Supplementary material

1. Transcriptome data

Table S1: Gene regulatory response of HUVECs stimulated with IL27 (10, 30, and $100 \mathrm{ng} / \mathrm{mL}$) and calprotectin (1,5 , and $10 \mu \mathrm{~g} / \mathrm{mL}$) after 12 h . Multi-gene array TaqMan Immune human panel was used, genes with no indicated FC and p-values were not detected. (FC: Fold Change, p-val: p-value based on unpaired t.test).

[^0]Dorosz et al., 2015 Supplementary material

Continued on next page

Dorosz et al., 2015 Supplementary material

Continued from previous page																		
IL27			Calp															
Genes	10		30			100			1			5			10			
	FC	p-val																
1L12B																		
ILI3																		
ILI 15	6.53	0.00	***	6.22	0.00	**	5.75	0.00	**	0.87	0.48		0.80	0.23		0.83	0.43	
IL17																		
LL18	1.45	0.32		0.88	0.71		0.84	0.65		0.97	0.91		1.19	0.47		1.02	0.94	
IL1A	0.83	0.37		0.84	0.53		0.79	0.27		1.09	0.38		0.92	0.55		1.01	0.96	
IL1B	0.92	0.58		1.17	0.23		2.26	0.01	**	0.90	0.46		0.83	0.20		1.06	0.52	
IL.2																		
IL2RA																		
IL3																		
1L4																		
IL5																		
IL. 6	1.53	0.08		2.23	0.01	**	2.19	0.02	*	1.13	0.46		1.00	1.00		1.12	0.36	
IL7	7.42	0.00	***	6.80	0.00	***	4.40	0.03	*	2.19	0.01	**	1.42	0.37		1.41	0.29	
IL8	0.73	0.27		0.76	0.44		0.92	0.72		1.06	0.64		0.90	0.48		1.06	0.64	
IL9																		
LRP2																		
LTA	1.20	0.37		1.09	0.58		0.85	0.02	*	1.13	0.29		0.66	0.07		0.88	0.59	
MYIT6																		
NFKB2	0.72	0.02	*	0.85	0.28		0.75	0.03	*	0.95	0.48		0.89	0.16		1.02	0.79	
NOS2A	0.67	0.07		1.37	0.11		1.16	0.36		1.03	0.94		0.80	0.21		1.52	0.05	*
PGK1	0.92	0.56		1.00	0.98		0.94	0.69		0.81	0.03	*	0.89	0.20		0.78	0.01	*
PRF1																		
PTGS2	1.13	0.64		0.99	0.97		1.26	0.48		1.07	0.01	*	0.92	0.01	**	1.14	0.00	**
PTPRC																		
REN																		
RPL3L																		
SLLE	0.53	0.22		0.89	0.79		0.62	0.38		1.10	0.31		0.78	0.01	*	0.80	0.05	

Continued on next page

Dorosz et al., 2015 Supplementary material

Continued from previous page															
IL27			Calp												
10			30		100		1		5			10			
Genes	FC	p-val	FC	p-val	FC	p-val	FC	p-val		FC	p-val		FC	p-val	
STI,	1.10	0.12	0.99	0.81	1.02	0.64	1.26	0.01	**	1.17	0.02	*	1.29	0.00	**
SKI	1.04	0.56	1.00	0.98	0.96	0.62	1.12	0.22		1.03	0.78		1.10	0.27	
SMAD3	0.93	0.70	1.10	0.64	0.97	0.89	1.08	0.23		1.09	0.39		1.25	0.01	**
SMAD7	1.09	0.51	0.98	0.85	0.98	0.86	1.01	0.79		1.05	0.44		0.99	0.76	
STAT3	1.16	0.22	1.19	0.16	1.13	0.43	0.96	0.23		0.89	0.03	*	1.00	0.97	
TBX21															
TFRC	1.04	0.69	1.03	0.78	0.94	0.55	1.05	0.34		0.99	0.90		0.93	0.19	
TGFB1	1.08	0.14	1.02	0.58	1.05	0.41	0.91	0.37		0.86	0.05		0.97	0.58	
TNF															
TNFRSF18	0.63	0.55	2.82	0.29	6.55	0.10	0.60	0.41		1.49	0.74		0.63	0.48	
VEGF	0.95	0.71	0.89	0.39	0.91	0.60	0.96	0.64		0.89	0.11		0.94	0.34	

2. Analysis and normalization of proteome data

Assessment of protein abundance densities was performed to compare the individual replicates of each stimulatory condition and time point (Figure S1). Some replicates showed differences in protein abundance densities compared to the majority of overlapping protein abundance densities (Figure S1 A-C). Therefore, a further comparison by calculation of the peak sums for every sample was performed. Figure S2 shows the peak sums of protein abundances for every replicate per condition and time point. A median of all peak sums per time point was calculated and is shown as black lines. Application of a threshold standard deviation (sd) of 1.25 caused the elimination of replicates representing a different protein abundance density compared to the majority. Using this approach, we excluded 2 replicates for the 6 h time point, 6 replicates for the 12 h time point, and 7 replicates for the 24 time point. Analysis of the data distribution revealed to be variable and asymmetric by representing the sd over mean of protein abundances per time. Therefore, a variance stabilization and normalization (VSN) was applied and sd over mean of transformed protein abundances remained stable (Figure S3).
Significance was calculated based on Storey's positive false discovery rate also known as q.value. A comparative study between q.value and p-value revealed that a p-value ≤ 0.05 result in a q.value of 0.175 (Figure S4).

Figure S1: Protein abundances presented as densities of time points 6,12 , and $24 \mathrm{~h} . \mathrm{A}, \mathrm{B}$, and C: before elimination of replicates at 6,12 , and 24 h respectively. D, E, and F : after elimination of replicates.

Figure S2: Elimination of replicates based on peak sums of protein abundances and application of a threshold standard deviation (sd) of 1.25 (indicated in grey). Time points 6,12 , and 24 h are presented separately and the black lines indicate the median of all peak sums for each time point. Peak sum per replicates is represented by a colour code.

Figure S3: Standard deviation over mean before and after applying arcsinh function (variance stabilization and normalization (VSN)) of 6, 12, and 24 h time points.

Figure S4: Comparison of p-values and q.values to identify a significance threshold for the q.values. A q.value of 0.15 was chosen as significance threshold.

Figure S5: Western blot of LI-COR detected pSTAT1, STAT1, pSTAT3, STAT3, and tubulin in HUVECs stimulated with IL27 $(30 \mathrm{ng} / \mathrm{mL}) \pm$ calprotectin $(1 \mu \mathrm{~g} / \mathrm{mL})$ for $3,6,12$, and 24 h .

Table S2: Core analysis performed by IPA showing the top canonical pathways after stimulation with IL27 ($30 \mathrm{ng} / \mathrm{mL}$) \pm calprotectin ($1 \mu \mathrm{~g} / \mathrm{mL}$) for each stimulus vs Ctrl and also the comparison between IL27 and IL27 + calprotectin. Abbreviation: not a number (NAN).

IL27			
Name	p-value	z-score	Proteins
Signalling by Rho Family GTPases	$6.30 \cdot 10^{-7}$	0	12
Remodelling of Epithelial Adherens Junction	$1.44 \cdot 10^{-6}$	0	7
Protein Ubiquitination P'athway	$1.68 \cdot 10^{-6}$	NAN	12
RhoGDI Signalling	$2.10 \cdot 10^{-6}$	0.707	10
Actin Cytoskeleton Signalling	$1.54 \cdot 10^{-6}$	NAN	10
IL27+calprotectin			
Name	p-value	z-score	Proteins
Protein Ubiquitination Pathway	$2.77 \cdot 10^{-7}$	NAN	11
EIF2 Signalling	$7.29 \cdot 10^{-4}$	NAN	6
mTOR Signalling	$8.58 \cdot 10^{-4}$	NAN	6
Antigen Presentation Pathway	$1.21 \cdot 10^{-3}$	NAN	3
Regulation of cIF4 and p70S6K Signalling	$1.68 \cdot 10^{-3}$	NAN	5
calprotectin			
Name	p-value	z-score	Proteins
EIF2 Signalling	$1.30 \cdot 10^{-10}$	-2	11
mTOR Signalling	$5.19 \cdot 10^{-8}$	NAN	9
Regulation of FIF4 and p70S6K Signalling	$1.02 \cdot 10^{-7}$	NAN	8
Germ Cell-Sertoli Cell Junction Signalling	$3.90 \cdot 10^{-4}$	NAN	5
14-3-3-mediated Signalling	$1.09 \cdot 10^{-3}$	NAN	4

IL27 vs
IL27+calprotectin

Name	p-value	z-score	Proteins
EIF'2 Signalling	$9.26 \cdot 10^{-17}$	1.155	25
Regulation of EIF4 and p70S6K Signalling	$1.20 \cdot 10^{-11}$	1.342	18
Protcin Ubiquitination Pathway	$2.53 \cdot 10^{-9}$	NAN	20
mTOR Signalling	$6.16 \cdot 10^{-9}$	2.449	17
Remodelling of Epithelial Adherens Junction	$7.70 \cdot 10^{-7}$	NAN	9

[^0]: Continued on next page

