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TtlE destruction of joints caused by rheumatoid arthritis
and osteoarthritis is characterized by an imbalance of
enzyme catalysed carthage breakdown and regeneration.
A complex cytokine network perpetuates joint conditions
by direct regulation of metalloproteases, by indirect re-
cruitment of cells that secrete degradative enzymes, and
by inhibition of reparative processes. The destructive
action of cytokines such as interleukin-1, interleukin-6
and tumour necrosis factor-ix can be modulated at multi-
ple points associated either with cytokine production
or with cytokine action. Potential agents for cytokine
reduction include selective anti-cytokine antibodies, anti-
cytokine receptor antibodies, cytokine receptor antago-
nist proteins, and soluble and chimeric cytokine receptor
molecules. Pharmacologic regulation of IL-1 and TNFtz
remain primary targets for treatment of arthritis, and
results ofearly clinical trials are promising. However, the
results of long-term clinical trials will be required to
support the value ofanti-cytokine therapy in treatment of
arthritis.
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Introduction

Slow, steady destruction of painful, swollen joints
is the hallmark of connective tissue disorders such as
rheumatoid arthritis (RA) and osteoarthritis (OA). RA,
an autoimmune disease, involves T and B cell infil-
tration of the synovial lining and extensive prolifera-
tion of synovial lining cells, resulting in the formation
of pannus and influx of polymorphonucleocytes
(PMNs) and monocytes into both the synovium and
synovial fluid. There may be considerable bone loss,
particularly at the margins of the synovial lining, and
joint deformity.1,20A is primarily characterized by
loss of articular cartilage. Synovitis may play a role,
particularly in painful joints, but bone loss and
pannus formation are uncharacteristic. However,
cartilage and bone parameters are not normal either
in RA or OA. RA and OA are at opposite ends of an
inflammation spectrum, in that RA affects multiple
joints of the body, involves a large-scale systemic
response and is immunologically driven. Cartilage
loss in RA proceeds from the invading edge of the
pannus. In OA cartilage loss appears to be primarily
driven by the cartilage itself. In both cases, joint
destruction is characterized by an imbalance of en-
zyme catalysed cartilage breakdown and regenera-
tion.

While both OA and RA are characterized by in-
creased amounts of metalloproteases in synovium
and cartilage, the synovial involvement is far more
pronounced in RA. Thus the pathway of joint de-
struction in RA is thought to overlap the events

causing OA, but to be broader in scope and to
engage more members of the cytokine network.3,4

The aetiology of OA is thought to involve precipitat-
ing events ranging from crystal deposition, joint
neuropathy, sub-chondral sclerosis, mechanical de-
fects, metabolic abnormalities, to mechanical trauma.
However, alterations in chondrocyte metabolism are
thought to be at the root of OA of various origins.

Various members of the cytokine network have
been implicated in joint destruction both by direct
regulation of metalloproteases, by indirect
recruitment of cells that secrete degradative
enzymes, and by inhibition of reparative processes.
Among the most well characterized are IL-1, IL-6, TNF
and chemokines such as IL-8. The destructive action
of cytokines can be modulated at multiple points
associated either with cytokine production,
including transcription, translation, secretion and
degradation; or with cytokine action, including
inhibition of receptor binding and signal
transduction. In this review, the potential of
cytokine modification for treatment of the
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destruction of joints accompanying OA and RA will
be considered.

Conditions of joints in osteoarthritis and
rheumatoid arthritis

Osteoarthritis (OA) is defined as a complex of
interactive degradative and repair processes in carti-
lage, bone and synovium, with secondary
components of inflammation. The aetiopathologic
processes involved are complex, and their relative
importance continues to be debated.
By currently held concepts, two general pathways

lead to OA. The first involves fundamentally defec-
tive cartilage with biomaterial properties directly or
indirectly leading to OA. Thereby, the cartilage ma-
trix fails under normal loading of the joint. A recently
described type II collagen defect well exemplifies
this pathway; following biomechanical failure
osteoarthritis ensues. The second, and by far most
prevalent, concept of the cause of OA is based on the
major role that physical forces play in causing dam-
age to normal articular cartilage matrix. First, there is
direct injury of the matrix; secondly, chondrocytes
embedded in the matrix are injured by the same
forces.-n In the course of time, these chondrocytes
react to injury by elaborating degradative enzymes
and developing inappropriate repair responses. 11,1"

Recent research implicates the enzymatic breakdown
of cartilage as a key feature of disease progression,n

OA is characterized by the increasing degeneration
of articular cartilage, a thickening of the subchondral
bone, and the formation of marginal osteophytes.
Biochemical and histological studies indicate that
there is focal loss of extracellular ground substance
in the matrix of OA lesions. As the disease
progresses, there are ulcerations in the cartilage and,
finally, the entire articular surface is lost.3 In OA,
changes not only involve the cartilage, but other joint
structures such as the synovial membrane.4

Synovial inflammation is responsible for some OA
symptoms and is also likely to play an important role
in the pathological process by interacting with, and
thereby accelerating, catabolism.1 The order in
which the biochemical changes take place during the
destructive phase of this disease is not yet clear.
However, one of the main biochemical changes in
the articular cartilage appears to be related to altera-
tions in the proteoglycan structure. These macromol-
ecules undergo quantitative and qualitative
changes. 3,15 There is a progressive depletion of car-
tilage proteoglycan, which parallels the severity of
the disease.16 At a certain stage, the chondrocytes
appear unable to fully compensate for the
proteoglycan depletion resulting in a net loss of
matrix. The structural changes of the proteoglycan
macromolecules include a decrease in hyaluronic

acid content, a diminution in the size of proteoglycan
aggregates and monomers, and a decrease in the
aggregation properties of the monomers.1-8 The
latter changes seem likely to reflect the degradation
of the proteoglycan monomer core protein in which
cleavage has occurred in several areas, including the
hyaluronic acid binding region (HABR).9 Although
the content of type II collagen remains unchanged in
OA cartilage, the increased cartilage hydration and
the ultrastructural changes of the collagen fibres’
represent important alterations in the collagen fibre
network. The increase in minor collagen types such
as type collagen, particularly in the pericellular area,
suggests a change in chondrocyte metabolism.’
These changes in the proteoglycan content of the
matrix, together with the damaged collagen struc-
ture, lead to a functional deterioration of the carti-
lage, making it less resistant to compression and
other mechanical stress, which lead to the appear-
ance of progressive cartilage lesions.

In OA, mechanical factors and enzymatic pathways
are both involved in cartilage matrix degradation,n

The enzymatic process appears related not to a
unique system, but rather to a cascade of events,n In
contrast to rheumatoid arthritis (RA), where the
synovium is probably the most important source of
degradative enzymes, chondrocytes seem to be the
most important enzymatic source responsible for OA
cartilage matrix metabolism. Currently, the enzyme
families that have been identified as playing a sig-
nificant role in OA pathophysiology are the
metalloproteases, the serine proteases and the thiol
proteases.
The main metalloproteases involved in cartilage

matrix degradation are collagenase, stromelysin and
gelatinase.’’-24 Collagenase appears to be responsible
for the breakdown of the collagen network in OA
cartilage. An increased collagenase level has been
identified in situ in human OA cartilage’5 as well as
in the experimental dog OA model.’ In addition, the
collagenase level was found to correlate with the
severity of OA cartilage lesions. ’5 Stromelysin has
been identified in human articular cartilage, and
its level also correlates with the severity of OA
lesions. ’,’4 An increased level of collagenase and
stromelysin mRNA has been found in OA
chondrocytes,’6 and their levels enhanced in OA
synovial fluid. ’7 Furthermore, active stromelysin can
mimic ex vivo and in vitro the breakdown of the
proteoglycan monomer core protein, including
HABR cleavage seen in OA.1:a8,’ Histochemical stud-
iesa4 have also revealed a correlation between the
level of stromelysin and the degradation of
pericellular proteoglycan. Degradation of types II
and IX collagen was also reported to occur through
stromelysin. Moreover, stromelysin may play a dual
role in OA pathophysiology; on the one hand, by
degrading matrix macromolecules itself and, on the
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other, by activating procollagenase. 29 The 92 kDa
gelatinase is selectively expressed in fibrillated carti-
lage and is also likely involved in OA cartilage
degradation. 22 The biological activity of
metalloproteases is controlled by both physiological
inhibitors and activators. At least two tissue inhibitors
of metalloproteases (TIMP-1 and-2) are known to
exist in humans. In OA cartilage, there is an imbal-
ance between the synthesis and activity of TIMP and
metalloproteases corresponding to a relative deficit
in the amount of the inhibitor,3,31 favouring an in-
creased level of active metalloproteases and second-
arily matrix degradation.

Serine and thiol dependent proteases, including
the plasminogen activator (PA)/plasmin system and
cathepsin B respectively, have both been suggested
as possible activators of metalloproteases.32,3 The
plasmin system was shown to be involved in the
activation of latent metalloproteases during in vitro

studies, demonstrating that plasmin activated RA
synovial collagenase. However, a later study
showed that complete collagenase activation re-
quires, in conjunction with plasmin, the presence of
active stromelysin. 29 To date, very few studies have
addressed the involvement of PA/plasmin in OA
pathophysiology. A recent report indicates that OA
cartilage contained an increased level of plasmin
associated with an increased synthesis in PA
(urokinase type).4 This study also revealed that a
correlation exists between the level of plasmin and
active collagenase in OA cartilage showing severe
lesions.4 Moreover, one of the major physiological
inhibitors of plasminogen activators, PAl-l, was
found to be markedly decreased in OA cartilage.4
These findings, together with the increased level of
PA, may partly explain the increased level of biologi-
cally active metalloproteases in OA tissue. Degrada-
tion of the extracellular matrix macromolecules
often occurs in the pericellular area around the
chondrocytes, where the matrix pH is in the acid
range. At first, cathepsin D was thought to be the
prime candidate for causing matrix degradation.
Although cathepsin D is elevated in OA cartilage,
it does not seem to be involved in cartilage
resorption.35 However, cathepsin B, another lyso-
somal enzyme, is likely to play an important role in
cartilage degradation through its direct degradative
effect on both collagen and proteoglycans, and also
by activating metalloproteases.6 Although cathepsin
B is maximally active at pH 6.0, this enzyme can also
exert proteolytic activity for a limited time at neutral
pH.6 As in several other human enzyme systems, the
proteolytic effect of cathepsin B is regulated by
specific protease inhibitors. Two such inhibitors,
with molecular weights of 67 kDa and 13-16 kDa,
have been found in articular cartilage.7,8 It appears
that the small inhibitors are forms of cystatin and the
large inhibitor is a kininogen.9,4 In OA cartilage, the

cathepsin B level is increased, showing higher activ-
ity in cartilage lesions with a concomitant decrease in

cysteine protease inhibitory activity.7 This imbalance
between cathepsin B and cysteine protease inhibitor
levels may be an important contributing factor in OA
cartilage degradation.
Rheumatoid arthritis (RA) is an autoimmune disor-

der characterized by a chronic, erosive synovitis of
joints.41 The cause of RA is unknown, and it is in fact
possible that there are several causes for the disease.
Infectious agents remain a focus of suspicion; how-
ever, there is no direct evidence for their involve-
ment. An interrelationship between infectious
agents, genetics and autoimmunity has also been
suggested.42

In RA, the disability is due to damage to joint
structures such as the capsule, ligaments and erosion
of cartilage and bone. The initial pathologic changes
in early RA happen at the synovial microvascular
level with an activation and swelling of endothelial
cells.43 Plasma exudation which follows is reflected
by the development of oedema in the subsynovial
lining tissue. The cells in the synovial lining cell
layer become activated, and their numbers are
greatly increased. This lining consists of three
cell populations: phagocytic cells of the
monocyte-macrophage lineage, dendritic cell and
fibroblast-like cells.44 A small number of
polymorphonuclear leukocytes are also observed at
the superficial layer of the synovium. A large accu-
mulation of mononuclear cells is seen around blood
vessels and in the sublining synovial tissues. The
sublining tissue is infiltrated with nodular collections
of mononuclear cells, particularly around blood ves-
sels. Activated T lymphocytes are predominant in
focal aggregates and plasma cells at the periphery of
the nodule. More diffuse collections of mononuclear
cells consist of macrophages, T cells, B cells and
plasma cells.45 At chronic stages of the disease, the
synovium becomes hypertrophic and villous projec-
tions of synovial tissue invade the joint cavity. The
mass of inflammatory cells may invade over the
surface of the articular cartilage (pannus) or may
burrow into the subchondral bone. Joint destruction
occurs predominantly in areas adjacent to the margin
of the invading pannus.4

The destruction of the joint probably results from
the production of an excessive amount of
degradative enzymes. The major producer of
enzymes is likely to be the synovial fibroblast at the
synovial lining level. Polymorphonuclear leukocytes
can also release several proteinases, and probably
contribute to the proteolytic activity found in inflam-
matory synovial fluids.47 Activation of neutrophils
also results in the release of reactive oxidants which
contribute to inflammation and injury of joints.
The neutrophil proteases include elastase
(serine protease), gelatinase and a collagenase
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(metalloprotease); the latter is distinct from the
collagenase synthesized by fibroblasts.48,49 In the
synovial lining cells, both the macrophages and
fibroblast-like cells express collagenase and
stromelysin. 50-5’-

Interactions of cells with the cartilage matrix mol-
ecules are also important in the regulation of cellular
activity in inflammation. The production of cytokines
such as IL-1 is increased when mononuclear cells are
exposed to several types of collagens such as types
II, III and IX.53’54 Fragments of type collagen as well
as other constituents of the bone matrix can stimulate
production and release of IL-1 by monocytes.
Autoimmunity to cartilage matrix molecules may

also play a role in cartilage destruction. Antibodies to
cartilage collagens (types II, IX and XI) are commonly
present in patients with rheumatic diseases.55,56 The
collagen fragments released from cartilage can pos-
sibly be recognized by the immune system as foreign
proteins. Immune complexes containing antibodies
to type II collagen have been observed in the super-
ficial zone of articular ca.rtilage in patients with RA.56

The appearance of these antibodies occurs after
articular cartilage damage has begun. The loss of
cartilage may be accelerated by the deposition of
immune complexes in the superficial layers of the
cartilage, which favours invasion of the pannus.57

Neuropeptides may play a role in the modulation of
the inflammatory response.58 Substance P, a peptide
located in peripheral nerves, has been shown to
induce the production of cytokines (IL-1, TNFz and
IL-6) by mononuclear cells59 and metalloproteases
and prostaglandins by synovial fibroblasts. This
finding emphasizes the complexity of factors in-
volved in the pathogenesis of RA.

It is likely that important interactions occur be-
tween monocyte/macrophages and synoviocytes re-
suiting in the regulation of enzyme release, cytokine
formation and cell proliferation. It is suggested that
while immune mechanisms may initiate early stages
of the disease, synoviocytes and macrophages are
independently capable of maintaining a destructive
phenotype and this may contribute to the chronic
nature of RA.

Role of cytokines in the destruction of
joints

The spectrum of factors responsible for the altered
function of synovium and cartilage in conditions
such as OA and RA has not been fully defined.
Prevailing theory dictates that the perpetuation of the
above arthritic diseases is. likely to be controlled by
a complex cytokine network, in which three of them,
IL-1, TNFz and IL-6 appear to be of major impor-
tance. These cytokines are soluble molecules that
transmit information between cells. IL-1, TNF0t and
IL-6 have been detected in synovial fluid, synovium

and cartilage from RA patients, and IL-1 and IL-6
in the latter tissues from OA patients. The major
source of these cytokines in synovium is believed
to be monocytes/macrophages; however, current
evidence suggests that synovial lining cells
(synoviocytes) also produce these cytokines. Find-
ings suggest that IL-1 may be secreted by
chondrocytes, whether this represents autocrine
and/or paracrine stimulation is not yet known. It may
be that this cytokine diffuses through the synovial
fluid into the cartilage thus inducing chondrocytes to
produce IL-1. Also, IL-6 is believed to be produced
by chondrocytes.1

The three cytokines, IL-1, IL-6 and TNF0t are syn-
thesized and released as part of the response of their
cells of origin to specific signals, and they influence
the response and function of their target cells, largely
by exerting a positive or negative influence on gene
expression (Fig. 1). One important principle is re-
flected in their ability to cause multiple effects, over-
lapping and synergizing with other cytokines. The
action of IL-1 and TNFz on joint tissues are multifac-
eted, with many different gene products being influ-
enced either by stimulation or suppression. The as-
sociation of these cytokines with tissue damage
arises from their propensity to stimulate the
proteolytic pathways of extracellular matrix degrada-
tion and, at the same time, subdue the synthetic
pathways leading to new matrix formation.

It is likely that IL-1 is responsible for increasing the
protease synthesis in diseased synovium, as
metalloprotease production correlates with the sever-
ity of synovial inflammation and the latter with the
level of IL-1 in the synovial fluid3. The capacity of IL-
l produced by the inflamed synovium to stimulate
the production of collagenase and PA by synovial
fibroblasts has been well documented.6 In
synovium, protease inhibitors, such as TIMP or
PAI-1, are either suppressed or unaffected by the
cytokine IL-1. Mediators of the inflammatory process
such as prostaglandin E2 and IL-6 are both stimulated
by IL-1. As synoviocytes secrete IL-1, it is tempting to
speculate that autocrine stimulation may also play a
role in the regulation of synoviocyte enzyme synthe-
sis. IL-1 may also contribute to the fibrosis observed
in arthritic synovium, as it increases the synthesis of
types and III collagens by synovial fibroblasts,e7,es

Many of the effects of TNFz on synovium overlap
with those of IL-1. In synovial tissue TNF0t stimulates
collagenase and prostaglandin E production, dis-
plays synergism with other cytokines and, in certain
circumstances, induces IL-1 production.
The exact role of IL-6 in arthritic synovium has not

yet been clearly defined. The ability of IL-1 and TNFz
to induce IL-6 protein and mRNA in synovial
fibroblasts9 suggests that this cytokine may be an
important intermediate signal in the induction of
other cellular responses to these cytokines. How-
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FIG. 1. Diagrammatic representation of potential sites at which the destructive activities of cytokines can be modulated. The biological effects of
cytokines can be modulated at points associated with cytokine production, including transcription, translation, secretion and degradation; or at points
associated with cytokine action, including inhibition of receptor binding, signal transduction or inhibitors of hydrolytic enzymes.

ever, IL-6 has no direct effects on the synthesis of
proteases, prostaglandins or matrix proteins, but
stimulates synthesis of TIMP.7 It is suggested that IL-
6, by its in vivo activation of B cells, may contribute
to the immunologic phenomenon; its role in inflam-
mation may be via regulation of changes in the
concentrations of acute phase proteins.
Another important effect of cytokines on the devel-

opment of synovitis is their contribution to the ex-
pression of adhesion molecules, which in turn con-
trol the accumulation of leukocytes. Evidence exists
that IL-1 and TNF0t are involved in the early events
affecting the joints by their contribution to the migra-
tion of cells to the site of inflammation and their
stimulation of a variety of responses in endothelial
cells. At present, four families of adhesive molecules
have been described:71 the immunoglobulin
suiergenes, the integrins, the cadherins and the
syndecans. The cytokines IL-1 and TNF0t were re-
cently shown to upregulate the expression of some
of the members of the first family, the ICAM, present
on fibroblast and endothelial cells.:’ It is likely that
increased ICAM expression plays an important initial
step in the binding of leukocytes to synovial
endothelial cells in RA joints:3 and facilitates the
subsequent entry of these cells into the inflammatory
synovial fluid. Yet no effect by these cytokines has
been demonstrated on members of the other adhe-
sion molecule families. In synovial fluid, as well as in
the synovial tissues, polymorphonuclear leukocytes
are attracted and are believed to play a role in tissue
destruction by their release of cytokines and-degrad-
ing proteases. Evidence is mounting that a new
cytokine superfamily, known as the intercrine (or
chemokine), the members of which have the ability

to mediate the recruitment of leukocytes, is likely to
play an important role in inflammation.4,5 As these
intercrines exhibit differing patterns of specificity for
various leukocyte populations, this makes them at-
tractive candidates as important components of the
inflammatory process. Members of this family are
classified as two groups according to the position of
the first two cysteines in the conserved motifs.
Among the first group are IL-8 and MCP-1; RANTES
belongs to the second group. The members of the
first group appear to be chemotactic for neutrophils,
but not for mononuclear leukocytes, whereas the
second group members attract mostly mononuclear
cells and granulocytes. Recently, it was shown the
MCP-1 and IL-8 are expressed in monocyte/
macrophages, fibroblasts and endothelial cells in
response to the cytokines TNF and IL-1.7e1 Simi-
larly, RANTES expression in fibroblasts was also
found to be enhanced by these two latter cytokines.82

Although they are present in the synovial environ-
ment of RA and OA,81,*5 their diversity of function
and their mutual interaction have led to considerable
confusion. However, it is important to recognize
that they are generated only after specific cell-cell
interaction and their activity is limited to the
microenvironment immediately surrounding the cell
that produced it.
The action of cytokines is not unique to synovial

membranes, they also compromise articular cartilage
functions. In articular cartilage, IL-1, TNF and IL-6,
appear among the known cytokines to play a major
role in the pathological process. In addition to the
above-mentioned effects on the synovium, IL-1 sup-
pressed the synthesis of collagen types characteristic
of hyaline cartilage (type II and type IX), while
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promoting the synthesis of these collagen types char-
acteristic of fibroblasts86 (type and type III), thereby
causing the decreased repair of cartilage matrix. The
synthesis of the aggregating proteoglycan (aggrecan)
characteristic of hyaline cartilage is also suppressed,
although those proteoglycan molecules that are syn-
thesized appear to undergo normal post-translational
processing.87 It has been suggested recently that the
effect of IL-1 on the inhibition of proteoglycan syn-
thesis may be mediated by IL-6 in human cartilage,
and that IL-1 induces the synthesis and secretion of
IL-6 by human chondrocytes,e,s9 Interestingly, the
action of IL-1 on different connective tissue cells
does not always produce the same response,
i.e. stimulation or suppression. For example, in
contrast to the effect of IL-1 on chondrocytes, IL-1
stimulates glycosaminoglycan synthesis by synovial
fibroblasts.9 This is probably due to the differential
expression of aggrecan in synovial fibroblasts and
chondrocytes. In cartilage, by far the greatest propor-
tion of glycosaminglycan is synthesized as aggrecan.
However, in synovium, aggrecan is not significantly
expressed, but decofin is abundant, and the latter
gene is upregulated by IL-1.9 The effects of IL-1 on
cartilage proteins are not limited to inhibition of
synthesis, as prostaglandin E2 production is stimu-
lated by this cytokine.92 This stimulation of
prostaglandin production is of particular interest
because of the role it may play in exacerbating joint
inflammation, stimulating bone resorption and
modulating the immune response. Finally, IL-1 may
be involved in osteophyte formation, by stimulating
the proliferation of human osteoblast-like cells caus-
ing increased bone formation.

In cartilage, TNF(x appears to induce many effects
analogous to those generated by IL-1, although the
former is generally less potent in its effect than either
form of IL-1.93 Although the effect of TNF0t on
chondrocytes has been less well Studied than that
of IL-1, it is clear that TNF, like IL-1, can stimulate
the production of proteolytic enzymes such as
collagenase, stromelysin, elastase and PA, as well as
prostaglandins E and IL-6. TNFot also has, however,
no effect on TIMP production by articular
chondrocytes. TNFx also modulates the synthesis of
cartilage matrix and, like IL-1, suppresses aggregating
proteoglycan synthesis94 and selectively decreases
the production of cartilage type and type II colla-
gens. It suppresses the expression of type II collagen,
but increases type and III collagen gene expres-
sion.95

In contrast to its detrimental role of inhibiting
proteoglycan synthesis, IL-6 does not appear to
influence the production of the metalloproteases,
either alone or in combination with IL-1.96’97 Indeed,
it appears to stimulate the production of TIMP7,9: In
this manner, IL-6 production would counteract the
degradative potential of IL-1. In cartilage, the involve-

ment of IL-6 in the proliferation of chondrocytes as
well as clones is plausible, as this cytokine has been
shown to enhance human OA chondrocyte prolifera-
tion.9s

Finally, the process involved in the inhibition/
activation process of metalloproteases in arthritic
joint tissues could very well be modulated by IL-1.
For instance, the imbalance in the TIMP-1 and
metalloproteases levels31 in articular cartilage may be
mediated by IL-1, as in vitro experiments showed
that increasing concentrations of IL-1 produced de-
creased TIMP-1 synthesis in parallel with increased
metalloprotease synthesis in articular cartilage and
chondrocytes.3,4 PA synthesis is also modulated by
IL-1. In vitro stimulation of cartilage chondrocytes
with IL-1 showed a dose dependent increase of the
PA, concomitant with a sharp decrease in PAI-1
synthesis.99-m The potent inhibitory effect of IL-1 on
PAI-1 synthesis, in combination with a stimulatory
effect on PA synthesis, is a powerful mecl-ianism for
regulation of the generation of plasmin and
metalloprotease activation. In addition to its role as
an enzyme activator, plasmin may also be involved
in cartilage matrix degradation by direct proteolysis
of the proteoglycan monomer.2

Potential stages for cytokine reduction

Cytokine production is associated with distur-
bances of homeostasis ranging from acute conditions
such as sepsis to chronic connective tissue disorders
such as RA and OA. Distinctly different strategies of
cytokine modification are required for blocking the
effects of cytokines produced locally and chronically
in joint conditions compared with those employed
for short periods when relatively high systemic levels
are produced, as in sepsis. Local elevation of
cytokines in joints during RA and OA may result in
minimal increases in systemic blood levels. Thus
TN, IL-1 and IL-6, if detectable, are much lower than
in sepsis, making direct measurement of cytokines
difficult. TM

Cytokine production can be assessed indirectly by
their biological effects. One of the best measured
sequelae of cytokine production and action is a
marked change in the pattern of hepatic synthesis of
plasma proteins. Plasma proteins whose synthesis is

responsive to cytokines (or secondarily to inflamma-
tion, trauma or sepsis) are known as acute phase
proteins or acute phase reactants. Two inducible
acute phase proteins, in particular, serum amyloid A
(SAA) and C-reactive protein (CRP), whose synthesis
is regulated by synergism of IL-1 and IL-6,TM have
prognostic value in the clinical management of arthri-
tis. The concentrations of IL-1 and IL-6 in plasma of
RA patients are considerably lower than that pre-
dicted by in vitro studies to be required for stimula-
tion of SAA and CRP production. Thus the nature of
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the signals to liver for acute phase protein synthesis
are not completely understood and are the subject of
active investigation in several laboratories. One pos-
sibility is that the signals from inflamed joints may
not be IL-1 and/or IL-6, but rather TNF0t or another
signal that stimulates IL-1 and/or IL-6 production by
Kupffer cells. Hepatocytes adjacent to the cytokine-
producing Kupffer cells are then able to respond. A
second possibility is that inflammatory cells may
travel from inflamed joints to the liver where they
come into contact with hepatocytes and then locally
produce the cytokines by which hepatic cells are
stimulated. A third possibility is that mediators that
are currently unknown may travel to the liver to
stimulate SAA and CRP synthesis. Although the exact
pathway by which inflamed joints signal changes in
hepatic protein synthesis is unclear, it has been
recognized for more than 20 years that elevated
concentrations of acute phase proteins are associated
with a poor clinical prognosis and more recently, that
reduction of disease activity by anti-rheumatic
therapy is accompanied by reduced plasma concen-
trations of acute phase proteins such as SAA and
CRP. 108-113 Measurement of acute phase proteins thus
provides a strategy by which therapies which inhibit
cytokine synthesis or action in the treatment of joint
conditions can be monitored.

Several cytokines have been detected in high con-
centrations in RA synovial fluid and synovial mem-
brane including IL-1, IL-6, TNFo,114-123 GM-CSF,TM IL-
881 and TGF.118,1’s IL-1, TNF0t and IL-6 are not only
found in RA synovium, but have been detected in
serum and synovial fluid of arthritis patients. 1’6,1’7

Both IL-1 and TNF0t are thought to play a significant
role in the pathogenesis of arthritis, but cannot totally
account for the pathology of RA and OA.1’8 The
leukocytic infiltration into the synovial lining and the
synovial fluid is thought to be due to production of
other mediators such as GM-CSF and IL-8, secondary
to IL-1 or TNF0t. Cytokine production and action may
play a role in arthritic joint conditions in a number of
ways, including disease induction, chronicity and
exacerbation. Thus cytokine blocking agents will be
of broad value in treating joint conditions. There are
several stages at which cytokine production can be
blocked, including transcription, translation, secre-
tion and action. Agents that reduce the synthesis and
action of cytokines known to be involved in joint
disease will be reviewed briefly in the following
sections.

Tumour necrosis factor-e: RA is characterized by
cellular activation and TNF: production. 118 TNFc,
originally identified for its anti-tumour activity and
subsequently for its cachectic activity, is known to
influence inflammation and cellular immune re-
sponses. 1’9-133 Transgenic mice that produce large
amounts of human TNF0t develop arthritis,TM and

TNFx administered into knee joints of animals causes
an acute arthritis.135a6 TNF0t, mainly derived from
monocyte/macrophage derived cells, signals its re-
sponses through two distinct cell surface receptors,
TNF-R55 and TNF-R75.1>9 While TNF-R55 and TNF-
R75 differ in the primary structures of their cytoplas-
mic domains, both are thought to bring about cellular
alterations by altering gene expression through acti-
vation of various nuclear transcription factors, which
act as a link between cell membrane and nucleus.
TNF-R are localized in synovial tissue and the
cartilage-pannus junction in RA patients to a much
greater extent than in OA patients.4

The single 3 000 bp TNFo: gene consisting of four
exons is on chromosome 6. Induction of TNFx syn-
thesis is under both transcriptional and post tran-

scriptional regulation,m Mature TNFo:, 17 kDa, 157
amino acids in length, is derived from a 26 kDa
transmembrane precursor protein42 by cleavage of a
76 amino acid region from the amino terminus; the
amino terminal region is thought to anchor the TNF
precursor in the plasma membrane. Native biologi-
cally active TNF0t is a trimer with a three-dimensional
structure similar to viral capsids.
Because TNF is produced locally at sites of in-

flammation and plays a pivotal role in the cytokine
network, it is desirable to prevent TNFt production
at the earliest stages. One promising technique is the
application of ribozymes, which have been designed
to cleave target viral RNAs including HIV-1, and are
considered to show promise as in vivo therapeutic
agents if obstacles to co-localization with their
substrates can be overcome,m In particular, it has
been thought that the compartmentalization of RNAs
in cells would limit the efficacy of ribozymes due to
reduced diffusion.TM Local administration of
ribozymes specific for TNFx to the joint has been
proposed,14s and preformed ribozymes have been
shown in a model system to reduce TNF0t mRNA and
production by 90% and 85%, respectively. 145

Several approaches have been used to inhibit the
interaction of TNF with its receptors. Suramin,
which has been used experimentally to block
ligand-receptor interactions, has been found to in-
hibit the biological activity of human TNFx through
direct action on the ligand, i.e. by dissociation of the
quaternary structure of TNFOt. 146’147 Recently, a chi-
meric monoclonal antibody to TNFx was used to
treat patients with RA14s with significant clinical im-
provements and changes in laboratory parameters
including decreased CRP, SAA and IL-6 concentra-
tions. Since CRP and SAA both appear to be stimu-
lated by synergism of IL-1 and IL-6 and TNFx alone
is less potent, this finding is consistent with the
concept that TNF is an early mediator that acts by
way of IL-1 and IL-6.
TNF inhibitory proteins identified in serum and

urine, were found to be fragments of the extracellular
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portions of TNF receptors. 149-153 These TNFcz binding
proteins can reach concentrations of greater than 2
ng/ml and are thought to neutralize TNF bioactivity
or to act as reservoirs from which TNF can slowly be
released. Recombinant soluble TNF receptors pre-
vent development of experimental collagen arthri-
tis154 as do anti-murine TNFot antibodies. 154,155

Interleukin-I: As discussed above, IL-1 is a
mediator of arthritis .with activity at many points
in the pathogenesis of the disease, e.g. capable
of inducing synthesis of metalloproteinases
implicated in cartilage loss, adhesion molecules
necessary for the migration of inflammatory cells
into inflamed tissue, and synthesis of cytokines
such as IL-6, IL-8 and GM-CSF. Animal studies
have shown that IL-1 directly injected into knee
joints will cause arthritis, will induce a flare of
quiescent, pre-existing arthritis and will increase
incidence and severity of arthritis in prearthritic
animals.156-58
Twodistinct forms of human IL-1 have been char-

acterized, IL-lot and IL-I[ (reviewed in References
159 and 160). The two forms have -27% amino acid
identity and are the products of separate genes. The
primary IL-1 gene products are 31 kDa proteins of
about 270 amino acids and are precursors of the
active species designated IL-lot (159 amino acid
residues) and IL-I[ (153 amino acid residues). The
IL-1 precursors lack classical hydrophobic leader
sequences and the 17 kDa mature IL-1 carboxyl
peptides are formed by action of specific proteases
upon secretion.
The human IL-I gene is 10 kb in length and the

IL-1] gene is --7 kb long. Both are on chromosome
2 and are comprised of seven exons and six introns.
Pro-IL-1 gene expression is regulated both
transcriptionally and post-transcriptionally. 16,162 The
IL-1 genes are under specific transcriptional control
which is influenced by cell type and the inducing
agent, and modulated by other cytokines. The differ-
ential expression of IL-lot and IL-I may be ex-
plained in part by the marked structural differences
between the two promoters. 163

The biological properties of IL-1 are similar to and
overlap those of TNF. In some situations,
potentiation or synergism between IL-1 and TNF
occurs, an effect that seems to derive from signal
transducing molecules rather than upregulation of
receptors, since IL-1 down-regulates TNF
receptors. 164,165

As reviewed by Fenton,62 transcription, translation
and release of IL-1 are distinct, dissociable processes.
Secretion and processing, of pro-IL-1] appear to be
linked. There are redundant mechanisms for control-
ling IL-1 production, and, once produced, there are
multiple mechanisms for regulating the effects of
IL-1 (reviewed in Reference 160). These include the

number of and the presence of receptors on target
cells, potential production of soluble receptors and
synthesis of inhibitors.
There are two Rs for IL-1, the 80 kDa type and the

60 kDa type II. In type II IL-1R, the cytoplasmic
domain portion is shorter than for type IL-1R.
Antibodies to the type IL-1R block the biological
effects of IL-1 whereas type II IL-R appears to be a
decoy receptor. 166 In contrast to antibodies to TNF
receptors, antibodies to IL-1Rs have not yet been
associated with agonist activities,m3a5

Soluble shed type IL-1R has not been described
in nature; type II IL-1R is shed. 66,6v The extracellular
domain of type II IL-1R has been cloned and ex-
pressed and shown to bind both forms of IL-1. In
terms of cytokine reduction, an advantage that sIL-1R
(or antibodies to IL-1) would seem to have over IL-
1RA is that quantities that are only stoichiometic to
IL-1 would be required to reduce IL-1 actions, rather
than the 1 000-fold excess that would seem to be
required of a competitive inhibitor, as studies in
animal models have indicated. 168 The naturally occur-
ring IL-1RA is induced at high levels and competes
with IL-1 for binding to its receptor,26a69 thereby
serving to buffer the intensity of an inflammatory
response. Cloned IL-1RA inhibits the activities of IL-
10 and IL-I,126’41 Production of IL-1 and IL-1RA are
regulated differently (reviewed in Reference 103).

IL-1 is a mediator of rheumatoid synovitis and
there are several stages at which its action can be
blocked. Transforming growth factor-J3 (TGF) is
known to counteract the effects of IL-1, perhaps by
reducing the number of IL-1 receptors or by stimu-
lation of IL-1RA release.v In animal models of arthri-
tis, IL-1RA has been shown to inhibit the flare of
streptococcal arthritis induced by streptococcal cell
walls, and anti-murine IL-1 antibody effectively re-
versed the inhibition of proteoglycan synthesis and
loss of cartilage that accompany monoarticular anti-
gen arthritis,m An initial study of subcutaneously
administered IL-1RA in RA has been reportedv2 with
greater than 50% reduction in swollen joints and CRP
concentration.
Antisense oligonucleotides form duplexes with

their corresponding sense mRNAs and prevent tran-

scription. 17 Antisense IL-10t inhibits the programmed
cell apoptosis of cultured endothelial cells.TM
Antisense inhibition of IL-1R expression is actively
being pursued. Because of difficulties in transport,
uptake and targeting of antisense oligonucleotides,v5

topical or local administration such as in the cases of
psoriatic arthritis would seem the most promising for
initial investigation.

Synovial fibroblasts have been transfected with IL-
1RA mRNA. Cells constitutively producing IL-1RA
have been injected into rabbit knee joints and shown
to block an IL-1 induced synovitis. v6 IL-I produc-
tion uniquely requires an enzyme termed pro-IL-l
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converting enzyme (ICE). Specific inhibition of
ICE appears to be a promising approach to arthritis
treatment in situations in which only IL-I[ is
involved. However, it remains to be determined
if there is redundancy of IL-I and IL-I in the
pathophysiology of arthritis.

Interleukin-6: The IL-6 gene is located on chromo-
some 7 and consists of five exons; expression is
induced by agents such as IL-1 and TNF to yield a
multifunctional cytokine that acts on many different
types of cells. 13,177,178 IL-6 signals target cells through
80 kDa cell surface receptors179 which as a complex,
IL-6/R, interacts with a 130 kDa protein to initiate
signal transduction. 18 Both the 80 kDa R and the
130 kDa signal transducing protein are subject to

regulation by inflammatory mediators. For
example dexamethasone (Dex) stimulates, while
high IL-6 levels down-regulate the 80 kDa IL-6R.
In contrast, IL-6, Dex and the combination stimulate
the 130 kDa signal transducing protein. A
soluble derivative of the 80 kDa receptor found in
urine,TM is thought to be generated by limited
proteolysis (shedding) of the 80 kDa plasma mem-
brane IL-6R. iv9 The soluble. IL-6 receptor consists of
the extracellular region only and lacks the
transmembrane and cytoplasmic region; soluble IL-
6R/IL-6 complex acts as an agonist for in vitro acute
phase protein synthesis. Thus in situations of sus-
tained high IL-6 and down-regulated IL-6R, the solu-
ble IL-6R may have an important physiologic role in
modulating the activity of IL-6. The IL-6 receptor
subunits belong to a superfamily which includes LIF,
oncostatin M, CNTF and GM-CSF.9 One IL-6 action,
fever, is blocked by cyclooxygenase inhibitors indi-
rectly through increased release of arachidonic
acid.13 Soluble p80R for IL-6 enhances activity. 181,82

Cytokine reducing effects of anti-arthritic
drugs

The scope, target mechanisms and effectiveness of
anti-rheumatic drugs in the pre-cytokine era were
thoroughly reviewed by Bonta and colleagues.18 The
use of cyclooxygenase inhibitors to inhibit the pro-
duction of prostaglandins has been a major element
in the clinical management of arthritis for about 100
years, while our understanding of the role of
prostaglandins in inflammation has been developed
over the past 20 years.

Non-steroidal anti-inflammatory drugs: The pro-
and anti-inflammatory action of PGE has been recog-
nized for a number of years.8 Prostaglandins affect
inflammation by several mechanisms. They alter
blood flow through inflamed areas, potentiate capil-
lary leakage, potentiate sensory fibre pain transmis-
sion and, by inducing intracellular cAMP, regulate

synthesis of proteins with cAMP regulatory elements,
such as TNF and IL-2. NSAIDs (aspirin,
indomethacin, fentiazac, naproxen, piroxicam) in-
crease TNF and IL-2, cytokines whose synthesis is
under regulation by POE2;184-187 however, acute phase
protein concentration is usually unaffected by
NSAIDs. PGE and other prostanoids inhibit inter-

feron-7 production whereas they are required for PA
synthesis.16a-19 NSAIDs appear to act by inhibition
of the synthesis of prostaglandins. Recently, two

cyclooxygenase enzymes have been identified. The
constitutive enzyme is called Cox-I and the second
enzyme, termed Cox-II, is induced by cytokines pro-
duced at the sites of inflammation. Selective Cox II
inhibitors are being designed in the hope of greater
selectivity in arthritic disease and decreased
gastrointestinal side effects.TM

Glucocorticoids: Glucocorticoids, like insulin, exert,
at concentrations usually found in plasma, direct
regulatory effects on inflamed areas such as joints. 192

Steroid analogues of cortisol, the major active

glucocorticoid in humans, such as hydrocortisone
and dexamethasone, inhibit release of arachidonic
acid from phospholipids of cell membranes by
inhibiting the activation of phospholipase A,.
Glucocorticoids inhibit collagen synthesis, and are
well known inhibitors of IL-1 production acting at
both transcriptional193 and post-transcriptional lev-
ds. 194q96 Glucocorticoids have also been reported to
have a general regulatory effect, inhibiting produc-
tion and activity of cytokines such as IL-2, -4, -6, -8,
GM-CSF and TNF{.195-2m IL-10 and dexamethasone
inhibit IL-1 and TNF production from LPS-stimulated
monocytes. 194,195,202-206

Immunomodulators and immunosuppressive agents:
RA has been classified as an autoimmune disease
since the pathologic manifestations of RA resemble a
misdirected immune response. T cells have been
implicated in establishment of chronic arthritic dis-
ease. Since antigen or mitogen stimulation of T cells
leads to increased expression of IL-2R, it has been
suggested that removal of activated IL-2R expressing
T cells during active disease could result in selective
depletion of those T cells involved in the disease
process. Furthermore, since RA probably results from
specific sets of antigen-responsive cells, seleclive
inhibition of these sets of T cells could provide
therapy that does not suppress general immune func-
tion. A trial of anti-IL-2R has been reported.2 Chi-
meric toxin-IL-2 fusion proteins may be useful in RA
treatment. A recent study has used oral chicken
collagen as treatment in an animal model of arthritis,
a treatment based on our knowledge that oral expo-
sure to antigen can result in long-lasting tolerance to
that antigen.’8 Results to date are limited to animal
models for which the inciting antigen is defined.
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Immunomodulatory and/or cytotoxic plant alka-
loids, are under investigation for their capacity to
control the production and action of pro-inflamma-
tory cytokines such as IL-1 and TNF. Compounds
derived from extract of plant roots have been tested
including tetrandine29 and extracts of Trypterygium
wilfordii Hook F2m including triptolide and
tripdiolide. ’xl These compounds are frequently po-
tent in their activity, but remain to be extensively
characterized.

Others: A synthetic analogue of fumagillin, AGM
1470 has been shown to inhibit experimental colla-
gen arthritis, presumably by inhibiting endothelial
cell growth and thus neovascularization.’’,’13 In ani-
mals models of OA, tetracycline shows promise for
treatment.24,215

Tenidap and IX-207-887, which have advanced
into clinical trials, have been shown to inhibit IL-1
synthesis and/or action.216-22 IL-1R in OA are
upregulated, whereas TNF-R occur at only low lev-
els221 and tenidap has been shown to down-regulate
IL-1R.222 In in vitro studies, tenidap has been shown
to inhibit IL-6 production by PBMCs to an even
greater extent than IL-1 is inhibited; furthermore
tenidap treatment has been shown to lower CRP and
SAA concentrations.2v,223 Tenidap treatment has re-
cently been shown to lower CRP concentrations in
OA patients.1 SKF-86,002 and chloroquine inhibit
IL-1 synthesis and/or action. 196,224 L-709,049 and SK&F
86002 interfere with IL-I[ secretion.225 Although
there are no reports of biological or synthetic IL-8
antagonists, quinolylmethoxyphenylamine (ETH
615) inhibition of IL-8 biosynthesis has been re-
ported.226

Summary and future perspectives

Based on animal studies, T cell involvement in RA
may play a critical role in initiation and perpetuation
of disease. As studies with cyclosporin A suggest, T
cell selective agents provided one promising avenue
of therapy. There is also little question that proteases
act directly to cause cartilage destruction in both RA
and OA. Selective inhibition of one or more of these
enzymes may provide a second avenue for treatment
of RA and OA. The involvement of cytokines,, par-
ticularly IL-1 and TNF, has been strongly supported
in animal models of arthritis by therapy using selec-
tive anti-cytokine antibodies, anti-cytokine receptor
antibodies, cytokine receptor antagonist proteins,
and soluble and chimeric cytokine receptor mol-
ecules. These studies suggest that IL-1 and TNF may
play additive, if not synergistic, roles, since inhibition
of either IL-1 or TNF{x provides therapeutic benefit.
Because of the plethora of potential pathological
consequences of cytokine elevation, pharmacologic
regulation of IL-1 and TNF0t remain primary targets
for treatment of arthritis. Early clinical trials of very

selective biological compounds support the thera-
peutic value of cytokine inhibitors. However, the
results of long-term clinical trials of selective pharma-
cological cytokine inhibitors will be required to de-
fine precisely the pathological roles of cytokines in
arthritis and the value of anti-cytokine therapy.
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