.

2.4. Validation. To ensure that the current model is accurate
and valid, a comparison with available literature [26] has

been carried out. Nguyen et al. [26] assumed that the elastic
moduli of ceramic (left side material) and metal (right side
material) are 380GPa and 70GPa, respectively, and the
non-uniformity parameter of width variation is (1) and
(−0.5).

Nguyen et al. [26] applied a uniform distribution load on
the A-FGB to obtain a dimensionless deflection using the
following equation:

W∗ =w ∗
384 ∗ Em ∗ I0

5Ql4
, ð5Þ

where,
ðW∗Þ denotes the non-dimensionless transverse

deflection. ðwÞ is the transverse deflection. ðEmÞ is the elastic
modulus of metal. ðQÞ is the distributed load, and ðI0Þ is the
moment of inertial and equals to I0 = b0h

3
0/12 .

Figure 4 compares the current results of the model with
those of Nguyen et al. [26] for simply-supported and free-
clamped A-FGB with different values of the power-law index
(K). Table 1 reports the results of this work and Nguyen
et al.’s [26] study. It seems that there is an excellent agree-
ment between the dimensionless deflections of the present
model with that of Nguyen et al. [26] in the simply-
supported A-FGB at non-uniformity parameters (1) and
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Figure 5: Effect of the power-law index (K) on the maximum deflection of A-FGB with different boundary conditions under distribution
load and width variation: (a) free - clamped A-FGB; (b) clamped-free A-FGB; and (c) simply-supported A-FGB.
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(−0.5). However, the agreement between the results of the
free-clamped A-FGB is less than that of a simply-
supported A-FGB, but it is still acceptable.

As stated in Table 1, the discrepancy appeared in the
results, but was still within the range and accepted. This
can be interpreted as the beam is non-prismatic; in addition,
it is a functionally graded material with different Young
Modulus, and those factors have slightly affected the results
in free clamped beam. However, in the case of the simply-
supported beam, it is fixed on both sides, and the increase
and decrease of alpha do not present significant effects on
the results. The comparisons generally show similar trends
and behavior to those reported results [26].

3. Results and Discussion

The elastic moduli of materials of the models are ceramic, i.e.,
located at the left side with 380GPa, whereas themetal is mod-
eled at the right side of the beam with 70GPa. The beam’s
non-uniformity parameters, i.e., αb and αh , are considered 1,
0.5, 0, -0.5 and -0.75. In other words, when the width and
thickness of the beam change together ðαh = αb = αÞ. The
magnitude of ðαÞ will be considered as (1, 0.5, 0, −0.5, and
−0.75). The effects of non-uniformity parameters and

power-law index (K) on the dimensionless deflection with dif-
ferent types of support of A-FGBs, i.e., free-clamped, clamped-
free, and simply-supported, examine under distributed load.

3.1. Effects of Width Variation. Figure 5 states the variation
of maximum dimensionless deflection due to the increase
in the power-law index for different non-uniformity param-
eters. It is clear that when the power low index increases, the
maximum dimensionless deflection decreases. This can be
interpreted as increasing power low index (K) leads to an
increase in the equivalent elastic modulus of A-FGB and
eventually contributes to decreasing in the static deflection
for all supporting types of A-FGBs.

Also, the non-uniformity parameter in the width of the
beam significantly affects the deflection in the free-clamped
beam (Figure 5(a)) in comparison with its influences on
other types of supports (Figures 5(b) and 5(c)).

However, when the non-uniformity parameter in width
decreases, i.e., α = −0:75, the maximum dimensionless
deflection increases. This influence can be explained by con-
sidering the position of the clamped end. If the position of
the clamped end is on the side of a smaller elastic modulus,
i.e., right side, the maximum dimensionless deflection is
expected, while if the position of the clamped end is on the
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Figure 6: Effect of the power-law index (K) on the maximum deflection of A-FG beam with different boundary conditions under
distribution load and thickness variation: (a) free-clamped A-FGB; (b) clamped-free A-FGB; and (c) simply-supported A-FGB.
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side of the larger elastic modulus, i.e., left side, the maximum
dimensionless deflection will decrease. In addition, the
geometry of the beam, i.e., changing in width, affects the
relationship between the applied distribution load and the
area (length ∗ width). The distribution load is represented
as the pressure applied to the area. In this case, when the
non-uniformity parameter increases, the area will increase,
and the load on the right side will be greater than the load
on the left side of the beam.

It can reversibly occur if the non-uniformity parameter
decreases, the area (length ∗ width) will decrease, and the
load on the right side will be smaller than the load on the left
side of the beam. Generally, the maximum dimensionless
deflection decreases when the non-uniformity parameter
increases for the same power-law index for any supporting
type.

3.2. Effects of Thickness Variation. Figure 6 shows the effects
the of non-uniformity parameter of thickness variation, αh,
on the maximum dimensionless deflection at different
power-law indexes and supporting types. In this scenario,
the width of the beam is constant; therefore, the applied dis-
tribution load is constant along the beam, but the moment of
inertia and elastic modulus change along the length of the

beam. The changing of the moment of inertia is due to the
thickness variation along the length of the beam.

It is obvious that, for all supporting types, the maximum
dimensionless deflection increases, while the non-uniformity
parameter decreases ðαhÞ and the rate of increase depends on
the supporting types. The maximum rate of dimensionless
deflection appears in free-clamped support (Figure 6(a)) in
comparison with other supports Figures 6(b) and 6(c). The
main factors that affected the maximum dimensionless
deflection and its rate of change are the distribution of elastic
moduli, the position of the clamped end, and the change in
moment of inertia.

3.3. Effects of Both Width and Thickness Variations. Figure 7
depicts the influences of the variation of width and thickness
together at the same rate on the maximum dimensionless
deflection at different power-law indexes. With increasing
K, the maximum dimensionless deflection decreases for all
supporting types as has been observed with other scenarios.
Also, the increase in non-uniformity parameters leads to a
decrease in maximum dimensionless deflection. The rate of
change in maximum dimensionless deflection in free-
clamped A-FGB (Figure 7(a)) is greater than in clamped-
free and simply-supported A-FGBs.
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Figure 7: Effects of the power-law index (K) on the maximum deflection of A-FG beam with different boundary conditions under
distribution load and width and thickness variations: (a) free-clamped A-FGB; (b) clamped-free A-FGB; and (c) simply-supported A-FGB.
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Figure 8: Static non-dimensional deflection along the length of free-clamped A-FGB under distribution load with different non-uniformity
parameters.
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Figure 9: Static nondimensional deflection along the length of clamped-free A-FGB under distribution load with different non-uniformity
parameters.
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Figure 10: Static nondimensional deflection along the length of simply-supported A-FGB under distribution load with different non-
uniformity parameters.
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3.4. Path Results of Static Deflection. To extend the study, the
effects of the power-law index (K) and non-uniformity
parameters on the dimensionless deflection along the length
of the free-clamped A-FGBs are shown in Figure 8. Gener-
ally, the width variation effects are not significant on the
deflection in the beam in comparison with the thickness var-
iation effects and the combination of both width and thick-
ness variations, where it has the greater effects. In other
words, the effects of variations mean that the dimensionless
deflection increases as the non-uniformity parameters are
reduced. It seems that increasing the rate of dimensionless
deflection leads to an increase in decreasing the non-
uniformity parameters.

However, the effects of thickness variation are larger as
shown in Figure 9 for the clamped-free beam in comparison
with the effects of changing the width of the beam.

For simply-supported A-FGB as shown in Figure 10, the
effects of width variation, thickness variation, and both
width and thickness variation cause to increase the dimen-
sionless deflection, in addition to changing the position of
maximum dimensionless deflection.

Generally, the mid-span is the position of the maximum
deflection in a simply-supported beam (i.e., x = l/2). When
both width and thickness are varied, the dimensionless
deflections give the largest values compared with thickness
and width variations alone. It seems that the position of
dimensionless deflection is changed due to the variation in
the dimensions of the beam and the distribution of elastic
modulus.

4. Conclusions

The static analysis of non-prismatic A-FGB at different sup-
porting types was carried out using the ANSYS workbench
(17.2). The following conclusions can be drawn from the
results.

The power-law index and non-uniformity parameters
affect the maximum dimensionless deflection. In other
words, with increasing the power-law index, the max-
dimensionless deflection decreases at the same non-
uniformity parameters, while the maximum dimensionless
deflection decreases with increasing the non-uniformity
parameters.

In free-clamped A-FGB, the effects of non-uniformity
parameters are greater than that of the power-law index.
The effects of variation of both width and thickness are sig-
nificant on the dimensionless deflection of the beam com-
pared with other variations.

In clamped-free A-FGB, the effects of thickness variation
are notable compared with other variations.

In simply-supported A-FGB, the effects of variation of
both width and thickness are significant compared with
other variations.
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