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Multiple sclerosis (MS) is a chronic demyelinating disease of the human central nervous system (CNS). The condition predom-
inantly affects young adults and is characterised by immunological and inflammatory changes in the periphery and CNS that
contribute to neurovascular disruption, haemopoietic cell invasion of target tissues, and demyelination of nerve fibres which
culminate in neurological deficits that relapse and remit or are progressive. The main features of MS can be reproduced in the
inducible animal counterpart, experimental autoimmune encephalomyelitis (EAE). The search for new MS treatments invariably
employs EAE to determine drug activity and provide a rationale for exploring clinical efficacy. The preclinical development of
compounds for MS has generally followed a conventional, immunotherapeutic route. However, over the past decade, a group of
compounds that suppress EAE but have no apparent immunomodulatory activity have emerged. These drugs interact with the N-
methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-isoxazolepropionic acid (AMPA)/kainate family of glutamate receptors
reported to control neurovascular permeability, inflammatory mediator synthesis, and resident glial cell functions including CNS
myelination. The review considers the importance of the glutamate receptors in EAE and MS pathogenesis. The use of receptor
antagonists to control EAE is also discussed together with the possibility of therapeutic application in demyelinating disease.

Copyright © 2006 C. Bolton and C. Paul. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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INTRODUCTION

Dedicated research by numerous scientific groups into the
causes and treatment of the human demyelinating disease
multiple sclerosis (MS), the most common disabling neuro-
logical condition of European, North American, and other
temperate climates, has been ongoing for many decades. MS
affects relatively young individuals, with a female to male ra-
tio of approximately 2 : 1. The disease is considered to in-
volve central nervous system (CNS) autoantigen-directed T
lymphocytes acting in concert with a genetically determined
susceptibility and exposure to environmental induction fac-
tors [1]. Progress has been made to advance understanding
of the disease process and offer effective methods of control.
However, there remains a lack of fundamental knowledge on
the primary aetiology of MS and a paucity of treatments to
alleviate symptoms and ultimately improve quality of life for
the patient.

The development and refinement of the inducible animal
disease experimental autoimmune encephalomyelitis (EAE)

has provided a reliable model for the study of MS offering
pathological and neurological features of striking similar-
ity to the human condition. The principal characteristics
in common include immunoregulatory defects, neurologi-
cal disabilities, blood-brain barrier (BBB) damage with asso-
ciated vasogenic oedema, inflammatory cell invasion of the
CNS parenchyma and, in the chronic models, demyelina-
tion and macroscopic plaque formation [2]. However, the
premise that EAE is strictly a model for MS must remain,
not least because of the obvious species differences and time-
scale of disease appearance and progression, but also because
of factors such as the divergence in identity of the causative
agents and the unpredictable patterns of clinical deficits ex-
perienced by patients.

Animal counterparts of human disease, whether spon-
taneous or inducible, have inherent limitations and EAE is
no exception. However, the model does provide an exten-
sively validated and useful in vivo system of immune cell-
mediated demyelination complete with quantifiable neu-
rological deficits. In particular, the model provides the
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opportunity to evaluate potential new therapies for MS treat-
ment and explore novel approaches to drug design, identify
new targets, and add to the growing number of drugs in clin-
ical trials.

The search for compounds with the ability to mod-
ify the onset and development of EAE have invariably fo-
cused on immunomodulatory agents [3]. However, over
the last few years, a group of established compounds
have emerged, with the ability to dramatically improve
the course of EAE but without apparent immunosuppres-
sive activity. The compounds interact with members of the
neuronal ionotropic glutamate receptor family comprising
the N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-
isoxazolepropionic acid (AMPA), and kainate receptors (Fig-
ures 1(a)–1(c)). The 3 types of receptors are ligand-gated ion
channels, named according to their specific agonists, which
control the most rapid synaptic events in the nervous system
through receptor-channel complex-mediated events.

Our original studies of 1994 [4, 5] were the first to
implicate the NMDA receptor in the pathogenesis of EAE.
Over the intervening years, there has been compelling ev-
idence, reviewed below, to confirm an important role for
the NMDA receptor in the disease. Additional investigations
have strongly indicated that AMPA receptors play a part in
the development of EAE and, of particular interest, more re-
cent unpublished studies have shown altered receptor expres-
sion in CNS tissues from MS patients (T. Smith, personal
communication). The amino acid glutamate is the main ag-
onist of the receptors and has been implicated in the patho-
genesis of neuroinflammatory disease [6, 7]. Hence, the dis-
covery of NMDA/AMPA receptor involvement in both EAE
and MS offers a plausible association between the receptors,
the amino acid, and development of both diseases.

GLUTAMATE IN EXPERIMENTAL AND HUMAN
NEUROINFLAMMATORY DISEASE

Olney, in the late 1960s [8], was the first to recognise that
the ubiquitous neurotransmitter, glutamate, when present in
excess, has the potential to be excitotoxic. Glutamate for-
mation is regulated by the enzyme glutamate dehydroge-
nase which catalyses the reaction of α-oxoglutarate with am-
monia [9]. The agonist concentration can be abnormally
increased by accelerating the reversible formative reaction
that is controlled by pyridine nucleotide coenzyme activ-
ity. Glutamine synthetase controls the incorporation of am-
monia into glutamate to form glutamine and the activity
of the enzyme can be dramatically increased or decreased
in the presence of excess divalent cations, including magne-
sium (Mg2+). Glutamate is stored in synaptic vesicles and
released by calcium (Ca2+)-dependent exocytosis. Sodium-
dependent, plasma membrane transporter proteins EAAC1
(EAAT3) and EAAT4, present mainly in neurons, and GLT-1
(GAAT2) and GLAST (GAAT1), expressed predominantly in
glial cells, facilitate cellular uptake of glutamate and accumu-
lation in synaptic vesicles [10].

Several studies have demonstrated glutamate involve-
ment in the pathology of EAE, and also MS, offering the

clear potential for aberrant ionotropic receptor activation.
In particular, the glutamate antagonist amantidine has been
shown to reduce the relapse rate in individuals with MS [11].
Also, Stover et al [12] have reported elevated glutamate levels
in the cerebrospinal fluid from MS patients. Interestingly, the
elevation was similar to concentrations recorded in myelopa-
thy and, perhaps more surprisingly, greater than noted dur-
ing cerebral ischaemia. However, and in contrast to the previ-
ous findings, Klivenyi et al [13] found no differences between
cerebrospinal fluid glutamate concentrations in MS and con-
trol samples despite elevated levels in both groups.

Enhanced concentrations of the agonist may result from
malfunctioning of activated astrocytes normally efficient
at controlling excess glutamate through regulation of the
metabolising enzymes glutamate dehydrogenase and glu-
tamine synthetase, which become down-regulated during in-
flammatory conditions such as EAE [14, 15]. The amount of
CNS glutamate may also be increased in EAE by abnormal
changes in neuronal and glial glutamate transporter levels
[16] which, under pathological conditions, are either inoper-
ative or acting reversibly to raise extracellular concentrations
of the agonist. Glutamate leakage from the serum across the
compromised BBB during EAE plus infiltrating inflamma-
tory leukocytes and activated resident microglia with the po-
tential to synthesise and release glutamate would provide a
continuous, local supply of the agonist. Also, microglia are
known to generate reactive oxygen and nitrogen species that
impair glutamate uptake mechanisms. The constant avail-
ability of glutamate would induce upregulation of its recep-
tors and, ultimately, the synthesis of mediators responsible
for neuronal dysfunction [12, 16–19]. Indeed, a recent study
in EAE found that prophylactic administration of riluzole,
an inhibitor of glutamate-dependent neurotransmission, re-
duced neurological severity, inflammation, demyelination,
and axonal damage strongly suggesting a broad role for the
enhanced presence of glutamate in the pathology of the dis-
ease [20].

In a novel approach to account for the increase in CNS
glutamate concentrations during neuroinflammation, Rose
et al [21] have suggested a mechanism that would oper-
ate through the actions of two enzymes, cyclooxygenase-2
(COX-2) and inducible nitric oxide synthase (iNOS), both
of which have been located in MS lesions. COX-2-derived
prostanoids, which exist at high concentrations in EAE and
MS CNS tissues [22–24], stimulate glutamate release from
CNS-derived cells [25, 26]. Additionally, nitric oxide (NO),
from iNOS, can increase COX-2 [27], plus reactive oxy-
gen species (ROS) [28], to react with NO to produce per-
oxynitrite (ONOO−) [29] that inactivates the glutamate
transporters [30, 31]. In addition, ONOO− directly dam-
ages myelin, oligodendrocytes, and axons [32], and therefore
plays a predominant role in the pathogenesis of EAE [33].

The evidence is unequivocal as to the consequences
of excitotoxic glutamate levels in the CNS of patients
with neuroinflammatory-based disease and that target tis-
sues require protection from the sustained biochemically-
mediated attack. Interestingly, in EAE, work by Schori et
al [34] supports a T-cell-dependent, self-protective immune
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Figure 1: Modulation of ionotropic glutamate receptor function. (a) NMDA receptor, (b) AMPA receptor, and (c) kainate receptor. The main
endogenous modulatory sites for the glutamate ionotropic receptors are shown and the sites of key exogenous pharmacological agents are
in italics. (+) stimulatory/potentiating action, (−) inhibitory action, (SS) subunit-specific action. Additional modifying agents (not shown),
where the action has not been specified through a binding site on the receptor, are (a) NO, ethanol, histamine (via polyamine site); (b)
arachidonic acid (−), NO; (c) ethanol (−), arachidonic acid (−). The diagram is intended as a summary overview and provides an indication
of modulation at these receptors. The discovery of new modulatory agents is ongoing, particularly for the AMPA and kainate receptors,
where significantly less is known compared to the NMDA receptor. Abbreviations: H+, proton; NO, nitric oxide; P, phosphorylation site;
PCP, phencyclidine.
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mechanism that may, at least in part, reduce the effects of
enhanced glutamate levels. However, the need for greater
control of the excitotoxic actions of ionotropic receptor ago-
nists is apparent and has not diminished. Indeed, over the
past decade much effort has been diverted to identifying
compounds that can negate glutamate-mediated neurotox-
icity incurred as a consequence of conditions such as stroke
and head injury. Results to date have been largely negative
and evidence for a neuroprotective role of glutamate antago-
nists in neurodegenerative diseases is lacking [35]. Similarly,
despite efforts to develop compounds that act by altering
the metabolism of glutamate, no such drugs have been pro-
duced. The rationale is now strong for assessing compounds
designed to limit the possible damaging effects of glutamate
in diseases such as MS and, in particular, to employ the ani-
mal counterpart EAE as the in vivo test system of choice.

THE NMDA RECEPTOR AND ANTAGONISTS

The NMDA receptor is most abundant in the cortex, basal
ganglia, and sensory pathways of the nervous system, and has
also been identified in a variety of nonneuronal and periph-
eral locations [36]. In particular, the receptor has been found
on the neurovasculature and mast cells derived from the CNS
[37–42]. The receptor consists of several subunits, compris-
ing the ubiquitous NR1 subunit and a variety of combina-
tions of NR2A to NR2D and the more recently identified
NR3 subunit [39, 43, 44]. Each subunit has 4 membrane do-
mains, an extracellular amino terminal region and an intra-
cellular carboxy group tail. The domains 1, 3, and 4 trans-
verse the membrane and domain 2 appears to form the reen-
trant loop which lines the ion channel (Figure 2). The chan-
nel pore is normally blocked by Mg2+ to prevent ion flux but,
on appropriate ligand stimulation, membrane depolarisation
occurs and the Mg2+ blockade is removed to cause a func-
tional opening of the receptor channel (Figure 1(a)).

The NMDA receptor is of particular interest to pharma-
cologists as there are a number of ligand binding and modu-
latory sites that offer potential therapeutic targets for control
and points of intervention (Figure 1(a)). Functional NMDA
receptor complexes are constructs of the NR1 and NR2/NR3
subunits containing the glycine and glutamate recognition
sites, respectively [45–47]. Agonists, including NMDA and
glutamate, bind to the glutamate recognition site, whereas
competitive antagonists such as selfotel may occupy a single
region, distinct from the agonist site, but coupled to provide
a competitive interaction. Interestingly, selfotel has been ef-
fectively used in vivo to block NMDA-induced BBB perme-
ability increases [48].

Glycine and D-serine act as coagonists, through the
glycine site, to prevent receptor desensitisation and are
prerequisites for the generation of enhanced inward flow
of current at the receptor. Histamine and the polyamines
(PAs), including spermine and spermidine, act as receptor
modulators to both potentiate and inhibit NMDA-induced
responses through distinct sites [49–51]. The receptor can
also be modulated by sigma site ligands at a position distinct
from the channel-blocking site [52]. A clearer understanding

of sigma site function in glutamate-mediated responses is
required before agents, directed at the target, can be designed
to offer therapeutic efficacy. The current extent of NMDA re-
ceptor modulatory sites is summarised in Figure 1(a).

NMDA receptors have been extensively studied and show
special pharmacological properties that are thought to play a
role in pathophysiological mechanisms. For example, the re-
ceptor is highly permeable to Ca2+ and other cations, includ-
ing sodium (Na+) and potassium (K+), and is readily blocked
by physiological concentrations of Mg2+ when the cell is nor-
mally polarised [9]. The Ca2+ permeability of the receptor
is controlled by an asparagine residue in the NR1 subunit
within the channel pore loop structure of the second mem-
brane domain [53]. The residue also determines the voltage-
dependent Mg2+ blockade of the NMDA receptor channel
[54]. Depolarisation of the receptor leads to loss of Mg2+

from the channel pore and an influx of Ca2+ with subsequent
activation of enzyme systems we, and others, have shown to
be pertinent to the inflammatory processes involved in EAE,
including NO and PA production [55, 56]. Indeed, Bolton
et al first showed elevated NO and PA levels in CNS tissues
from EAE-diseased rats prompting the suggestion of an im-
portant role for the NMDA receptor in the pathogenesis of
the disease and, by implication, in MS [4].

The open channel can be blocked by the uncompet-
itive NMDA receptor antagonist (+)MK-801 (dizocilpine
maleate) (Figures 1(a) and 3), thereby limiting the flow of
Ca2+ into the cell and curbing activation of enzyme systems
[57]. Our subsequent studies using (+)MK-801 confirmed a
role for the NMDA receptor in EAE through the prevention
of BBB breakdown and neurological deficits and strongly
suggests the involvement of glutamate in the disease [58].
A recent investigation by Sharp et al [59] has described the
use of (+)MK-801 to confirm NMDA receptor involvement
in an in vitro model of BBB damage, and our studies with
the drug have indicated the existence of the receptor on im-
mortalised bEnd 3 brain endothelial cells [60]. In addition,
Zhu and Liu [61] used (+)MK-801 to attenuate glutamate-
induced expression of P-glycoprotein on CNS-derived mi-
crovessel endothelial cells and further verify the existence of
NMDA receptors on neuroendothelium.

THE CONTROL OF EAE THROUGH LIMITING NMDA
RECEPTOR ACTIVATION

The precise mechanism of action for (+)MK-801 in EAE is
unclear. In vitro studies by us have shown that the compound
does not interfere with mitogen-driven T cell proliferation
or affect the inflammatory response made by macrophages
(unpublished data). However, ongoing studies examining the
downstream Ca2+-dependent events triggered as a result of
NMDA receptor activation may offer some insight into the
actions of the drug in models of neuroinflammation. Pre-
liminary work has shown that treatment of bEnd 3 cells with
(+)MK-801 prevents glutamate-induced release of ONOO−

[62]. Treatment of EAE-sensitised animals with (+)MK-801
also reduces the disease-associated increase in CNS levels of
the PA putrescine (Figure 4) [56, 63]. PAs, formed by the
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Figure 4: Putrescine levels detected in the CNS of normal and acute EAE rats 13 days postinoculation (PI), with and without MK801
treatment. MK801 was administered intraperitoneally for 6 days from day 7 PI at a concentration of 0.3 mg/Kg body weight in sterile
phosphate buffered saline. Putrescine levels at day 13 PI are significantly increased in all tissues compared to normal (#P < .001; Student t
test). MK801 significantly reduced elevated putrescine at day 13 PI in all CNS areas (∗∗P < 0.01, ∗∗∗P < .001; Student t test).

rate-limiting Ca2+-dependent enzyme ornithine decarboxy-
lase, act as cell membrane perturbators and vasodisruptors
in non-immune-mediated CNS diseases [64, 65]. PAs and
ONOO−, along with other ROS, including superoxide and
hydroxyl radicals, closely influence neurovascular changes
that are typical during the development and progression of
EAE and MS.

There is a requirement to clarify PA-mediated events at
neurovascular sites with the onset and development of the
disease. One approach has been to examine the role of the
PAs in EAE by employing enzyme-specific drugs that inter-
rupt the formation of putrescine, spermine, and spermidine,
plus compounds that antagonise the PA site on the NMDA
receptor. Results indicate a complex series of responses to
treatment that are dependent upon the compound, dose, and
frequency of administration. Interestingly, the importance of
the ornithine decarboxylase-PA pathway in other CNS con-
ditions, including stroke, epilepsy, Alzheimer’s disease, and
schizophrenia, is being realised and will undoubtedly lead
to a determined effort to understand the significance of the
agents in disease pathogenesis [66].

Studies by Paul and Bolton [67] together with ear-
lier experiments by Wallstrom et al [68], using the rela-
tively uncompetitive aminoadamantane NMDA receptor an-
tagonist memantine (1-amino-3, 5-dimethyl-adamantane)
(Figure 3), confirmed that pharmacological modulation of
receptor function during EAE results in disease suppression
and restoration of neurovascular function. Importantly, the
work by Paul and Bolton indicates, through the use of specific
dosing regimes, that NMDA receptor involvement in EAE
is at, or just prior to, symptom onset and BBB breakdown,
rather than earlier, during the induction phase of disease or
later at the height of neurological deficits. Furthermore, a sig-
nificant effect was noted on neuroinflammatory infiltrates
which appears distinct from AMPA/kainite antagonist ac-
tivity. Memantine, unlike (+)MK-801, has been reported to

differentiate between transient physiological activation and
sustained pathological stimulation of the NMDA receptor
with actions preferentially directed towards the latter state
[69].

The apparent discriminatory profile ascribed to the phar-
macology of memantine on abnormal NMDA receptor ac-
tivity makes the drug particularly attractive for use during
the onset of clinical episodes in human CNS diseases. In-
deed, memantine has been reported to provide symptomatic
relief to MS patients [70]. However, the actual mechanisms
through which memantine exerts effects are unclear. One
current theory suggests that the compound, like Mg2+, oc-
cupies the receptor channel and rapidly exits the pore under
strong, physiological synaptic depolarisation and in the pres-
ence of glutamate fluxes of millimolar concentrations [71].
In contrast, and under pathological conditions where sus-
tained micromolar concentrations of glutamate preside, me-
mantine, unlike Mg2+, will maintain channel block during
prolonged depolarisation.

NMDA receptors play a vital role in maintaining normal
synaptic transmission. Consequently, total blockade of the
receptor, by compounds including (+)MK-801, leads to nu-
merous side effects. Specific prevention of the pathological
activation of NMDA receptors with drugs such as meman-
tine reduces unwanted activity and thereby improves clinical
tolerance, offering a useful feature in the treatment of neu-
rodegenerative diseases including MS.

Another approach towards improving specificity and re-
ducing the unwanted side effects of drug therapy might be
to target particular modulatory sites on the NMDA recep-
tor. In addition, an alternative to blocking NMDA recep-
tor action completely would be to suppress an exaggerated
receptor response. Therefore, targeting inhibitory modula-
tory sites, such as the PA or neurosteroid binding positions or
the poorly defined sigma site (Figure 1(a)), offers the poten-
tial to down-regulate rather than completely inhibit NMDA
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receptor-mediated events. Alternatively, it may be that the
subunit-specific modulatory sites mediate features of neu-
roinflammatory pathology and thereby become primary tar-
gets through which to achieve disease control. Indeed, the
NR2B subunit has been recognised as a particular therapeu-
tic target for several neurological conditions [71] and initial
studies by Wheeler et al have shown an increased expression
of the NR2A and NR2B subunits in CNS tissues from EAE-
diseased rats [72, 73].

AMPA and kainate ionotropic glutamate receptors

Postsynaptic AMPA receptors are considered to mediate
rapid glutamergic neurotransmission with low Ca2+ per-
meability. The receptor consists of four subunits, GluR1 to
GluR4, which are widely distributed throughout the CNS
[74, 75] and each of which can be expressed in two variants
originally termed “flip” and “flop” (Figure 1(b)). AMPA re-
ceptors are invariably colocalised with NMDA receptors in-
dicating a close functional relationship between the 2 ligand-
gated cation channel-bearing receptors. Indeed, AMPA ac-
tivation causes cellular depolarisation and NMDA channel
opening with Ca2+ influx. Pharmacological studies have pro-
vided strong evidence for AMPA receptor involvement in
several CNS conditions including stroke, traumatic brain in-
jury, and Parkinson’s disease [40].

Kainate receptors are closely related to AMPA recep-
tors and are involved in both pre- and postsynaptic neu-
rotransmission. The receptor class is comprised of 5 sub-
units falling into 2 families, GluR5 to GluR7 and KA1 plus
KA2 (Figure 1(c)). Each subunit family shares 70% sequence
homology with its members, but only 40% with nonfam-
ily subunits. Weaker identities are shown with AMPA (30–
35%) and NMDA (10–20%) receptor subunits, although
some studies have suggested that GluR5 is part of the AMPA
family [75–77].

The AMPA and kainate positioning of subunits in their
respective receptor complex is similar to the arrangement
present in the NMDA receptor. The amino terminal portion
of each subunit is extracellular; there are 4 hydrophobic sec-
tions, 3 of which are membrane spanning, plus a reentrant
membrane loop that contributes to the pore lining. The cy-
toplasmic carboxy terminus, in common with the NMDA re-
ceptor, contains sites for phosphorylation, with a minimum
of 12 in the AMPA subunits and a suggested involvement
in the regulation of channel function [78, 79]. Fewer mod-
ulatory sites have been identified for AMPA and kainate re-
ceptors compared to the NMDA receptor (Figures 1(b) and
1(c)). However, information on the endogenous mechanisms
for regulating non-NMDA ionotropic receptor function is
increasing and a similar capacity for pharmacological mod-
ulation of subtype activity can be anticipated.

AMPA/kainate receptors and antagonists in
the pathology and control of neuroinflammation

There is scant information on the subtype selectivity of
AMPA receptor antagonists (Figure 3) and the standard com-
petitive drugs NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-

benzo[f]-quinoxaline-2,3-dione) and CNQX (6-cyano-7-
nitroquinoxaline-2,3-dione) are not selective between non-
NMDA ionotropic receptors [80]. NBQX and CNQX have
been investigated, with some success, in models of global is-
chaemia, CNS trauma, and Parkinson’s disease [81–83] al-
though drug effects mediated through kainate receptor in-
volvement are suspected and therefore cannot be excluded
[84–86].

One cardinal feature of MS and the more chronic models
of EAE is the demyelination of central nerve fibres. Restora-
tion of normal nerve function in MS is dependent, at least
in part, upon recruitment of myelin-forming oligodendro-
cytes to lesioned areas. Limited remyelination is possible in
acute lesions but virtually nonexistent in chronic states due
to lack of oligodendrocyte viability and recruitment to dam-
aged areas [87, 88]. The oligodendrocyte has been reported
to express, exclusively, AMPA and kainate receptors, thereby
making the cell a target for attack by excitotoxic glutamate in
EAE [89–91]. However, investigations by Wosik et al [92] in-
dicate a lack of AMPA receptors on human oligodendrocytes
and a resistance to agonist-mediated toxicity. Furthermore,
the work suggests that AMPA expression is limited to astro-
cytes. Despite conjecture over the cellular expression of re-
ceptor types in brain tissue, the administration of kainate to
the optic nerve causes degenerative toxic lesions, nerve dam-
age in association with inflammation, and demyelination, all
of which are strongly suggestive of an MS-related pathol-
ogy [93]. Interestingly, administration of CNQX prevents
kainate-induced lesions whereas the AMPA receptor antag-
onist GYKI 53655 (1-[4-aminophenyl]-3-methylcarbamyl-7,
8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine) had
no significant effect indicating a kainate-specific action and
implicating receptor involvement in early MS pathology.

Recent investigations in acute and chronic-relapsing EAE
have demonstrated the effectiveness of NBQX together with
MPQX ([1,2,3,4-tetrahydro-7-morpholinyl 1,2,3-dioxo-6-
(trifluoromethyl)quinoxa lin-1-yl]methylphosphonate) and
the noncompetitive antagonists GYKI 52466 (1-(4-amino-
phenyl) 4-methyl-7,8-methylene dioxy-5H-2,3-benzodiaze-
pine) and GYKI 53773 ((-)1-(4-aminophenyl) 4-methyl-
7,8-methylene-dioxy 4,5-dihydro 3-methylcarbamoyl 2,3-
benzodiazepine) (Figure 3) in reducing the neurological
symptoms of the disease [19, 94, 95]. Interestingly, earlier re-
lated work demonstrated that NBQX had anti-oedematous
effects at neurovascular sites via a proposed action on glial
cells [96]. EAE studies using the competitive antagonists
to modify the course of disease cannot exclude drug ef-
fects on kainate receptor-mediated events. In contrast, the
noncompetitive antagonists do differentiate between the two
receptors and therefore indicate a specific AMPA involve-
ment in disease development. More recently, a series of
AMPA receptor antagonists, with structures based on 2,3-
benzodiazepine, have proved effective in reducing the symp-
toms and morphological changes associated with EAE [97,
98].

The studies with NBQX have highlighted the abil-
ity of competitive receptor antagonists to reduce EAE-
mediated neuronal death and oligodendrocyte loss despite
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the uncertainty of AMPA or kainate involvement [94, 95].
However, the extent of oligodendrocyte depletion may be
dependent on additional endogenous factors. For example,
testosterone has been shown to amplify both AMPA- and
kainate-induced toxicity to oligodendrocytes in vitro [99],
suggesting the existence of a steroidal modulatory site on
non-NMDA receptors.

The studies described by Pitt et al [94] and Groom et
al [95] also considered the possibility that the competitive
and noncompetitive antagonists may operate in EAE through
an immunosuppressive action. Results showed that compet-
itive antagonists, such as NBQX, did not affect T-cell pro-
liferation rates or reduce perivascular inflammatory cuffs.
However, noncompetitive antagonists did suppress mitogen-
induced T cell proliferation, thus offering an alternative ex-
planation for the compounds abilities to modify EAE and in-
dicating AMPA receptor involvement in immune-mediated
inflammation. Glutamate excitotoxicity, together with neu-
roinflammatory factors in both EAE and MS, may be impor-
tant codeterminants in oligodendrocyte death. For example,
inflammatory mediators, such as interleukin 1β and tumour
necrosis factor-α (TNF-α) can promote in vitro oligodendro-
cyte apoptosis and changes in the glutamate buffering system
of astrocytes. Moreover, the cytokine-induced effects can be
blocked by NBQX and CNQX [100, 101].

Interestingly, research into the regulation of gene expres-
sion during EAE has identified a reduction in the important
plasma membrane Ca2+ATPase2, necessary for cation home-
ostasis and expressed exclusively in the grey matter, which oc-
curs coincidently with the development of neurological signs
[102]. The studies also found that application of kainate to
spinal cord slice cultures significantly lowered the mRNA lev-
els of Ca2+ATPase. Collectively, the results implicate gluta-
mate, particularly via kainate receptors, in the suppression
of neuronal plasma membrane Ca2+ATPase 2 and abnormal
Ca2+ levels. Perhaps of greater significance is the observa-
tion that NBQX can suppress alterations in glutamate trans-
porter expression during EAE [16]. The study found protein
and mRNA levels of EAAC1 to be dramatically increased,
while transporters GLT-1 and GLAST were down-regulated
together with a concomitant reduction in the incidence of
disease. NBQX, administered semiprophylactically from day
7 postinoculation, suppressed the changes in the expression
of transporters suggesting the activation of non-NMDA re-
ceptors.

Undoubtedly, the studies indicate an important role for
the AMPA receptor in EAE and, possibly, in MS. However,
the investigations cannot exclude the possible contribution
of kainate receptors in the development of disease pathol-
ogy. The prospect of AMPA/kainate receptor involvement in
experimental and human neuroinflammatory conditions of-
fers new targets to focus treatments for the demyelinating
diseases with an emphasis on the preservation of oligoden-
drocyte function.

SUMMARY

We have reviewed the evidence for ionotropic glutamate re-
ceptor involvement in EAE and speculated on a role for

the receptors in MS. The finding of both NMDA and non-
NMDA receptor involvement in the pathology of EAE is sub-
stantiated. Therefore, it is our belief that therapeutic target-
ing of both receptor groups in models of EAE represents a vi-
able proposition for the development of new treatments for
MS.

The observation that a variety of NMDA, AMPA, and
kainate receptor antagonists are beneficial in EAE corrob-
orates the considerable involvement of glutamate in the
pathology of the disease. Aberrant glutamate transporter
mechanisms in resident cells of the CNS together with al-
tered ionotropic receptor or subunit receptor expression dur-
ing EAE may collectively contribute to excess glutamate levels
in target tissues and the gross disturbance to normal home-
ostasis and nerve function.

Figure 5 summarises the involvement of glutamate in
EAE and, by inference MS, highlights the ways through
which excitotoxic levels of the amino acid could be achieved.
Direct discharge from resident and infiltrating cells or indi-
rect release resulting from the actions of inflammatory me-
diators would serve to raise CNS glutamate concentrations.
The consequences of damage to oligodendrocytes, neurons,
and the BBB, plus inflammatory cytokine release from mi-
croglia, contribute considerably to the pathology of EAE and
could account, at least in part, for some of the major central
disturbances observed in MS.

The control of glutamate release and metabolism may
offer a viable therapeutic approach to limiting the subse-
quent damage associated with excitotoxicity. Suppression of
agonist-activated ionotropic receptor function has proved ef-
fective in controlling EAE, but efficacy in MS remains largely
uninvestigated. Regulation of abnormal receptor function
rather than total blockade of activity may effectively re-
duce the results of enhanced CNS glutamate levels and al-
low homeostatic mechanisms to operate thereby reducing
unwanted side effects.

A clear delineation between the receptor type targeted
and the ensuing benefits to limit the disease process appears
to exist. For example, axonal sparing and oligodendrocyte
protection arises from the use of non-NMDA receptor com-
petitive antagonists whereas the restriction of BBB dysfunc-
tion and reduction of inflammation can be ascribed to drug
effects on the NMDA receptor. However, an exclusive ac-
tion for the compounds at their respective target sites cannot
be guaranteed. Therefore, coadministration of ionotropic re-
ceptor antagonists, with different specificities, offers the real
prospect of inhibiting several fundamental parameters of ex-
perimental and human demyelinating disease. Indeed, a re-
cent study by Kanwar et al [103] has indirectly addressed our
suggestion by treating EAE with NBQX in conjunction with
a monoclonal antibody directed against mucosal addressin
cell adhesion molecule-1 and the N-terminal tripeptide of
insulin-like growth factor. Unremitting disease was amelio-
rated and oligodendrocyte survival and remyelination were
increased. Furthermore, CNS inflammation, apoptosis, and
axonal damage were reduced. Finally, there is a requirement
for an increased selectivity of antagonists towards specific re-
ceptor subtypes, either through targeting a specific subunit
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Figure 5: Schematic diagram summarising the known and proposed role of glutamate and associated relevant mediators in the development
of neuroinflammatory and neurodegenerative pathology during EAE. Abbreviations: EAE, experimental autoimmune encephalomyelitis;
NO, nitric oxide; ONOO−, peroxynitrite; ROS, reactive oxygen species; TNF-α, tumour necrosis factor alpha.

or by targeting a modulatory site, if the true therapeutic po-
tential of ionotropic receptor inhibition is to be realised.

A concerted effort to search for drugs with possible ef-
ficacy in MS that operate at nonimmunological sites or do
not have exclusive, immunosuppressive properties could be
viewed as an unconventional approach to disease manage-
ment. However, compounds designed to antagonise the ago-
nist actions on NMDA and AMPA/kainate receptors admin-
istered either alone or in combination with other therapies
may offer the real prospect of treatment for patients with MS
and related disorders of the CNS.
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