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The interaction between human cytomegalovirus (HCMV) and its host is a complex process that begins with viral attachment
and entry into host cells, culminating in the development of a specific adaptive response that clears the acute infection but fails
to eradicate HCMV. We review the viral and cellular partners that mediate early host responses to HCMV with regard to the
interaction between structural components of virions (viral glycoproteins) and cellular receptors (attachment/entry receptors, toll-
like receptors, and other nucleic acid sensors) or intrinsic factors (PML, hDaxx, Sp100, viperin, interferon inducible protein 16),
the reactions of innate immune cells (antigen presenting cells and natural killer cells), the numerous mechanisms of viral immu-
noevasion, and the potential exploitation of events that are associated with early phases of virus-host interplay as a therapeutic
strategy.

1. Introduction

Human cytomegalovirus (HCMV) is a ubiquitous, highly
specific herpesvirus. As the other herpesviruses, after an
initial primary infection HCMV establishes latency for the
life of the host with periodic and spontaneous reactivation.
In immunocompetent subjects, primary HCMV infection is
usually asymptomatic but occasionally gives rise to a self-
limited mononucleosis-like syndrome. In immunocompro-
mised patients, HCMV is one of the most common oppor-
tunistic pathogens and causes different clinical syndromes,
whose severity parallels the degree of the immunosuppres-
sion [1]; in these patients HCMV infection causes both direct
effects, reflecting cell destruction by the virus, and indirect
effects, such as acute and chronic rejection, cardiovascular
disease, and HCMV-associated opportunistic infections [2].
During the acute phase of infection, HCMV can infect
a remarkably broad cell range within its host, includ-
ing endothelial cells, epithelial cells, smooth muscle cells,
fibroblasts, neuronal cells, hepatocytes, trophoblasts, mono-
cytes/macrophages (Mϕs), and dendritic cells (DCs) [3].

HCMV induces many hallmarks of innate immune
responses, such as the production of inflammatory cytokines
and activation of the interferon (IFN) pathway in both
immunocompetent and immunocompromised patients.
This induction is rapid and does not require transcriptionally
active viral particles [4]. The ability of the soluble forms of
envelope glycoproteins B (gB) and H (gH) to effect a similar
pattern of cellular responses suggests that their interactions
with host cell components, such as integrin heterodimers,
toll-like receptors, and entry receptors, are sensed by host
cells, leading to early signaling and transcriptional events in
infected cells and activating innate immune responses before
the outset of viral replication [4–6].

Proper activation of innate immunity appears to be
crucial to efficiently combat infections; in addition to the
release of primary IFNs, professional antigen-presenting
cells (APCs) are activated and natural killer (NK) cells
are recruited and stimulated, triggering APCs and T cells.
Further, unlike the innate and adaptive components of the
immune system that require pathogen-induced signaling
cascades for activation, intrinsic immune mechanisms are
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significant, forming an antiviral frontline defense that is
mediated by cellular proteins, called restriction factors,
that are constitutively expressed and active, even before
a pathogen enters a cell [7–9]. Notably, interplay exists
between innate and intrinsic immune mechanisms, wherein
several restriction factors are upregulated by IFN, enhancing
their antiviral activity [10, 11].

This paper describes the viral and cellular partners that
mediate early host responses to HCMV with regard to the
interaction between structural components of virions and
cellular receptors and intrinsic factors, the reactions of innate
immune cells, the mechanisms of viral immunoevasion, and
the potential exploitation of events that are associated with
these early phases of virus-host interplay as a therapeutic
strategy.

2. Binding and Activation: Function of
Receptors in Early Stages of HCMV Infection

Several receptors, including epidermal growth factor recep-
tor (EGFR) [12, 13], platelet-derived growth factor receptor
(PDGFR)-α [14], and integrins [15, 16], mediate HCMV
attachment and entry. Virus-receptor interactions appear to
be cell-type specific. For example, in the interaction between
HCMV and monocyte-derived dendritic cells (Mo-DCs),
viral envelope glycoprotein gB binds to the DC membrane
protein DC-SIGN [17]. Polymorphisms in the promoter of
DC-SIGN that enhance its expression on the surface of Mo-
DCs are linked to higher levels of HCMV infection in vitro
and in vivo [18], implicating DC-SIGN in viral entry into
DC-SIGN-positive immune cells.

In addition to its binding to receptors, facilitating its
entry, the virus is sensed by pattern recognition receptors
(PRRs), such as toll-like receptors (TLRs), which initi-
ate immune responses by recognizing pathogen-associated
molecular patterns (PAMPs). TLR activation is followed by
inflammatory cytokine secretion, upregulation of costimu-
latory molecules on APCs, and, in most cases, type I IFN
production [19].

The initial evidence that HCMV activates innate immu-
nity in a TLR-dependent manner was obtained with TLR2;
stimulation of TLR2 by HCMV is replication independent
and results in the activation of NF-κB and the release of
inflammatory cytokines [20] without affecting the IFN path-
way [21]. The envelope glycoproteins gB and gH also interact
with TLR2, and neutralizing antibodies against TLR2, gB,
and gH inhibit inflammatory cytokine responses to HCMV
infection in permissive human fibroblasts [22]. Further,
HCMV fusion inhibitors block virus-induced IFN signaling
but not inflammatory cytokine secretion, suggesting that the
latter is effected by surface sensing by TLR2 and does not
require viral entry [21]. These findings indicate that HCMV-
induced activation of cell surface TLR2 occurs at the earliest
stages of infection; that is, the recognition and binding of
envelope glycoproteins.

In addition to the in vitro findings, there is clinical
evidence that implicates TLR2 in the pathogenesis of HCMV

infection; liver transplant recipients who carry the homozy-
gous Arg753Gln mutation of TLR2 have a higher incidence
of HCMV-related disease that is associated with increased
levels of HCMV DNA in the peripheral blood [23]. This
clinical finding is explained by in vitro data that cells with
the Arg753Gln mutation in TLR2 fail to recognize HCMV
gB. Thus, impaired innate viral recognition might impede
the development of a robust antiviral immune response,
resulting in symptomatic disease in immunocompromised
transplant recipients [24]. Chan and Guilbert have also
demonstrated the significance of TRL2 in the immunopatho-
genesis of HCMV, reporting that UV-inactivated virions
stimulate apoptosis in syncytiotrophoblast-like cells in a
TLR2-dependent manner, likely contributing to chronic
villitis and disruption of syncytiotrophoblasts, which often
develop in placentas on delivery of newborns with congenital
HCMV [25].

Intracellular TLRs, including TLR3, TLR7, TLR8, and
TLR9, detect nucleic acids and are primarily involved in viral
detection; TLR3, 7, and 9 recognize microbial nucleic acids in
endolysosomes and trigger innate and downstream adaptive
immune responses [26]. Endosomal TLR3 and TLR9 are
essential components in the innate response to murine CMV
(MCMV) in DCs and Mϕs, and TLR9 is critical for NK cell
activation and control of MCMV infection [27–29]. TLR9
also functions in the early responses to HCMV in humans;
HCMV induces IFN-α secretion from human plasmacytoid
DCs (PDCs) by engaging the TLR7 and/or TLR9 pathways in
vitro [30] and upregulates TLR9 expression in human PDCs
[30] and fibroblasts [31].

Notably, the stimulation of TLR9 by its ligand, CpG-
B, when added after viral entry, enhances HCMV infection
in fibroblasts by an unknown mechanism, suggesting that
the virus exploits TLR9 signaling to further its replication
during infection of stromal cells. Moreover, the presence of
T-1237C polymorphism that alters TLR9 promoter activity
[32] correlates with symptomatic HCMV infection in stem
cell transplants [33], implicating the TLR9 pathway in the
recognition of and response to HCMV.

HCMV infection in fibroblasts is also influenced by the
TLR3 and TLR4 pathways; stimulation of fibroblasts with
TLR3 and TLR4 ligands inhibits viral replication through
an IFN-β-dependent mechanism [31, 34]. Nevertheless,
TLR3 has no function in the innate/early phases of the
cellular response to HCMV in human Mo-DCs, as recently
demonstrated by experiments in which TLR3 was silenced
before HCMV infection [35]. HCMV also triggers TLR-
independent DNA sensing mechanisms [36], as evidenced
by findings that the DNA sensor ZBPI/DNA-dependent
activator of IFN-regulatory factors (DAI) activates IFN reg-
ulatory factor (IRF) 3 and upregulates type I IFN on HCMV
infection [37]. Further, HCMV modulates the activity of
other innate immunity receptors that induce type I IFN
secretion, such as retinoic acid-inducible gene I (RIG-I-) like
helicases (RLHs); RIG-I is upregulated quickly in the early
phase of HCMV infection in fibroblasts [38].

Other HCMV attachment/entry receptors might mediate
the development of innate responses. Because they associate
with TLRs [39] and HCMV glycoproteins [15, 40, 41],
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Figure 1: Activation and viral-induced modulation of early phases, HCMV attachment, entry, and intracellular phases of the viral cycle. (a)
The binding of viral glycoprotein B (gB) induces the release of type I interferons (IFN) via IFN regulatory factor (IRF) 3, whereas contact
between viral glycoproteins gB and gH and toll-like receptor (TLR)2 induces the activation of NF-κB and the release of proinflammatory
cytokines. Expression of the intracellular receptor retinoic acid-inducible gene I (RIG-I) is also upregulated in the early phases, the DNA
sensor DNA-dependent activator of IFN-regulatory factors (DAI) is activated, triggering IRF-3 activation and type I IFN production. (b)
After viral entry, HCMV immunoevasion strategies are activated. Virion-associated and newly produced pp65 prevents IRF3 activation and
subsequently impairs the production of type I IFN. Viral pp65 also inhibits NF-κB activation. RIG-I is downmodulated by an unknown
mechanism, likely contributing to reduced IFN production. +; upregulation or activation, −; downmodulation or inhibition.

surface integrins have been proposed to facilitate the interac-
tions of gB and gH with TLR2 [22, 42]. However, the ligation
of gB to β1 integrin stimulates IFN signaling but not NF-κB-
mediated inflammatory signalling [21], suggesting that this
interaction induces a TLR-independent antiviral state before
viral entry. The activation of innate mechanisms following
HCMV attachment and entry and virus-induced modulation
of host responses is depicted in Figure 1.

HCMV infects a variety of nonimmune cells in vivo,
including fibroblasts, endothelial cells, epithelial cells,
smooth muscle cells, and stromal cells; each of which
expresses a unique subset of TLRs and other innate receptors,
allowing them to respond specifically to HCMV infection
and contribute to early antiviral defense. The activation of
immune receptors on HCMV infection has significant func-
tion in fibroblasts [21, 22, 31]. HCMV-induced activation
of innate receptors in other nonimmune cells might also be
critical, an area that merits further study.

2.1. Viral Escape Starts at Very Early Phases. After viral entry,
HCMV immunoevasion strategies are activated. The expres-
sion of HCMV pp65/UL83 blocks IRF3 signaling, which
lies downstream of the RIG-I, DAI, and TLR3 pathways;
pp65-mediated impairment of IRF3 signalling occurs by

reducing IRF phosphorylation status and by inhibiting its
nuclear accumulation [43]. pp65 also blocks IRF1 and NF-
κB activation by an unknown mechanism [44], suggesting
that HCMV counteracts the activation of the IFN and
proinflammatory pathways at several steps. Further, RIG-I is
downmodulated by an unknown mechanism starting at 48-
hour postinfection [38], likely contributing to reduced IFN
production.

3. Function of IFN Inducible Restriction
Factors in Antiviral Defense

Intrinsic immune mechanisms were discovered as being
active against retroviruses and involving the APOBEC3 class
of cytidine deaminases, a large family of proteins that are
collectively termed the TRIM family, and tetherin, an IFN-
inducible protein whose expression blocks the release of
HIV-1. Increasing evidence, however, suggests that such
mechanisms also counter other viruses [45, 46]. Moreover,
four proteins, promyelocytic leukemia protein (PML) [47],
hDaxx [48], Sp100 [49], and viperin [50], have been iden-
tified as restriction factors that mediate intrinsic immunity
against HCMV infection.

PML and hDaxx are components of subnuclear struc-
tures called nuclear domain 10 (ND10) or nuclear bodies
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(NBs). Direct evidence for their antiviral function comes
from studies of cells that lack ND10. Primary human fibrob-
lasts from which PML was depleted by small interfering
RNA (siRNA) significantly increased the plaque-forming
efficiency of HCMV due to enhanced immediate early
(IE) expression. hDaxx represses HCMV IE expression and
replication through histone deacetylases (HDACs), inducing
transcriptionally inactive chromatin around the major IE
promoter (MIEP) [51]. These findings demonstrate that
the ND10 proteins PML and hDaxx are restriction factors
that silence HCMV IE expression, thus controlling viral
replication.

Viperin is an IFN-inducible iron-sulfur (Fe-S) cluster-
binding antiviral protein that is induced in various cell types
by type I, II, and III IFNs and on infection by many viruses,
including HCMV. Ectopic expression of viperin in fibroblasts
has no effect on the expression of HCMV IE1 or IE2, whereas
the synthesis of early late (pp65), late (gB), and true late
(pp28) genes is reduced significantly in viperin-expressing
cells compared with control [52]. Because it interferes with
the secretion of soluble proteins by disrupting lipid rafts
of the plasma membrane, viperin likely exerts its antiviral
effects by preventing virion assembly at a late stage of the
viral life cycle.

An IFN-inducible family of proteins, previously known
as the p200 family, has recently been demonstrated to
suppress HCMV replication. This family, now designated
PYHIN, comprises homologous human and mouse proteins
that have an N-terminal Pyrin domain (PYD) and 1 or 2
partially conserved 200-residue C-terminal domains (HIN
domain) [53]. These proteins are pleiotropic, based on their
ability to bind to various target proteins (e.g., transcription
factors, signaling proteins, and tumor suppressors) and mod-
ulate various cell functions. Increasing evidence implicates
them as regulators of many processes, including prolifera-
tion, differentiation, apoptosis, senescence, inflammasome
assembly, and the control of organ transplants.

Two members of the PYHIN family, AIM2, and IFN
inducible protein 16 (IFI16), bind to and function as PRRs
of virus-derived intracellular DNA [8]. In particular, IFI16
interacts with the adaptor molecule ASC and procaspase-1,
forming a functional inflammasome during Kaposi sarcoma-
associated herpesvirus (KSHV) infection [54]. Moreover,
the induction of IRF3 and NF-κB-dependent genes by
herpes simplex virus (HSV)-1 infection in RAW264.7 cells
is impaired by siRNA that targets p204, the murine ortholog
of IFI16 [55].

Using two approaches, we recently determined IFI16 to
be an antiviral factor against HCMV [56]; IFI16 expression
was knocked down by specific siRNA, enhancing HCMV
replication, and transduction with dominant-negative IFI16
(lacking the PYD) increased HCMV replication, whereas
overexpression of wild-type IFI16 impaired HCMV viral
yield. In the latter set of experiments, early (E) and late
(L), but not IE, mRNA and protein were downregulated,
indicating that IFI16 exerts its antiviral effects by hindering
viral DNA synthesis. The HCMV UL54 (also called pol)
is the catalytic subunit of HCMV DNA polymerase and
represents a prototypical early gene required for viral
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Figure 2: Type I IFN restriction factors that target HCMV. Type
I interferons (IFN) are effector molecules of the immune response
to virus. This antiviral action is mediated by IFN-stimulated genes.
ND10 proteins are induced by IFN and function as part of an
intrinsic antiviral defense mechanism of the cell by suppressing
viral immediate early (IE) gene expression. The IFN-inducible
protein IFI16 interacts with and displaces the transcription factor
Sp1 from its DNA cognate element, the IR-1 element, in the
viral UL54 promoter. This interaction inhibits the UL54 promoter
and decreases HCMV DNA synthesis. The IFN-inducible protein
viperin exerts its antiviral effects at a late stage of the HCMV
life cycle. During infection, viperin is redistributed from the
endoplasmic reticulum (ER) to the Golgi apparatus (TGN, trans
Golgi network) and then to cytoplasmic vacuoles that contain gB
and pp28.

DNA replication. We have shown that IFI16 overexpression
induces a significant inhibition of UL44, UL54, and UL83
mRNAs. These data were also confirmed at protein level.
Moreover, transfection and electrophoretic mobility shift
assay experiments performed with nuclear extracts of HCMV
infected cells demonstrated that the UL54 promoter is the
target of IFI16-induced viral suppression. In fact, using
luciferase constructs that were driven by a site specifically
mutated HCMV DNA polymerase (UL54) promoter, we
noted that IFI16 suppresses UL54 transcription [56]. These
data indicate that IFI16 has antiviral activity against HCMV
and provide novel insights into the functions of IFI16 as a
viral restriction factor.

Type I IFN-induced restriction factors, briefly described
and summarized in Figure 2, constitute a potent antiviral
defense mechanism against HCMV infection, rendering viral
replication a true hurdle race.

3.1. Strategies Adopted by HCMV to Escape Activity of IFN
Restriction Factors. In response to the antiviral action of type
I IFN factors, HCMV has evolved regulatory proteins and
counteracting mechanisms that subvert and inactivate such
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factors. For example, IE1 disrupts ND10 by inducing the
deSUMOylation of PML [47]. Recent evidence has demon-
strated that HCMV relocates viperin from the endoplasmic
reticulum to the mitochondria, where it reduces the genera-
tion of ATP, disrupting the actin cytoskeleton and enhancing
viral infection [57]. Nuclear IFI16 appears to become inacti-
vated, following its egress from the nucleus, during early gene
expression by molecular mechanisms that appear to rely on
protein ubiquitination (Landolfo et al. unpublished results).

4. Function of Innate Immunity Cells during
HCMV Infection

HCMV infects host cells of the myeloid lineage, such as
monocytes, Mϕs, and myeloid DCs. Despite their resistance
to HCMV infection, lymphoid lineage cells, such as NK
cells and PDCs [58], are also activated rapidly by viral
components, confirming the importance of early virus-
host interactions in the induction of prompt host defense
mechanisms. However, HCMV has developed myriad immu-
noevasion strategies, allowing it to subvert host cell functions
for its own advantage.

4.1. HCMV Efficiently Infects APCs and Employs These Cells as
Vehicle of Viral Dissemination. APCs, including monocytes
and various DC and Mϕ subsets, are critical in initiating
specific naive and memory T-cell responses and coordinating
and modulating host responses. Nevertheless, it is evident
that HCMV hijacks these cells, transforming them into
vehicles for viral dissemination in the first phase of infection
and sheltered reservoirs in which the virus can persist,
reactivate, and replicate under favorable conditions [59].

HCMV infects myeloid APCs, based on the detection
of viral genome and antigens [60–63]. Monocytes do not
support productive viral replication, and viral gene expres-
sion is restricted to early events [64, 65], whereas infected
fully differentiated Mϕs and myeloid DCs undergo lytic viral
cycles, express late HCMV genes, release infectious virus, and
stimulate T-cell responses in vitro [62, 63, 66, 67]. Thus, the
ability of HCMV to replicate in myeloid cells depends on
their stage of differentiation, as shown in an experimental
model of HCMV latency, which was established by infecting
human monocytes with a clinical isolate in vitro, in which
monocytic differentiation to Mϕs or DCs induced viral
reactivation [68].

During the differentiation of DC progenitors to mature
DCs ex vivo, chromatin structure is altered, permitting
robust IE expression and, consequently, reactivation of
latent HCMV [69]. Consistent with these observations, the
inhibition of viral lytic genes that occurs during latency in
undifferentiated myeloid precursors, including monocytes,
is attributed to their inability to sustain high IE levels; the
histone modifications present on the MIEP impart on it
a repressive chromatin structure preventing transcriptional
activity [70]. Recent evidence implicates IL-6 signaling and
activation of the ERK/MAPK pathway in HCMV reactivation
from potentially permissive cells, such as interstitial DCs
[71]. Thus, myeloid cell differentiation, which is driven

by inflammation and proinflammatory factors, such as IL-
6, contribute to reactivation of latent HCMV infection
(Figure 3(a)).

Conversely, the virus can enhance inflammation by
acting on APCs; HCMV infection of peripheral monocytes
induces a proinflammatory state, resulting in their adhesion
to endothelial cells and transendothelial migration [72] and
the secretion of proinflammatory cytokines and chemotactic
factors [73]. Further, Mo-DCs [74, 75] and monocyte-
derived Mϕs [76] release proinflammatory factors on pro-
ductive HCMV infection in vitro.

4.2. Immunoevasion Mechanisms Adopted by HCMV against
APC Responses. In addition to enhancing inflammation for
its own sake, HCMV hampers APCs in taking up and
presenting the proper antigen to T lymphocytes. Several
counteracting mechanisms have been evolved by HCMV to
circumvent APC activity (Figure 3(a)). Immunoevasive viral
transcripts, such as gpUS3 and gpUS8, that block human
leukocyte antigen (HLA-) mediated antigen presentation
pathways predominate during the early phases of HCMV
infection of myeloid DCs [77]. HCMV inhibits the differenti-
ation of Mϕs and DCs from monocytic precursors, blocking
their phagocytic, migratory, and allostimulatory activities
[78, 79].

HCMV also impairs the immunophenotype and func-
tion of differentiated APCs. For example, it downmodulates
integrin-like receptors, such as CD11b/CD18 (CR3) and
CD11c/CD18 (CR4), on the surface of monocyte-derived
Mϕs, reduces their phagocytic activity [80], and impairs
migration by downregulating CCR1 and CCR5, reorganizing
the cytoskeleton, and inducing the secretion of soluble
inhibitors [76]. Further, HCMV-infected, immature Mo-
DCs have fewer surface HLA class I and class II molecules
and impaired migratory and immunostimulatory capacity
[74, 81, 82]. The virus also inhibits Mo-DC maturation and
impedes the migration of mature DCs in response to lym-
phoid stimuli and induction of T-cell proliferation [75, 82,
83]. Similarly, on infection with HCMV, activation markers
are downregulated in mature Langerhans DCs, decreasing
their ability to stimulate T-cell proliferation [84, 85].

Many events have been implicated in the HCMV-induced
impairments to immunostimulation by DCs, such as the
release of soluble CD83 [86], upregulation of apoptosis-
stimulating molecules [87], expression of the HCMV-
encoded HLA class I-like homolog pUL18 [88], and secretion
of the viral homolog of IL-10, which is expressed during
the productive phase of infection (cmvIL-10) [89]. cmvIL-
10 also impairs CD1-mediated antigen presentation (by
reducing CD1 transcription) [90], monocyte function [91,
92], and TLR-induced transcriptional activation of IFN α/β
genes in PDCs [93]. cmvIL-10 enhances HCMV infectivity
by upregulating the viral entry receptor DC-SIGN [89].
Thus, secretion of cmvIL-10 during HCMV infection has
many effects in hindering APC function.

4.3. APCs and HCMV: A Double-Edged Sword. Despite the
subversion of APC function by the virus, specific effector
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Figure 3: Cells of innate immunity, activation and virus counterattack. (a) HCMV reactivates from latency in infected monocytes by
inflammation or cellular differentiation, in which IL-6 and ERK/MAPK signaling are involved. Differentiated macrophages (Mϕ) and
dendritic cells (DC) are permissive for viral replication and, once infected, release proinflammatory factors. HCMV hampers the ability
of Mϕ and DC to properly differentiate from monocytes and present antigens to T lymphocytes by downregulating surface expression
of CD1 and HLA class II molecules. DC-induced T-cell proliferation also decreases through mechanisms that involve virally encoded IL-
10 and pUL18. IL-6, interleukin-6; TNF-α, tumor necrosis factor-α; MIF, macrophage migration inhibitory factor; MIP-1α, macrophage
inflammatory protein-1α; MIP-1β, macrophage inflammatory protein-1β. +; upregulation or activation, −; downmodulation or inhibition.
(b) HCMV-encoded proteins modulate NK-cell recognition of infected cells. pUL40 binds to HLA-E and upregulates its surface expression,
potentiating its interaction with the inhibitory receptor CD94/NKG2A. pUL18, an HLA-I viral homolog, binds to the inhibitory receptor
LIR-1. Expression of the ligands of the activating receptor NKG2D is inhibited by pUL16 (which targets MICB, ULBP1, and ULBP2) and
pUL142 (targeting MICA and ULBP3). pUL141 prevents the expression of CD112 and CD155, ligands of the activating receptors CD226
and CD96, whereas pp65 interferes with the signal transduction of the activating receptor NKp30. Solid lines: possible interactions resulting
in NK-cell inhibition. Dotted lines: impairment of interactions between activating receptors and their ligands.

and memory T cells develop during acute HCMV infection
[94, 95] and robust adaptive immune responses develop
to many HCMV antigens, of which IE1 is a significant
target of CD4+ and CD8+ T-cell responses [94]. Whereas
immunostimulation by DCs is profoundly impaired by the
virus, HCMV-infected Mϕs induce efficient T-cell activa-
tion through presentation of endogenous IE antigen [62].
Further, mechanisms of crosspresentation, the exogenous
acquisition of antigen that is presented directly to CD8+

T cells without endogenous processing, are also initiated
during HCMV infection of APCs [96]. However, the effective
role of cross-presentation in inducing an efficient cellular
imunity to HCMV has not yet been addressed.

4.4. NK Cell Activation during HCMV Infection. NK cells
are a critical component of early innate immune responses
against certain viruses, including HCMV. Individuals with
NK-cell defects have increased susceptibility to herpesviruses
and, in particular, HCMV [97, 98]. Moreover, the extensive
mechanisms that HCMV implements to prevent NK-cell
activation are indirect evidence of their importance in the
innate response to HCMV.

NK cells accumulate rapidly in several organs during viral
infections, taking active part in the direct elimination of
injured target cells by cytotoxicity and in the activation and
recruitment of other cells of the immune system by secreting
cytokines and chemokines, including IFN-γ and TNF-α [99].
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In secondary lymphoid organs and damaged tissues, NK
cells establish a dialog with APCs, thus regulating innate and
adaptive immune responses [100].

NK cells recognize virus-infected cells, using a reper-
toire of stimulatory and inhibitory cell surface receptors
[101] that control NK-cell activation, proliferation, and
effector functions; their cytotoxic function depends pri-
marily on stimulatory receptors. Different receptors are
expressed to respond to different ligands on target cells:
(i) HLA class I molecules (HLA-I), frequently downmod-
ulated in virus-infected cells are recognized by specific
inhibitory receptors, including killer cell-Ig-like receptors
(KIRs), leukocyte Ig-like receptor 1 LILRB1 (LIR-1), and
C-type lectin receptor CD94/NKG2A; (ii) pathogen-derived
molecules are recognized by activating receptors, and (iii)
self-proteins that are upregulated on “stressed” or dam-
aged cells bind to a major activating receptor, NKG2D
[102].

4.5. Mechanisms of Viral Immunoevasion Employed against
NK Cells. Many inhibitory receptors on NK cells, including
KIRs and LIR-1, recognize HLA-I, and under normal
conditions, the engagement of inhibitory receptors by self-
molecules suppresses NK-cell attack. However, HCMV is
able to reduce cell surface expression of HLA-I by several
mechanisms (reviewed in [103]). Consequently, it was
predicted that according to the missing self hypothesis,
low levels of HLA-I on HCMV-infected cells render them
vulnerable to NK-cell lysis [104]. Yet, NK cells fail to
discriminate between normal and infected cells on the
basis of virus-induced HLA-I downmodulation [105, 106].
HCMV circumvents other aspects of the NK cell-target cell
interaction [107], and HCMV-infected cells become resistant
to be attacked by NK cells, due to a vast array of virally
encoded immunomodulatory molecules [108].

Two mechanisms describing HCMV-mediated inhibitory
signalling have been proposed. In the first, HCMV encodes
for pUL18, an HLA-I homolog [109] that, like HLA-I, binds
β2-microglobulin [110] and peptides [111] and engages
the inhibitory receptor LIR-1 with 1000-fold higher affinity
compared with HLA-I [112–114]. pUL18 inhibits LIR-1+ NK
cells but has additional effects, because LIR-1 is expressed
on other cells of the immune system, including APCs [115].
For example, the binding of pUL18 to DCs impairs cell
migration and CD40 ligand-induced maturation, reducing
T-cell proliferation [88]. Thus, pUL18 can be exploited by
HCMV to avoid host immune responses [116]. Clinical
isolates of HCMV retain UL18, underscoring its importance
for viral survival in the host [117, 118].

In the second mechanism, HCMV uses the host HLA-E
pathway to suppress NK cells through the inhibitory receptor
complex CD94/NKG2A. A nonameric peptide that is derived
from the leader sequence of the viral protein pUL40 is
a canonical ligand for the nonclassical HLA-I molecule
HLA-E and promotes HLA-E expression on the cell surface
[119–121], facilitating the interaction between HLA-E and
CD94/NKG2A receptor and conferring resistance to NK-cell
lysis [122–125].

Because the decision by NK cells to attack relies on the
sum of signals from inhibitory and activating receptors, it
is important for the virus to prevent the engagement of
activating receptors. HCMV encodes five genes that impede
signaling by activating receptors on NK cells: UL16, UL141,
UL142, UL83, and microRNA-UL112-1 (miRNA-UL112)
[108]. pUL16, pUL142, and miRNA-UL112 inhibit the
expression of ligands of a major activating receptor, NKG2D.
In humans, the ligands for NKG2D are the human major
histocompatibility complex (MHC) class I chain-related
genes (MIC)A, MICB, and ULBP1-6 molecules, which are
particularly expressed under stress and on stimulation by
innate cytokines that are produced during viral infections
(reviewed in [126]).

Because NKG2D has an important role in controlling
both NK- and T-cell-mediated immunity, it is reasonable
that this receptor and its ligands forced the virus to evolve
specific strategies of evasion. pUL16 prevents cell surface
expression of MICB, ULBP1, and ULBP2 by binding and
sequestering them in the endoplasmic reticulum or Golgi
[127–129]. The selective pressure that is exerted by pUL16
likely contributes to drive the diversification of NKG2D
ligands, eventually leading to the emergence of proteins that
do not interact with UL16, such as MICA and ULBP3; the
expression of which, however, is countered by the HCMV
protein pUL142, which retains them in the cis-Golgi [130–
132]. In addition, MICB is under the control of the virally
encoded miRNA-UL112 which specifically reduces its cell
surface expression [133].

Another tactic that was evolved by HCMV to interfere
with activating receptors relies on pUL141, which sequesters
the adhesion molecules CD155 (PVR/necl-5) [134] and
CD112 (nectin-2) intracellularly [135]; these proteins are
ligands for the NK-cell activating receptors CD226 (DNAM-
1) and CD96 (TACTILE) [136]. Notably, pUL141 is the
most robust modulator of NK cells that has been tested in
vitro, inhibiting a wide range of human NK-cell populations
[134]. This important function explains in part the increased
resistance to NK-cell lysis of low-passaged HCMV clinical
isolates compared with the laboratory strain AD169 [105],
from which 13–15 kbp of DNA has been deleted due to
extensive passaging in vitro [137], a segment that contains
UL141 [108, 134].

The pp65 tegument protein also affects NK-cell func-
tions, dissociating the ζ-chain from the natural cytotoxicity
receptor NKp30 and preventing it from transducing signals
through an unknown mechanism [138]. The outcome
of these disparate strategies is impaired NK-cell-mediated
recognition and elimination of HCMV-infected cells, as
depicted in Figure 3(b).

4.6. NK Cells and HCMV: Windows of Opportunity for Host
Counterattack. Despite the many viral strategies that mod-
ulate the antiviral functions of NK cells, there is a window
of opportunity during which host responses can prevail,
potentially rendering infected cells detectable by the immune
system. Such a circumstance could be achieved through
several mechanisms, depending on genetic variations in
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the virus and host. For example, some allelic variants of
NKG2D ligands are unaffected by known viral strategies.
The MICA∗008 allele, the most frequent allele in several
populations, does not bind to viral pUL142. This variant has
a truncated cytoplasmic tail, making it resistant to pUL142
and allowing it to persist on the surface of infected cells,
where it can induce NK cells to lyse [132, 139]. This finding
suggests that UL142 may be driving the selection of certain
MICA alleles in humans [140, 141].

Genetic variations have also been detected in UL142
from different clinical isolates of HCMV, some of which are
more efficient in downregulating MICA expression [132].
Variations have also been identified in pUL40 and pUL18
[117, 118, 124].

Despite of the wide range of strategies that are used
by HCMV to modulate NK-cell function, there is still the
possibility of a time interval during which host responses
prevail. MICA and MICB expression appears to be regulated
by IE1 and IE2 proteins, indicating that viral trans activation
is largely mediated by these HCMV gene products [142].
Notably, this effect might allow NK-activating ligands to be
expressed before late immunoevasion genes are expressed
and exert their effects. Collectively, this evidence suggests that
the cellular response to infection could be sufficiently robust
in some individuals against certain viral strains and/or at
a specific time after infection, allowing to achieve elevated,
functionally relevant levels of activating signals.

4.7. Interplay between NK Cells and APCs during HCMV
Infection. NK-DC crosstalk is bidirectional, NK cells can kill
immature DCs or promote their maturation, and in turn,
mature DCs can stimulate NK-cell cytotoxicity and prolif-
eration. These processes depend primarily on the activating
receptors NKp30 and DNAM-1 and on the production of
cytokines, such as IL-12, IL-15, IL-18, and IFN-α/β [100,
143–149].

Recent evidence has demonstrated that NK cells regu-
late HCMV infection through interactions with autologous
APCs, such as Mo-DCs and polarized Mϕs; NK cells respond
vigorously against infected Mo-DCs by producing IFN-γ
and becoming cytotoxic, where NKp46 and DNAM-1 have
a dominant role [150]. Such a response is evident early after
infection, whereas later, the virus-mediated downregulation
of the DNAM-1 ligands CD155 and CD112 prevails, illustrat-
ing the significance of the course of infection with regard to
the efficacy of the host response. Further, the production of
IFN-γ by NK cells is influenced by the polarization of Mϕs,
wherein proinflammatory Mϕs induce more efficient IFN-γ
responses than anti-inflammatory Mϕs on HCMV infection
[151].

5. Early Events of HCMV Replication as
Potential Targets for
Therapeutic Intervention

The identification of cellular and viral components that
regulate early HCMV-host cell interactions has increased
our understanding of the pathogenesis of HCMV diseases

and formed the rationale for the design of novel antiviral
interventions that target these initial events.

The need for anti-HCMV drugs with novel mechanisms
of action is underscored by the findings that conventional
standard therapy is often associated with considerable
adverse events and that prolonged treatment can lead
to the emergence of drug-resistant strains [152]. Further,
agents that target viral DNA polymerase are unable to
prevent viral attachment or entry or the expression of IE
proteins, which mediate proinflammatory responses and
immunomodulation. Thus, blocking pre-IE events and IE
expression and function may represent an alternative strategy
of combating HCMV-induced immunopathological phe-
nomena [153]. Several molecules that effect such outcomes
have been identified (reviewed in [154]). However, with
the sole exception of hyperimmune globulin preparations,
compounds that target HCMV attachment and entry remain
at the preclinical stage of development. We briefly review
the properties of those experimental agents that have been
shown to inhibit HCMV attachment and entry in vitro.

The adsorption of HCMV virions to cell surface heparan
sulfate proteoglycans (HSPGs) is mediated by positively
charged regions of the viral gM/gN complex and is essential
for stabilizing virions at the cell surface prior to the
engagement of entry receptors [4]. Several experimental
inhibitors of HCMV attachment have been characterized,
including sulfated polysaccharides, lactoferrin, and peptide-
derivatized dendrimers. Negatively charged polyanions, such
as sulfated polysaccharides from bacteria, algae, and animals
and semisynthetic compounds, such as dextran sulfate and
pentosan polysulfate, disrupt the electrostatic interactions
between the positively charged region of HCMV envelope
glycoproteins and the negatively charged sulfate/carboxyl
groups of heparan sulfate (HS) chains in HSPGs; these com-
pounds show potent anti-HCMV activity against laboratory
strains and clinical isolates [155]. HSPGs can also be bound
by the N-terminal region of lactoferrin, an iron-binding
glycoprotein that exists in most mucosal secretions and body
fluids, suggesting that it acts by preventing virions from
tethering to the cell surface [156].

Dendrimers are synthetic hyperbranched molecules that
may have potential applications as antivirals, based on their
small size (nanomolar), ease of preparation, and ability to
display multiple copies of surface groups (multivalency) that
are required for recognition, including the initial interactions
that occur between an infecting virus and the target cell
[157]. Recently, two peptide-derivatized dendrimers, SB105
and SB105 A10, were shown to inhibit HCMV replication
directly by preventing viral adsorption to HSPGs onto cells
[158, 159].

The use of compounds that target viral attachment
could be curbed by the cell-to-cell spread of clinical HCMV
isolates. In a normal host, however, the release of cell-free
virus depends on the site of infection; whereas cell-free
viral transmission during hematogenous dissemination is
believed to be unlikely (because HCMV replication is highly
cell associated), cell-free virus is commonly found in body
fluids, such as urine, saliva, and breast milk, often at high
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titers [160]. Thus, molecules that block viral adsorption
may be used to prevent HCMV transmission via such
excretions.

HCMV-exploits its coding capacity for glycoproteins to
form different envelope complexes [3]. The gH/gL heterod-
imer can participate in two distinct glycoprotein complexes;
it can associate with gO to form a heterotrimeric complex
that regulates pH-independent fusion at the cell surface
in fibroblasts or it associates with pUL128, pUL130, and
pUL131 to form a pentameric complex, required for entry
by endocytosis, followed by low pH-dependent fusion in
endothelial and epithelial cells, DCs, and monocytes [67,
161–163]. gB is also required for viral entry and cell-to-
cell spread [164]. Thus, compounds that bind to virion
components that mediate entry or interfere with the protein-
protein interactions required to induce membrane fusion can
be termed HCMV entry inhibitors.

Experimental agents that have been shown to interfere
with HCMV entry include CFI02, β-peptides, and CpG
ODNs. gB is the target of a small-molecule thiourea
derivative, CFI02, which suppresses HCMV replication.
Mechanism-of-action studies indicate that CFI02 acts at
an early stage in HCMV replication by inhibiting gB-
mediated fusion of the virion envelope to the cell membrane
[165]. Further, heptad repeat motifs, characteristic of α-
helical coiled-coil interactions, have been identified within
gB and gH. Peptides that correspond to these regions have
been shown to inhibit the entry of clinical and laboratory
HCMV strains, thus providing the proof of concept that
blocking the coiled-coil interactions required for viral entry
is a feasible strategy of preventing HCMV infection [166].
These potential new targets for therapeutic intervention have
been exploited, based on the development of oligomers of
β-aminoacids (β-peptides) that mimic the heptad repeat
domain of gB and block viral infection during virus-cell
membrane fusion [167]. β-peptides showed to be more
potent than gB-derived α-peptides and blocked the activa-
tion of the type I IFN pathway in HCMV-infected fibroblasts
[21], suggesting that β-peptides can impede both HCMV
replication and viral-induced immunopathogenesis.

Short synthetic oligodeoxynucleotides that contain
deoxycytidyl-deoxyguanosine motifs (CpG ODNs) can
mimic bacterial and viral DNA to stimulate TLR9 and
activate innate responses [168, 169]. Their antiviral activ-
ity has been proposed to be secondary to CpG-induced
IFN responses that are triggered through TLR9 activation.
Luganini et al. [170] recently reported, however, that in
vitro replication of HCMV was suppressed by several CpG
ODNs in a TLR9-independent mechanism. The B-class
prototype CpG ODN 2006 was shown to prevent the nuclear
localization of pp65 and input viral DNA, thus suggesting
that it inhibits HCMV entry [170]. Notably, when added
after the onset of HCMV replication, CpG ODN 2006
stimulates viral replication [31], as discussed, indicating
that once the virus establishes its transcriptional programs,
it takes advantage of the TLR9 stimulation pathway to
propagate. These findings also suggest that CpG ODNs
should be considered for antiviral intervention solely to
prevent HCMV infection.

Yet, the window of opportunity for the mentioned
experimental compounds that target the attachment and
entry phases of HCMV infection is narrow. Their develop-
ment as candidate drugs for future intervention should be
considered in combination with conventional anti-HCMV
therapeutics, such as ganciclovir and foscarnet that inhibit
viral replication.

Conversely, intravenous immunoglobulins that are en-
riched for antibodies against HCMV (HCMV-IVIG) have
been approved for use in preventing HCMV diseases in
transplant recipients. The rationale for their clinical appli-
cation lies in their ability to neutralize the virus and
prevent entry into several cell types. Therefore, HCMV-IVIG
represents the first example of a drug capable of blocking
a pre-IE event that has been extensively used in patients
at risk of HCMV disease. Further, the immunomodulatory
activity of IVIG [171] might help reduce HCMV-induced
immunopathology. However, in spite of their widespread
clinical application, the role of HCMV-IVIG in the pre-
vention of HCMV infection and disease remain to be fully
elucidated. In fact, prophylactic administration of HCMV-
IVIG has been associated with improved total survival,
reduced HCMV disease, and lower HCMV-associated deaths
in solid organ transplant recipients [172], whereas in patients
who are undergoing hematopoietic stem cell transplantation,
routine prophylaxis with HCMV-IVIG remains controversial
[173]. Moreover, observational clinical studies indicate that
administration of HCMV-IVIG to pregnant woman with
primary HCMV infection may be effective in treating and
preventing fetal infection [174].

The low neutralization potency of these preparations,
however, may limit their clinical use. Thus, human mono-
clonal antibodies (mAbs) that neutralize HCMV infection
have recently garnered interest as more effective and safer
passive immunotherapeutic agents. Panels of human mAbs
against gB and gH [175] or those that recognize confor-
mational epitopes that require two or more proteins of the
gH/gL/pUL128-131 pentameric complex [176] were devel-
oped from immortalized memory B cells of HCMV-immune
donors. Notably, the human mAbs against the UL128-131
locus gene products [161] showed a neutralizing activity
2-3 logs more potent than neutralizing mAbs directed to
gB or gH [176]. Although their protective activity in vivo
remains to be investigated, these new human mAbs are
promising next-generation immunotherapeutic compounds
for the therapy/prophylaxis of HCMV infection and disease.

6. Concluding Remarks

The complex interaction between HCMV and the host
begins immediately on viral contact with many cell types,
including innate immune cells. Virion recognition and
binding and entry-related events induce inflammation and
IFN responses, the latter upregulating restriction factors
that, in turn, contribute to the creation of an intracellular
antiviral state. However, the induction of the IFN response is
modulated by many counteracting viral mechanisms, as well
as the inactivation of IFN restriction factors and modulation
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of innate cell functions that facilitate evasion of host intrinsic
and innate immunity.

The identification of the mechanisms of host-HCMV
interactions during attachment and entry has provided the
rationale for the design of novel experimental compounds
that target these events. Blocking the early phases of infection
may provide a window of opportunity that allows such inter-
ventions to inhibit HCMV gene expression and replication
and modulate inflammatory and IFN host responses, thus
hindering viral-induced immunopathogenesis.

HCMV uses several immunoevasion strategies to evade
host NK cells and APCs, most of which involve protein
products of L viral genes that are used to complete the
viral cycle. Novel therapeutics that block the viral cycle
before the late stages of replication might also prevent
HCMV from exploiting such strategies, thus increasing the
immunocompetence of the host.
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