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The metabolic syndrome is a cluster of cardiometabolic alterations that include the presence of arterial hypertension, insulin
resistance, dyslipidemia, and abdominal obesity. Obesity is associated with a chronic inflammatory response, characterized by
abnormal adipokine production, and the activation of proinflammatory signalling pathways resulting in the induction of several
biological markers of inflammation. Macrophage and lymphocyte infiltration in adipose tissue may contribute to the pathogenesis
of obesity-mediated metabolic disorders. Adiponectin can either act directly on macrophages to shift polarization and/or prime
human monocytes into alternative M2-macrophages with anti-inflammatory properties. Meanwhile, the chronic inflammation in
adipose tissue is regulated by a series of transcription factors,mainly PPARs andC/EBPs, that in conjunction regulate the expression
of hundreds of proteins that participate in the metabolism and storage of lipids and, as such, the secretion by adipocytes.Therefore,
the management of the metabolic syndrome requires the development of new therapeutic strategies aimed to alter the main genetic
pathways involved in the regulation of adipose tissue metabolism.

1. Introduction

Themetabolic syndrome (MS) is a cluster of cardiometabolic
alterations that include the presence of arterial hyperten-
sion, insulin resistance, dyslipidemia, cardiovascular dis-
ease (CVD), and abdominal obesity [1, 2]. MS presents a
prothrombotic state as a result of endothelial dysfunction,
the presence of a hypercoagulability state produced by an
imbalance between coagulation factors and the proteins that
regulate fibrinolysis and increased platelet reactivity [3–5].
In this latter regard, we have recently described that obese-
diabetic rats with MS have an altered megakaryopoiesis that
contributes to increased thrombosis.These alterations are due
to an increased platelet turnover caused by a combination
of accelerated death and an increased platelet production

confirmed by the observation of an increased number of
reticulated platelets (the youngest, more immature, andmore
reactive platelets). Importantly, all these alterations were
associated with an increased thrombotic risk, analyzed in
vivo by real time intravital microscopy, in wild-type obese-
diabetic animals as well as in lean normoglycemic controls
transplanted with bone marrow from obese-diabetic donors
[6]. Moreover, we have also described that obese nondiabetic
rats also show increased platelet counts and an increased
mean platelet volume (MPV) which are associated with an
increased thrombotic risk (similar to that observed in obese-
diabetic rats) [7]. In fact, we have shown that platelet number,
MPV, and thrombotic risk are directly correlated with weight
and that a reduction of peripheral insulin resistance can
contribute to reduce thrombotic risk in obese subjects.
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These alterations might be a consequence of the low-grade
chronic inflammatory state observed in obesity, as increased
platelet size (i.e., MPV) has been associated with the pres-
ence of low-grade inflammation, and several inflammatory
proteins have been proven to influence megakaryocyte mat-
uration and platelet formation [8].

Indeed, inflammation is receiving increased attention for
its potential role in the pathogenesis of disorders ranging
from insulin resistance and type 2 diabetes to fatty liver
and CVD [9, 10]. Obesity is associated with a chronic infla-
mmatory response characterized by abnormal adipokine
production and the activation of several proinflammatory
signalling pathways, resulting in the induction of several
biological markers of inflammation [11]. In obese patients,
increased accumulation of macrophages is a hallmark of a
proinflammatory state that links obesity with systemic
inflammation [12]. The foremost physical consequence of
obesity is atherosclerosis in CVD [13]. In addition, obesity is
accompanied by other clinical complications; these include
fatty liver, cholesterol gallstones, sleep apnea, osteoarthritis,
and polycystic ovary disease [14].

Adipose tissue has long been considered a nonfunctional
storage pool of energy without any direct impact on organ
function [15]. However, it has recently been shown that
adipose tissue is a secretory organ and a potent source of
hormones, peptides, and cytokines involved in food intake
regulation, glucose and lipid metabolism, inflammation,
coagulation, and blood pressure control [16].

Moreover, it has also become an appealing stem cell
source for cell therapy and tissue engineering [17]. Therefore,
adipose tissue is now considered to be an active endocrine
organ that secretes various humoral factors (adipokines) [18],
capable of enhancing the release and production of proin-
flammatory cytokines in obesity, primarily through nonfat
cells, likely contributing to the low-grade systemic inflam-
matory state found in MS-associated chronic pathologies
(e.g., atherosclerosis) [19]. For instance, adiponectin is highly
expressed in adipose tissue, and circulating adiponectin
levels are decreased in patients with obesity, insulin resis-
tance related to type 2 diabetes, and coronary heart disease
[20]. On the other hand, the changes presented by adipose
tissue in the setting of MS favor the secretion of several
molecular mediators capable of activating or suppressing a
number of transcription factors (PPARs, Peroxisome Pro-
liferator Activated Receptors; C/EBPs, CCAAT-enhancer-
binding proteins, among other) that regulate different MS-
related metabolic pathways [21, 22].

The present paper reviews the principal molecular mech-
anisms involved in adipose tissue inflammation in the setting
of MS and provides an in-depth description of the main
genetic pathways involved in adipose tissue metabolism.

2. Metabolic Syndrome Pathophysiology

The MS is characterized by a high amount of visceral fat,
insulin resistance in skeletal muscle, and hypoadiponectine-
mia [23]. MS subjects showed higher levels of blood pressure,
waist circumference, and plasma triglycerides with a high risk
of developing type 2 diabetes and CVD in the future [24, 25].

The physiopathologic changes associated with MS are
diverse including, among others, endothelial dysfunction
which triggers atherogenic lesions development and en-
hanced coagulability [3, 26]. We have reported that MS
patients show higher levels of circulating sVCAM-1 and
sCD40L, but not sE-selectin, as compared to non-MSpatients
likely indicating endothelial activation [27, 28]. On the
other hand, elevated plasma levels of plasminogen activator
inhibitor-1 (PAI-1), tissue factor, and fibrinogen detected in
MS patients may contribute to the abnormally increased
coagulability further enhancing the risk of CVD [29, 30].

Themetabolic changes related to obesity are largely attrib-
utable to the amount of intra-abdominal fat mass, rather
than total body fat mass [31]. The increased oxidative stress
in accumulated fat is an important pathogenic mechanism
of obesity-associated MS [32]. The progression of obesity is
accompanied by a chronic inflammatory process that involves
both innate and acquired immunity [33]. Thus weight loss
larger than 10% is associated with an increase in serum
adiponectin and a decrease in hs-CRP and plasma fibrinogen
[34].

The increase of intermuscular adipose tissue was primar-
ily related to age, total body adiposity, and subclinical inflam-
mation [35]. Functional failure of the adipose tissue results in
changes in systemic energy delivery, impaired glucose con-
sumption, and activation of self-regulatory mechanisms that
extends adipose tissue influence to the whole homeostatic
system, by the enhancement of adipokines secretion with
the subsequent vascular-related effects [36, 37]. Adipose cell
enlargement leads to a cellular proinflammatory state with
reduced secretion of adiponectin and increased secretion of
IL-6, IL-8, and monocyte chemotactic protein-1 (MCP-1),
among others [38]. Data suggest that plasma adiponectin
does not change with age, but levels are negatively associated
with percent body fat, visceral fat, subcutaneous abdominal
fat, insulin, and leptin levels [39, 40].

3. Adipose Tissue Inflammation in
Metabolic Syndrome

There has been a paradigm shift from the traditional notion
of adipose tissuemerely as an energy storage site to onewhere
adipose tissue plays an active role in energy homeostasis and
other various processes [41, 42]. Adipose tissue plays a critical
role in energy homeostasis, not only in storing triglycerides,
but also responding to nutrient, neural, and hormonal signals
and secreting adipokines that regulate feeding, thermogene-
sis, immunity, and neuroendocrine function [43].

Inflammation is increasingly known as a key process
underlying metabolic diseases in obese subjects [44]. In
particular, adipose tissue-related production of proinflam-
matory molecules (TNF-𝛼, IL-1𝛽, IL-6, IL-8, transform-
ing growth factor-𝛽, and nerve growth factor) as well as
its acute-phase response (plasminogen activator inhibitor-
1, haptoglobin, and serum amyloid A) [45] detected during
obesity contributes to a low grade of systemic inflammation
seen in chronic diseases associatedwithMS [46–49]. In obese
subjects, adiponectin levels are decreased, and the ability
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of adiponectin to inhibit the inflammatory processes is lim-
ited. Low adiponectin levels are inversely related to high levels
of C-reactive protein (CRP) in patients with obesity, type 2
diabetes, and CVD [50–52]. In fact, CRP may promote the
formation of intimal neovessels in vulnerable atherosclerotic
plaques increasing the likelihood of rupture [53].

In mice fed a high-fat diet, weight gain is associated
with an induction of adipose tissue-related inflammatory
pathways.Thus a high percentage (>50%) of the total adipose
tissue mRNA transcripts found to be upregulated during
diet-induced weight gain is inflammatory-related genes [47].
In fact, overexpression of low-density lipoprotein receptor-
related protein-1 and very low-density lipoprotein receptor
in epicardial fat may play a key role in the alterations
of lipid metabolism associated with type 2 diabetes mel-
litus [54]. Thus, 12/15- lipoxygenases (ALOX) and their
lipid metabolites, involved in the oxidative metabolism of
polyunsaturated fatty acids, act as upstream regulators of
many of the cytokines involved in the adipose tissue-related
inflammatory response contributing to the development of
insulin resistance and diabetes [55]. The gene expression and
localization of ALOX isoforms have shown to be exclusively
expressed in human visceral fat [56].

Resistin and TNF-𝛼 are adipokines that have been impli-
cated in insulin resistance in skeletal muscle by the addition
of fatty acids to the diacylglycerol [57, 58]. Adipocytes are
sensitive to the effects of TNF-𝛼, which, through its p55
and p75 TNF receptors, stimulates nuclear factor- (NF-)
𝜅B, extracellular signal-regulated kinase, and p38 mitogen-
activated protein kinases PI-3 kinase and junN-terminal
kinase cascades [59]. The correlation between insulin resis-
tance, chronic inflammation, hypertension, endothelial dys-
function, and dyslipidemia could be due to the activation of
NF-𝜅B [60]. The transcription factor NF-𝜅B and the TNF-𝛼
gene promoter were activated by hypoxia in adipocytes and
fibroblasts [61]. NF-𝜅B signaling represses E2F transcription
factors eventually inhibiting adipogenesis and maintaining
a chronic inflammatory condition [62]. In contrast, hypoxia
reduced adiponectin expression, detected d in adipocytes
gene promoter [61].

TNF-𝛼 is chronically elevated in adipose tissues of obese
rodents and humans. Increased levels of TNF-𝛼 are impli-
cated in the induction of atherogenic adipokines, such as
PAI-1 and IL-6, and the inhibition of the antiatherogenic
adipokine, adiponectin [63].

Obese individuals have increasedTNF-𝛼 gene expression,
as shown by a study in which a 2.5-fold increases in mRNA.
Also a strong positive correlation has been detected between
TNF-𝛼 mRNA expression levels and the level of hyperin-
sulinemia (an indirect measure of insulin resistance) in fat
tissue [64].

3.1. Role of Adipokines in Chronic Inflammation State: Rheu-
matoid Arthritis (RA). Adipokines exert potent modulatory
actions on target tissues and cells involved in rheumatic
disease [65] and obesity-related diseases [66, 67]. For estab-
lishing a relationship with the obesity, using RA as a model,
we discuss the participation of adipokines in a chronic
inflammation state.

(a) Adiponectin in RA. A complex adipokine-mediated
interaction among white adipose tissue, CVD, and
chronic inflammatory autoimmune diseases like RA
has been described [68]. In this regard, in RA
adipocytes and their surrounding macrophages pro-
duce a range of adipokines that regulate systemic
inflammation [68]. In RA patients undergoing anti-
TNF infliximab therapy because of severe disease,
high-grade inflammation shows an independent and
negative correlation with circulating adiponectin
concentrations, whereas low adiponectin levels clus-
tered with MS features such as dyslipidemia and high
plasma glucose levels that have been reportedly to
contribute to atherogenesis in RA [69].

(b) Leptin in RA. In patients undergoing anti-TNF-
𝛼 therapy because of severe disease refractory to
conventional therapy, there was a positive correlation
between body mass index in patients with RA and
leptin serum levels [70]. In addition, these patients
showed a significant correlation between leptin levels
and VCAM-1 [70, 71]. This is of potential interest
as biomarkers of endothelial dysfunction-endothelial
cell activation are elevated in patients with RA and
anti-TNF blockade improved endothelial dysfunction
[72] as well as decreased the levels of endothelial cell
activation biomarkers [73].

(c) Resistin in RA. In patients with RA in treatment
with the anti-TNF-𝛼monoclonal antibody infliximab
for severe disease refractory to conventional therapy,
a positive correlation between markers of inflam-
mation, in particular with C-reactive protein, and
resistin levels was observed [74]. TNF-𝛼 blockade led
to a rapid reduction in the levels of resistin in these
patients [74]. These results highlight a potential role
of resistin in the inflammatory cascade in diseases
like RA that are associatedwith chronic inflammatory
burden [74].

3.2. Leukocytes and Adipose Tissue Inflammation. Macro-
phage and lymphocyte infiltration in adipose tissue may
greatly contribute to obesity-related metabolic dysfunction
and chronic inflammation [75, 76]. Recent studies have
demonstrated that over 90% of the adipokine release by
adipose tissue, except for adiponectin and leptin, could be
attributed to nonfat cells [77]. The sequence of events in the
inflammatory cascade within the adipose tissue comprises
immune cells, first lymphocytes, and then macrophages
[78, 79].

T lymphocytes present in visceral adipose tissue con-
tribute to the initiation and perpetuation of adipose tissue
inflammation and the development of insulin resistance [80].
Thus it is observed that a large number of CD8+ effector T
cell infiltrate adipose tissue promoting the recruitment and
activation of macrophages in obese mice, while the number
of CD4+ T cell and regulatory T is diminished (Figure 1)
[79]. White adipose tissue hypoxia and CD8+ T cell invasion
are features of obesity in C57BL/6J mice and are potential
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Figure 1: Leukocytes and adipose tissue inflammation.Macrophage
and lymphocyte infiltration in adipose tissue may greatly contribute
to obesity-relatedmetabolic dysfunction and chronic inflammation.
CVD: cardiovascular diseases.

contributors to their local and generalized inflammatory state
[81].

Natural killer T (NTK) cells play a crucial role in the
development of adipose tissue inflammation and glucose
intolerance in diet-induced obesity [82]. However, the dele-
tion of NKT cells, in the absence of alterations in the
CD8+ T cell population, is insufficient to protect against the
development of the metabolic abnormalities of diet-induced
obesity [83].

Macrophage can be characterized as M1-type (involved
in proinflammatory processes such as TNF-𝛼, IL-6, and
IL-12) or immunomodulatory and tissue remodeling (M2).
The latter can secrete IL-10, which is an anti-inflammatory
cytokine and partake mostly in the downregulation of proin-
flammatory cytokines [84, 85]. Infiltrated macrophages play
the most prominent role, and this low grade inflammation is
mediated by the activation and recruitment of macrophages
into expanding adipose tissue [12, 86]. In this context, it has
been established that the diet-induced obesity leads to a shift
in the activation state of adipose tissue macrophages from an
M2-type to an M1 proinflammatory state that contributes to
insulin resistance [87, 88].

3.3. Adiponectin as a Regulator of Inflammation. Adiponectin
is an abundantly expressed adipokine in adipose tissue and
has multiple effects on glucose, metabolism of lipids and free
fatty acids, cytokine secretion, and direct insulin sensitizing
activity [89, 90].

An increase of adiponectin concentrations or the mainte-
nance of higher concentration may be negatively associated
with CVD and diabetes, especially in patients with high
glycaemic level and independent of adiposity and smoking
status [91, 92]. Adiponectin has antiatherosclerotic as well
as anti-inflammatory properties that may play an important
role in preventing the progression of coronary artery disease
[93, 94]. In this context, adiponectin acts on cultured murine
and human macrophages to promote a switch to an anti-
inflammatory M2 phenotype [95]. Adiponectin can either
act directly on macrophages to shift polarization or prime

human monocyte differentiation into anti-inflammatory
M2 macrophages [95, 96]. Possible pathways of action of
adiponectin that leads to a shift in macrophages to an anti-
inflammatory phenotype include (i) AdipoR1 → IL-10 →
HO-1-dependent pathway to decrease TLR4 expression and
dampen inflammatory cytokine expression in macrophages
and (ii) AdipoR2 → IL-4 → STAT6-dependent signaling
pathway that leads to a shift in macrophages to an M2
polarization [97, 98].

Genetic variations in adiponectin receptors (AdipoR1 or
AdipoR2) are unlikely to lead to a common genetic predis-
position to insulin resistance or type 2 diabetes [99, 100].
Thus, an independent inverse correlation between plasma
adiponectin levels and hs-CRP may suggest that decrease of
adiponectin contributes to the systemic and vascular inflam-
mation commonly found in obesity [50]. However, patients
with advanced heart failure present increased adiponectin
with reduced expression of AdipoR1 and AdipoR2 as well
as reduced activation of AMP kinase, a known downstream
signaling molecule, suggesting a functional adiponectin
resistance in advanced heart failure [101]. Also, high levels
of adiponectin have been found in chronic inflammatory
autoimmune diseases such as SLE, type I diabetes, and rheu-
matoid arthritis [102–104].

Interactions of genetic factors such as single nucleotide
polymorphisms (SNPs) in the adiponectin gene and envi-
ronmental factors causing obesity result in hypoadiponecti-
naemia, which appears to play an important causal role in
obesity-linked insulin resistance, type 2 diabetes, and the MS
[105]. In women with MS, visceral fat volume was negatively
related to leptin and tended to be negatively related to
adiponectin gene expression [106].

The major genetic modifications of adiponectin are due
to oxidative stress generated during obesity. Thus obese
subjects exhibit increased systemic oxidative stress, likely
derived from the accumulated fat, being an early instigator
of MS [32]. A study of 2828 subjects showed that smoking,
diabetes, and body mass index were highly associated with
systemic oxidative stress and suggest an important role on
obesity [107]. Lipid-rich diets are also capable of generat-
ing reactive oxygen species because they can alter oxygen
metabolism [108]. Increase of free radicals together with
low antioxidant capacity detected in obese adults indicate
an elevated oxidative stress, which is, in concurrence with
systemic inflammation, further potentiated in the case of
patients with metabolic syndrome [109].

An increased oxidative stress is also associated with
adiponectin deficiency [110]. Increased oxidative stress has
shown to inhibit preadipocyte differentiation as a result of
reduced cell proliferation and an inhibition ofG(1)→ S-phase
transition through a transcriptionalmechanism involving the
inhibition of E2F recruitment and transactivation of its target
promoters [111]. Abdominal adiposity and leptin are indepen-
dent predictors of adiponectin gene expression, and in human
adipocytes, adiponectin gene expression is strongly related to
I𝜅B-𝛼mRNA [112]. The significant independent relationship
between adiponectin gene expression and I𝜅B-𝛼 mRNA
suggests that when adiponectin gene expression is high,
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there is a higher expression of I𝜅B-𝛼 and the subsequent inhi-
bition ofNF-kB transcriptional activity with lower inflamma-
tion at the adipocyte level [112].

Adipokine zinc-alpha2-glycoprotein (ZAG) gene expres-
sion in adipose tissue is downregulated with increased adi-
posity and circulating insulin. ZAG mRNA is positively cor-
related with adiponectin mRNA (ZAG enhances adiponectin
production by human adipocytes) [113]. The action of ZAG
is associated with downregulated lipogenic enzymes (FAS,
ACC1, and DGAT mRNA) and upregulated lipolytic enzyme
(HSL mRNA) expressions in adipose tissue [114].

Adiponectin gene transcription is stimulated by several
transcription factors involved in adipogenesis such as PPARs,
FoxO1, C/EBPs, and SREBPs and is suppressed by hypoxia,
inflammation, and transcription repressors such as NFATs
and CREB. Proinflammatory cytokines such as TNF-𝛼, IL-
6, and IL-18 also negatively regulate adiponectin gene tran-
scription by activating several pathways such as the JNK and
ERK1/2 pathways [115–117].

4. Molecular Interaction and Gene
Expression in Adipose Tissue

Changes in the life style, reduction of obesity, and food habits
are fundamental in reducing the risk factors [118]. However,
there are key factors in MS regulation that depend on those
transcription factors that, by responding and adapting to
signals from the environment, are able to change the levels
of relevant gene expression [119, 120]. Even, gene expression
in the metabolic pathways (apoptosis, lipid metabolism,
and inflammation) is directly related to the levels of IgM
antioxLDL antibodies [121]. Changes in gene expression of
adipose tissue suggest that carbohydrate modification can
affect the risk of CVD and type 2 diabetes [122].

The maturation of adipocytes is regulated by a series
of transcription factors, mainly PPARs and C/EBPs, that in
conjunction regulate the expression of hundreds of proteins
that participate in the metabolism and storage of lipids and,
as such, the secretion of adipocytes [123]. Meanwhile, the
chronic inflammation in adipose tissue is evident from the
differential expression of genes involved in inflammatory
responses and activation of natural immunity (Figure 2)
[124].

PPARs are transcriptions factors of a superfamily of
nuclear receptors. Three isoforms exist: PPAR-𝛼, PPAR-𝛽
(before PPAR-𝛿), and PPAR-𝛾 [125]. The gene expression in
the adipose tissue of people with MS seems to be affected by
changes in tissue morphology or insulin sensitivity, where a
diet high in saturated fatty acids produces a proinflammatory
state via the repression of PPARs [126]. The double action
of PPAR-𝛼 and PPAR-𝛾 increases the action of adiponectin
and the expression of its receptors, which results in an
improvement in obesity and a reduction of the inflammatory
process [127].

Adipocytes are a major cell target for PPAR-𝛾 agonists.
This class of compounds includes two drugs, pioglitazone
and rosiglitazone, that are widely used to treat patients with
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Figure 2: Regulatory pathways of adiponectin in adipose tissue
inflammation. M2 type: anti-inflammatory phenotype; MS: meta-
bolic syndrome.⨁ red circle: inhibition.

diabetes [128]. PPAR-𝛾 plays a fundamental role in adipoge-
nesis, as a key regulator in the differentiation and function of
adipocytes and the absorption of stored fatty acids [129–131].

Meanwhile, it has been suggested recently that PPAR-𝛾
is also involved as a key regulator of inflammatory and
immune response [132]. PPAR-𝛾 is required for maturation
of alternatively activated macrophages whatever has a ben-
eficial role in regulating nutrient homeostasis and suggests
that macrophage polarization towards the alternative state
might be a useful strategy for treating type 2 diabetes [133].
However, PPAR-𝛾 activation does not influence M2 marker
expression in resting or M1 macrophages, indicating that
only native monocytes can be primed by PPAR-𝛾 activation
to an enhanced M2 phenotype [134]. In addition, PPAR-𝛾
transcriptional signaling is required formaturation of an anti-
inflammatory M2 phenotype, whereas PPAR-𝛿 controls the
expression of alternative phenotype in Kupffer cells of obese
mice [135].

ApoE expression in adipocytes is regulated by factors
involved in modulating systemic insulin sensitivity [136].
Increased plasma apoE levels have been shown to reduce sys-
temic markers of oxidant stress [137]. Adipocytes synthesize
and secrete apoE, and its regulation by PPAR-𝛾 agonists and
TNF-𝛼 raises an issue regarding the potential significance
of adipocyte-derived apoE [138]. TNF-𝛼 suppresses apoE
gene expression in adipocytes, and PPAR-𝛾 agonist increases
expression of apoE in adipose tissue.Thus TNF-𝛼 and PPAR-
𝛾 agonists regulate apoE gene response via distinct apoE gene
control elements [139]. For PPAR-𝛾, liver receptor X (LXR)
is a key pathway for mediating stimulation of the adipocyte
apoE gene [140]. While that TNF-𝛼 repression of adipocyte
apoE gene expression required an intact NF-𝜅B binding site
at −43 in the apoE promoter [141].

On the other hand, the loss of function of PPAR-𝛾 due
to dominant mutations brings about a resistance to insulin
and the early onset of severe hypertension [142, 143]. More-
over, IL-6 expression in subcutaneous adipose tissue was
significantly associated with intermuscular adipose tissue;
IL-6 messenger RNA (mRNA) was negatively associated
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with adiponectin and PPAR-𝛾 expression [35]. Also, loss of
PPAR-𝛾 in immune cells impairs the ability of abscisic acid to
improve insulin sensitivity by suppressing MCP-1 expression
and macrophage infiltration into white adipose tissue [144].

C/EBPs are a family of transcription factors. At least six
members of this family have been isolated and characterized
to date (C/EBP-𝛼-C/EBP-𝜁) [145]. C/EBP family is essential
for the regulation of glucose and lipid homeostasis. C/EBPs-
𝛼, 𝛽, and 𝛿 are tissue specific and highly expressed in adipose
tissue [146].

C/EBPs and nuclear factor-Y (NF-Y) are critical for
the regulation of the adiponectin expression in response
to nutrients and in the course of adipocyte differentiation
[147]. Even, the transcriptional activity of adiponectin gene
during adipocyte differentiation is enhanced by the motif in
a novel adiponectin enhancer region, via the recruitment of
the C/EBPs and sterol regulatory element-binding proteins
(SREBPs) [148, 149].

The adiponectin promoter was activated by both C/EBP-
𝛼 and C/EBP-𝛽, and the fold increase by C/EBP-𝛽 was
larger than that by C/EBP-𝛼 [147]. C/EBP-𝛼 accesses the
adiponectin promoter through two forkhead box protein
O1 (Foxo1) binding sites and acts as a coactivator. Fur-
ther, SIRT1 increases adiponectin transcription in adipocytes
by activating Foxo1 and enhancing Foxo1 and C/EBP-𝛼
interaction [150]. Thus low expression of SIRT1 and Foxo1
leads to impaired Foxo1-C/EBP-𝛼 complex formation, which
contributes to the diminished adiponectin expression in
obesity and type 2 diabetes [150].Therefore, C/EBP-𝛼 is a key
transcription factor for full activation of human adiponectin
gene transcription in mature adipocytes through interaction
with response elements in the intronic enhancer [151].

However, common allelic variants in CEBP-𝛼 and CEBP-
𝛽 could influence abdominal obesity and related metabolic
abnormalities associated with type 2 diabetes and CVD [152].
Meanwhile, activation of PI3 K induced proinflammatory
gene expression through activating C/EBP-𝛽 and C/EBP-
𝛿 but not NF-𝜅B, which may explain the proinflammatory
effect of insulin in the insulin-resistant state [153]. In the
hyperinsulinaemic state, C/EBP-𝛽 leads to the upregulation
of CCL2, an inflammation-related protein, whichmay initiate
the process of atherosclerosis [154]. Also C/EBP-𝛽 activated
the TNF-𝛼 gene promoter, confirming its proinflammatory
effect [155].

Moreover, adipose tissue GLUT4 regulates the expres-
sion of carbohydrate-responsive-element-binding protein
(ChREBP; also known as MLXIPL), a transcriptional reg-
ulator of lipogenic and glycolytic genes [156]. ChREBP-𝛽
expression in human adipose tissue predicts insulin sen-
sitivity, indicating that it may be an effective target for
treating diabetes [157]. Moreover, upregulation of GLUT4
gene transcription might be directly mediated by SREBP-1c
in adipose tissue [158].

5. Conclusion

Obesity triggers a chronic inflammatory state that promotes
the production of proinflammatory factors contributing to

the impairment of the pathogenesis of MS. The participation
of leukocytes plays a critical role in the initiation and
propagation of adipose tissue inflammation. Most genetic
modifications of adiponectin are due to oxidative stress gen-
erated during obesity. Adiponectin and PPAR-𝛾 can directly
act on macrophages to shift polarization or human mono-
cyte differentiation into anti-inflammatoryM2macrophages.
Therefore the clarification of inflammatory processes in the
adipose tissue during obesity appears to be essential for the
understanding of MS. Thus MS requires the development
of new therapeutic strategies addressed to alter the main
transcription genetic pathways that regulate adipose tissue
metabolism.
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