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Obesity is defined as the excess accumulation of intra-abdominal body fat, resulting in a state of chronic, low-grade
proinflammation that can directly contribute to the development of insulin resistance. Pentraxin 3 (PTX3) is an acute-phase
protein that is expressed by a variety of tissue and cell sources and provides an anti-inflammatory property to downregulate the
production of proinflammatory cytokines, in particular interleukin-1 beta and tumor necrosis factor alpha. Although PTX3
may therapeutically aid in altering the proinflammatory milieu in obese individuals, and despite elevated expression of
PTX3 mRNA observed in adipose tissue, the circulating level of PTX3 is reduced with obesity. Interestingly, aerobic
activity has been demonstrated to elevate PTX3 levels. Therefore, the purpose of this review is to discuss the therapeutic
potential of PTX3 to positively regulate obesity-related inflammation and discuss the proposition for utilizing aerobic
exercise as a nonpharmacological anti-inflammatory treatment strategy to enhance circulating PTX3 concentrations in
obese individuals.

1. Introduction

Obesity is a state of chronic, low-grade proinflammation that
derives from the excess infiltration and accumulation of neu-
trophils and resident macrophages within the adipose tissue
[1–3]. This proinflammatory state directly contributes to
the increased risk and pathology of obesity-related metabolic
dysfunction, including insulin resistance and the subsequent
development of type 2 diabetes mellitus [4, 5]. Alarmingly,
adult obesity prevalence rates in the United States have
significantly increased from 30.5% to 37.7% since the turn
of the century [6], highlighting the need to identify potential
therapeutic approaches that attenuate obesity-related
proinflammatory profiles.

Counter to obesity-related inflammation, pentraxin 3
(PTX3) is an acute-phase protein that is induced in
response to proinflammatory stimulation by a variety of

cell types, including adipocytes, neutrophils, monocytes,
and macrophages [7–9]. With obesity, PTX3 mRNA
expression is elevated in adipose tissue and is positively asso-
ciated with the mRNA expression of the proinflammatory
cytokines interleukin-1 beta (IL-1β) and tumor necrosis
factor alpha (TNF-α) [10, 11]. However, our laboratory and
others have shown that circulating concentrations of PTX3
are reduced in obese individuals [11–13], suggesting that
circulating PTX3 concentrations are dysregulated during
obesity. Recent studies further demonstrate that PTX3
elicits the production of anti-inflammatory cytokines IL-
10 and transforming growth factor beta (TFG-β) while
downregulating the proinflammatory response [14–16].
Therefore, the purpose of this review is to discuss the
potential factors contributing to obesity-related PTX3
dysregulation. Furthermore, this review will address the
therapeutic potential of PTX3 to improve obesity-related
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inflammatory imbalance, and because of the reported ele-
vations in PTX3 following aerobic exercise [12, 13, 17],
this review will address the possibility of utilizing aerobic
exercise as a nonpharmacological anti-inflammatory treat-
ment strategy to enhance plasma PTX3 concentrations in
obese individuals.

2. Structure and Function of Pentraxin
Superfamily

Pentraxins are an evolutionarily conserved superfamily of
proteins [18], identified by a 203 amino acid long “pentra-
xin domain” consisting of the His-x-Cys-x-Ser/Thr-Trp-x-
Ser amino acid sequence in the carboxy-terminal region,
where x is any amino acid [19–22]. Elucidation of the
structural characteristics has led to the organization of
pentraxins into two groups, the short and the long pentra-
xins, based on the N-terminal domain that is attached to
the pentraxin domain [21].

2.1. Short Pentraxins. Short pentraxins consist of C-reactive
protein (CRP) and serum amyloid P component (SAP). First
identified in 1930, elevated concentrations of CRP, then
termed fraction C, were observed in patients during the acute
stage of pneumococcus infection and remained depending
on the presence and severity of illness [23]. In 1941, MacLeod
and Avery referred to CRP as an “acute-phase reactant” to
describe its rapid accumulation in the blood following
inflammatory challenge [24]. CRP and SAP are now known
to be secreted primarily by the liver, and to lesser extents by
leukocytes, following stimulation by the proinflammatory
cytokine IL-6 [25–28]. Although baseline concentrations of
CRP typically do not exceed 2-3μg/mL, up to 1000-fold
increases in CRP are observed in response to a variety of
adverse inflammatory conditions, whereas SAP concentra-
tions remain relatively stable between 30 and 50μg/mL
[29]. These findings have contributed to the utilization of
CRP, but not SAP, as an indirect clinical marker of inflam-
matory disease status, particularly in cardiovascular disease
and metabolic dysregulation [30].

2.2. Long Pentraxins. Long pentraxins contain longer N-
terminal domains compared to their short pentraxin coun-
terparts and include, among others, pentraxin 3 (PTX3),
PTX4, and neutronal pentraxins 1 and 2. Of these, PTX3, also
known as TNF-stimulated gene (TSG-14), was the first to be
discovered in 1990 and is the most well studied. PTX3 has a
molecular weight of ~42 kDa, is located on chromosome 3
(q25), consists of three exons, and contains a unique 178
amino acid long sequence which is structurally unique com-
pared to all other proteins [21, 31]. PTX3 was first docu-
mented as an acute-phase reactant in 1992 [21] and is now
known to be evolutionarily conserved between murine and
human species, as protein sequences encoded by exon 1
and exon 2 share 93 and 81% structural homology, respec-
tively [32]. Furthermore, Breviario et al. [21] demonstrate
that vascular endothelial cell expression of PTX3 mRNA is
increased within 1 hour and peaks between 2 and 6 hours fol-
lowing stimulation with the proinflammatory cytokines IL-

1β and TNF-α, but not IL-6. Similarly, Lee et al. [31]
observed peak PTX3 mRNA expression levels in fibroblasts
4 hours following IL-1β and TNF-α stimulation. Subsequent
analysis has confirmed that PTX3 mRNA expression is elic-
ited in a variety of cell and tissue sources following stimula-
tion with IL-1β, TNF-α, and the proinflammatory stimulus
lipopolysaccharide (LPS) through activation of the nuclear
factor κB (NF-κB) and activator protein 1 (AP-1) transcrip-
tion factors [32, 33], including the lungs, ovaries, thymus,
brain, skeletal and cardiac muscle, visceral and subcutaneous
adipocytes, hepatocytes, monocytes and macrophages, den-
dritic cells, and neutrophils [7, 8, 11, 34–38]. In addition,
intravenous injection of LPS results in the elevation of sys-
temic PTX3 concentrations in both rodents and humans
[32, 35] due to activation of the PTX3 promotor genes within
the cell. The presence of a leader peptide of 17 amino acids
located in the N-terminus is essential for the secretion of pro-
tein [31]. Therefore, compared to CRP, the local expression
and concomitant systemic increase of circulating PTX3 that
occurs transiently in response to proinflammatory stimula-
tion suggests that PTX3 may be a more sensitive and viable
biomarker of tissue pathology and disease status.

3. PTX3 Dysregulation in Obesity

3.1. Obesity-Mediated Inflammation and Insulin Resistance.
Obesity is defined as the excess accumulation of intra-
abdominal body fat which can be subdivided into two com-
partments: subcutaneous adipose tissue (SAT) and visceral
adipose tissue (VAT). While both tissue types are important,
evidence suggests that VAT is a stronger predictor of obesity-
related inflammation and metabolic disease [39, 40]. SAT
and VAT accumulation is a result of the increased number
and size of adipocytes [41, 42]. Analysis of adipocyte kinetics
indicates that the number of adipocytes increases more dra-
matically in obese compared to that in normal-weight indi-
viduals throughout childhood and plateaus upon reaching
adulthood, implying that further fluctuations of adipose cell
mass are due to increased adipocyte hypertrophy resulting
from excess lipid storage [41].

Adipose tissue is not just a passive storage site for fat
accumulation but an endocrine organ contributing to the
production of anti-inflammatory and proinflammatory
proteins [43]. Adipocyte tissue consists of a mature adipo-
cyte fraction and a stromal-vascular fraction (SVF) com-
prised primarily of preadipocytes, vascular cells, and
leukocytes, including neutrophils and macrophages [44].
More specifically, neutrophils are rapidly recruited to the
SVF in response to acute, high-fat challenge (i.e., diet),
with peak concentrations occurring between 3 and 7 days
[1]. This acute infiltration of neutrophils precedes the
increased number of resident macrophages that accumu-
late within the SVF in response to as little as 8 weeks of
high-fat diet [1]. Macrophages are a heterogeneous cell
population which are roughly divided into two primary
phenotypes, classically activated (M1) and alternatively
activated (M2), based on their function and secretory
characteristics and are identified by their unique array of
cell surface markers [45, 46]. Macrophage phenotypes are
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largely determined by the microenvironment in which
they reside [46, 47]. For example, local concentrations of
the proinflammatory mediators LPS and interferon gamma
stimulate the polarization of M1 macrophages that are
responsible for the initiation of debris clearance and the
production of the proinflammatory cytokines IL-1β, IL-6,
and TNF-α, and the chemokine monocyte chemoattractant
protein 1 (MCP-1) [48]. Conversely, M2 macrophage polar-
ization is the result of IL-4 and IL-13 signaling [49]. In turn,
M2 macrophages produce the anti-inflammatory cytokines
IL-10 and TGF-β, which attenuate the proinflammatory
response and initiate tissue repair [49, 50].

During obesity, excess VAT hypertrophy is associated
with an increased concentration of macrophages [3]. In
fact, some estimates suggest that macrophages account
for up to 40% of the total nuclei content in adipose tissue
of obese individuals, compared to only 10% in that of
normal-weight individuals [3]. Furthermore, macrophages
in obese individuals are polarized toward an M1 pheno-
type and express elevated levels of proinflammatory
cytokine mRNA [3, 47]. To the contrary, resident adipose
tissue macrophages in normal-weight individuals are
primarily comprised of M2 macrophages which help the
cellular response counterregulates a proinflammatory chal-
lenge [47]. Interestingly, the distribution of macrophages is
also different in obese compared to that in normal-weight
individuals. Weisberg et al. [3] demonstrate that macro-
phages in adipose tissue of lean mice are uniformly small
and widely dispersed among the adipocytes, whereas
macrophages from obese rodents are larger and gathered
in aggregate. More recent studies have shown that over
90% of resident macrophages are localized around adipo-
cytes that have died from lipid-induced cellular stress
(up to 15 per dead adipocyte) [39, 51]. Although visceral
adipocytes are about 20% smaller than subcutaneous
adipocytes, their capacity to expand is less, contributing
to an elevated rate (30-fold) of adipocyte cell death that
results in the localization of M1 macrophages in obese
individuals [39, 51].

The excess accumulation of M1 macrophages within
VAT is now understood to be the primary source of circulat-
ing proinflammatory cytokines IL-1β, IL-6, and TNF-α that
contribute to the state of chronic, low-grade inflammation
observed during obesity [3, 4]. M1 macrophages also express
and secrete the proinflammatory chemokine MCP-1 in
proportion to the amount of VAT, resulting in the enhanced
recruitment of circulating monocytes [52]. Bories et al. [46]
further report that the systemic proinflammatory environ-
ment observed during obesity predisposes circulating
monocytes toward a proinflammatory phenotype, and
upon entry into the adipose tissue, monocytes migrate to
the signaling site and preferentially differentiate into
resident M1 macrophages. These findings suggest that
the accumulation of M1 macrophages and increased
concentrations of macrophage-derived proinflammatory
proteins result in a positive feedback loop that further
exacerbates the local and systemic proinflammatory
milieu observed during obesity.

Studies also demonstrate that obesity-related
proinflammatory as a result of M1 macrophage accumula-
tion within VAT is associated with the number of metabolic
syndrome parameters [3, 53] and is directly linked with
the development and pathology of insulin resistance [4].
More specifically, macrophage-derived MCP-1, TNF-α,
and to a lesser extent IL-6 directly impair the mecha-
nisms involved with insulin-mediated glucose uptake in
adipose tissue and skeletal muscle [4, 54–58]. However,
neutralization of TNF-α and MCP-1 and the downregula-
tion of proinflammatory cytokine production restore
insulin-mediated glucose uptake in obese individuals
[58–61] and suggest that targeting the production of
macrophage-derived proinflammatory may positively reg-
ulate metabolic signaling.

3.2. PTX3 Expression in Obese Adipose Tissue. Abderrahim-
Ferkoune et al. [7] document that TNF-α elevates PTX3
mRNA expression in the SVF but not the mature adipocyte
fraction of adipose tissue in a dose-dependent manner. In
addition, Osorio-Conles et al. [11] demonstrate that IL-1β,
but not IL-6, contributes to PTX3 mRNA expression in adi-
pose tissue. In parallel with these findings, adipose tissue
expression of PTX3 mRNA is increased in obese compared
to that in normal-weight mice and is 3-fold higher in
diabetic-obese compared to that in nondiabetic obese mice
[7]. These findings suggest that disease pathology may fur-
ther enhance the expression of PTX3 mRNA in adipose tis-
sue; however, whether or not this is due to metabolic
dysregulation or the severity of proinflammatory status
remains unknown.

In humans, VAT expression of PTX3 mRNA is positively
associated with body mass index (BMI) [10] and is elevated
in obese and overweight (BMI > 25 kg/m2) compared to that
in normal-weight individuals (BMI 18.5–24.9 kg/m2) [11].
Furthermore, a positive association is observed between
PTX3 and IL-1β mRNA expression in VAT, as well as
TNF-α mRNA expression in SAT and VAT [10, 11]. How-
ever, greater PTX3 mRNA expression is reported in the
mature adipocyte, compared to the SVF [11]. In support of
these findings, Alberti et al. [10] report that PTX3 expression
in adipose tissue does not appear to follow the pattern of
macrophage distribution, as PTX3 mRNA expression is asso-
ciated with the macrophage-specific surface marker CD68 in
SAT, but not VAT, despite normal macrophage distribution
(VAT > SAT; obese > normal weight). These findings suggest
that adipose tissue components other than macrophages may
be responsible for the elevated expression of PTX3 mRNA
observed in obese humans.

In addition to inflammation, hyperinsulinemia, hypoxia,
and reactive oxygen species are linked to the dysregulation of
adipose tissue protein expression. However, human adipo-
cyte PTX3 mRNA expression is only slightly responsive to
hypoxic conditions and the mitochondrial complex II inhib-
itor antimycin [11], whereas H2O2 exposure results in a slight
downregulation of PTX3 mRNA, and insulin stimulation has
no effect [11]. In addition, circulating low-density lipopro-
teins (LDL) are a predictor of PTX3 mRNA expression in
SAT of nondiabetic men [62], and high-density lipoproteins
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(HDL), which also regulate PTX3 mRNA expression in
endothelial cells [63], are an independent predictor of
PTX3 mRNA expression in VAT [10]. Therefore, addi-
tional research aimed at investigating the impact of circu-
lating cholesterol may provide insight into the factors that
contribute to elevated PTX3 mRNA expression in adipose
tissue during obesity.

3.3. Circulating PTX3 Concentrations during Obesity. Circu-
lating PTX3 concentrations are negatively associated with
numerous indices of obesity, including BMI, waist and hip
circumferences, and visceral fat mass (11, 67, 71, 86, 87, 99,
103), and positively associated with muscle mass (19). Anal-
ysis of daily fluctuations of plasma PTX3 demonstrates that
systemic PTX3 concentrations are more stable compared to
CRP [64]. These observations have increased interest in uti-
lizing plasma PTX3 concentrations as a biomarker to assess
the severity of obesity-related inflammation and metabolic
disease. In contrast to the PTX3 mRNA expression patterns
observed in adipose tissue of obese individuals, reports on
plasma PTX3 concentrations in obese populations and in
those with metabolic dysregulation have yielded inconsistent
results. The majority of studies report that plasma PTX3 con-
centrations are lower in obese individuals and those with
metabolic dysregulation compared to that in normal-weight
and metabolically healthy controls [11–13, 62, 65–69]. To
the contrary, other studies report the opposite [70–72]; how-
ever, elevated PTX3 concentrations observed in these studies
may have been altered by the presence of atherosclerosis
which may differentially impact plasma PTX3 concentrations
in obese individuals. In fact, atherosclerosis induces a robust
proinflammatory response observed in both the vascular
endothelium and systemic circulation, and the parallel
increases in PTX3 expression and secretion may potentially
serve as protective mechanisms against the enhanced pro-
gression of atherosclerosis and associated proinflammatory
milieu [73, 74].

Importantly, circulating PTX3 concentrations are
impacted following weight loss intervention. Specifically,
short-term bed rest with caloric restriction (14 days) increases
plasma PTX3 concentrations in associationwith decreased fat
mass [75], while regression analysis demonstrates that a 1-
kilogram reduction in body weight is associated with a 74 pg/
mL increase in plasma PTX3 concentrations following a 6-
week dietary restriction intervention [69]. Witasp et al. [69]
further demonstrate that increased plasma PTX3 concentra-
tions are associated with reduced body weight, BMI, and cen-
tral adiposity over a 5-year observational period. Although
changes in metabolic parameters were not reported in these
studies, numerous studies report that lower resting PTX3 con-
centrations are negatively associated with circulating concen-
trations of proinflammatory cytokines, triglycerides, insulin,
glucose, and the HOMA-IR index of insulin resistance [11–
13, 65–67, 75] and incrementally lower with increased param-
eters ofmetabolic syndrome [65, 67]. PlasmaPTX3concentra-
tions are also negatively related with the insulin response
following intravenous and oral glucose administration [11],
and as Escobar-Morreale et al. [76] demonstrate, plasma
PTX3 decreases in response to oral glucose intake. However,

it remains unknown whether or not PTX3 decreases as a con-
sequence of metabolic dysfunction or if PTX3 provides a
mechanism to protect against the development of disease. A
recent study utilizing a diabetic-obese rat model reports that
in addition to lower circulating PTX3 concentrations, reduced
PTX3 mRNA expression is associated with the reduced
expression of the GLUT4 glucose transporter in skeletal mus-
cle [77].While thesefindingswereobservational innature, this
study suggests that PTX3may aid in the facilitation of glucose
homeostasis and highlights the need for additional research
aimed at investigating the mechanisms associated with
PTX3-mediated glucose uptake.

4. PTX3 as an Anti-Inflammatory Protein

4.1. Neutrophil Synthesis, Storage, and Release of PTX3. The
reasons for the paradoxical findings between adipose tissue
expression and systemic PTX3 concentrations are unclear,
and the tissue source responsible for regulating systemic
PTX3 concentrations is currently unknown. It is known that
maturing neutrophils, but not other polymorphonuclear cells
(basophils and eosinophils), synthesize and store ready-made
PTX3 within lactoferrin granules [8]. Interestingly, while
mature peripheral neutrophils do not express PTX3
mRNA or appear to be the primary source of systemic
PTX3 concentrations, mature neutrophils do release stored
PTX3 in response to LPS and TNF-α activation [8]. These
findings suggest that mature neutrophils are a reservoir
for PTX3 storage prior to their release in response to
proinflammatory challenge.

Evidence suggests that neutrophil counts and rates of
activation are increased in obese individuals and in those
with metabolic dysregulation [1, 2, 78, 79]. Given this, the
reduced concentrations of circulating PTX3 in these
populations may potentially reflect an impaired ability of
neutrophils to either synthesize PTX3 throughout their mat-
uration process or release stored PTX3 upon neutrophil
activation, posing deleterious risks during periods of inflam-
matory challenge. Conversely, it is also possible that reduced
PTX3 concentrations may reflect the increased release of
PTX3 by neutrophils within adipose tissue or increased
tissue uptake of PTX3 from circulation by a mechanism
currently unknown.

A novel study by Deban et al. [80] demonstrates that
PTX3 selectively binds the adhesion molecule P-selectin. Fol-
lowing inflammatory stimulation, P-selectin relocates to the
cell surface where it interacts with P-selectin glycoprotein
on leukocytes [81]. As a result, leukocytes are arrested at
the cell surface, infiltrate into the tissue, and stimulate a
heightened immune response [81]. Thus, the binding of
PTX3 to P-selectin aids in the regulation of the innate
immune response by limiting the cellular infiltration of neu-
trophils and monocytes [73, 80]. In addition, these findings
support the posit that PTX3 regulates the proinflammatory
milieu observed during obesity, potentially by attenuating
the infiltration of leukocytes into the adipose tissue.

4.2. Systemic Anti-Inflammatory Effects of PTX3. In humans,
plasma PTX3 concentrations are inversely related to
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circulating proinflammatory cytokines (IL-6 and CRP) and
positively related with the anti-inflammatory cytokine IL-10
[75]. The initial studies investigating the role of PTX3 as a
mediator of inflammation utilized transgenic animal models
which overexpress PTX3. Specifically, researchers injected
the PTX3 transgenic mice with LPS and observed that
PTX3 mRNA expression was elevated in a variety of tissues,
including the heart and skeletal muscle, but not the liver
[82]. Following LPS injection, survival curve analysis further
revealed that transgenic expression of PTX3 rescued mice
from endotoxic shock and reduces symptoms of sepsis [82].
Furthermore, PTX3 transgenic mice possess elevated con-
centrations of the anti-inflammatory cytokine IL-10 and
exhibit a more robust anti-inflammatory response within
the first few hours following LPS infusion [82].

Knockout animal models have also been utilized to dem-
onstrate the adverse consequences of low-PTX3 concentra-
tions. For example, Norata et al. [74] demonstrated that
PTX3 knockouts experience increased atherosclerotic lesion
size in the aorta, which was associated with the elevated
expression of proinflammatory cytokine mRNA and the
excess accumulation of macrophage within the atheroscle-
rotic plaque. In addition, increased risk of myocardial
infarction and elevated concentrations of circulating
proinflammatory cytokines, as well as excess neutrophil and
macrophage accumulation are observed in PTX3 knockout
mice [73, 83]. However, exogenous PTX3 administration
reversed this phenotype [73, 83], indicating that PTX3 is
necessary to regulate the appropriate immune response.

4.3. Cellular Anti-Inflammatory Effects of PTX3. At the cellu-
lar level, proinflammatory stimulation by LPS is mediated by
the pattern recognition receptor toll-like receptor 4 (TLR4)
[84]. TLR4 is a transmembrane receptor which contains an
intracellular cytoplasmic region homologous to the IL-1
receptor termed the toll/IL-1R (TIR) domain [85]. Activation
of TLR4 signaling by LPS is reliant upon the action of two cell
surface accessory molecules: myeloid differentiation protein
2 (MD-2) and CD14 [86]. Following ligand binding, TLRs
undergo conformational changes resulting in the further
recruitment of the myeloid differentiation factor 88
(MyD88) and TIR-containing adaptor molecule (TRIF)
intracellular adaptor molecules that mediate the production
of proinflammatory cytokines and type I interferons, respec-
tively [87, 88]. Not surprisingly, TLR4 expression is elevated
in adipocytes and circulating leukocytes in obese individuals
and contributes to the increased risk of metabolic
dysregulation [89–91].

Recent studies have also begun to elucidate the anti-
inflammatory capacity of PTX3 at the cellular level. For
example, the PTX3 N-terminus binds MD-2 and inhibits
TLR4 activation in neutrophils, resulting in the reduced
inflammatory burden following fungal infection [15]. In
addition, activation of macrophages with high concentra-
tions of PTX3 (10ng/mL) attenuates LPS-induced produc-
tion of IL-1β, TNF-α, and MCP-1 by downregulating NF-
κB protein expression [14]. Furthermore, PTX3 increases
the production of the anti-inflammatory cytokines IL-10
and TGF-β through the Akt- and p38-mediated pathways,

respectively [14–16, 92]. Although the mechanisms responsi-
ble for the PTX3-mediated anti-inflammatory signaling have
not been fully elucidated, evidence suggests PTX3 signaling
acts through TLR2, 3, and 4, but not TLR9 engagement,
and is dependent upon TRIF-mediated activation of the
transcription factor interferon-regulated factor 3, but not
NF-κB [15, 92].

These findings suggest that PTX3 is a counterregulatory
protein which preferentially facilitates an anti-inflammatory
response by downregulating the production of neutrophil
and macrophage-derived proinflammatory proteins and
increasing the production of anti-inflammatory cytokines.
Thus, PTX3 may also facilitate the polarization of adipocyte
macrophages toward an M2 phenotype, as recently suggested
in different tissue sources [93, 94]. Therefore, it is reasonable
to speculate that therapeutic approaches (i.e., weight loss,
regular physical exercise, and the potential development of
pharmacological interventions) which elevate circulating
PTX3 concentrations in obese individuals will help restore
obesity-related inflammatory imbalances and shift the sys-
temic and local inflammatory microenvironments to an
anti-inflammatory milieu.

5. PTX3 Response to Aerobic Exercise

Aerobic exercise training is an effective therapeutic approach
against obesity-related proinflammatory and metabolic dys-
function. In fact, aerobic exercise training reduces adipocyte
size, elicits the polarization of macrophages toward an M2
phenotype, and lowers proinflammatory cytokine expression
in adipose tissue [95, 96]. As a result, the elevated local and
systemic anti-inflammatory profiles following aerobic exer-
cise training are associated with improved glucose metabo-
lism and protect against high-fat diet-induced insulin
resistance [96, 97].

Acute aerobic exercise also enhances systemic PTX3 con-
centrations. Our laboratory and others report that plasma
PTX3 concentrations are increased for up to 1 hour in
response to a single bout of aerobic exercise [12, 13, 17, 64].
Furthermore, Nakajima et al. [64] demonstrate that
exercise-induced plasma PTX3 concentrations are positively
associated with the neutrophil activation marker myeloper-
oxidase and that intracellular neutrophil concentrations of
PTX3 are reduced compared to resting values in response
to exercise in an intensity-dependent manner. These findings
suggest that neutrophils are a significant source of elevated
PTX3 concentrations following acute aerobic exercise, poten-
tially serving as a mechanism to regulate the exercise-induced
neutrophil infiltration into the tissue. Similarly, regular par-
ticipation in aerobic exercise augments circulating concen-
trations of PTX3 at rest and in response to acute exercise.
More specifically, resting PTX3 concentrations are increased
in aerobically trained compared to that in sedentary males
[98], and cardiorespirtatory fitness levels (VO2max) predict
the acute exercise-induced PTX3 response following sub-
maximal and maximal bouts of aerobic exercise [12, 13]. In
addition, plasma PTX3 concentrations increase after 8 weeks
of habitual moderate aerobic exercise training in elderly men
and women, and these increases are associated with elevated
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cardiorespiratory fitness levels (VO2max) and improved indi-
ces of cardiovascular function [99, 100].

Data recently collected in our laboratory also demon-
strates that the capacity of acute exercise to increase plasma
PTX3 concentrations is similar in obese compared to that
in normal-weight individuals [12, 13], suggesting that a sin-
gle bout of aerobic exercise is equally beneficial for obese
and normal-weight individuals. Furthermore, in response to
12 weeks of aerobic exercise training, elevated concentrations
of resting PTX3 in obese and overweight females were asso-
ciated with reductions in BMI [101]. From these results,
one might be tempted to hypothesize that increased PTX3
concentrations may also mediate the anti-inflammatory
effects of aerobic exercise in obese individuals. However, no
associations have been observed between systemic PTX3
concentrations and indices of insulin resistance or
proinflammatory following acute aerobic exercise in our
laboratory [12, 13], suggesting that the cumulative effects of
exercise training may be responsible for enhancing the anti-
inflammatory effects of PTX3.

Unfortunately, only one study has investigated the rela-
tionship between PTX3 and indices of metabolic dysfunction
in response to physical activity intervention. As a result of
short-term physical activity intervention (7 days) in obese
adolescents, increased plasma PTX3 concentrations were
associated with decreased concentrations of circulating insu-
lin as well as the HOMA-IR index [67]. Although limited by
short duration, these findings provide evidence to warrant
additional research aimed at investigating the effects of acute
and chronic aerobic exercise intervention on PTX3 concen-
trations in obese individuals.

6. Conclusion

The findings presented in this review demonstrate that PTX3
may be a potential target for demonstrating and understand-
ing the mechanistic impact of various therapies that address
obesity-related chronic inflammation and metabolic dys-
function. With the growing obesity epidemic and the long-
term health consequences of proinflammatory diseases, addi-
tional research focusing on the anti-inflammatory capacity of
PTX3 against inflammatory-mediated metabolic dysfunction
and the extent to which interventions such as weight loss
programs aerobic exercise, and pharmacological agents may
augment that these responses are necessary and warranted.
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