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The integrity and permeability of the intestinal epithelial barrier are important indicators of intestinal health. Impaired intestinal
epithelial barrier function and increased intestinal permeability are closely linked to the onset and progression of various intestinal
diseases. Sinapic acid (SA) is a phenolic acid that has anti-inflammatory, antihyperglycemic, and antioxidant activities; meanwhile,
it is also effective in the protection of inflammatory bowel disease (IBD), but the specific mechanisms remain unclear. Here, we
evaluated the anti-inflammatory of SA and investigated its potential therapeutic activity in LPS-induced intestinal epithelial
barrier and tight junction (TJ) protein dysfunction. SA improved cell viability; attenuated epithelial permeability; restored the
protein and mRNA expression of claudin-1, ZO-1, and occludin; and reversed the redistribution of the ZO-1 and claudin-1
proteins in LPS-treated Caco-2 cells. Moreover, SA reduced the inflammatory response by downregulating the activation of the
TLR4/NF-κB pathway and attenuated LPS-induced intestinal barrier dysfunction by decreasing the activation of the
MLCK/MLC pathway. This study demonstrated that SA has strong anti-inflammatory activity and can alleviate the occurrence
of high intercellular permeability in Caco-2 cells exposed to LPS.

1. Introduction

Intestinal epithelial cells are the key components of the epi-
thelial lining. The intact intestinal epithelial maintains the
intestinal physical barrier and plays a critical role in the
body’s defense functions [1]. Changes in intestinal epithelial
barrier permeability incite mucosal inflammation leading to
intestinal diseases, such as inflammatory bowel disease
(IBD), including Crohn’s disease (CD) and ulcerative colitis

(UC), irritable bowel syndrome (IBS), and colon cancer
(CRC) [2–4]. Intestinal epithelial barriers are formed by
tight junction (TJ) proteins, including occludin, claudin,
and zonula occludens (ZO), that connect the cytoskeleton
and signalling molecules [5]. Intestinal inflammation has
been proved to be associated with the intestinal epithelial
barrier disruption [6]. Inflammatory stimulation and other
endogenous cytokines directly affect the intestinal epithelial
barrier by reducing the localization and expression of TJ
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proteins [7]. Previous studies have indicated that mainte-
nance of the intestinal epithelial barrier and attenuated
inflammatory responses is an efficient strategy for the treat-
ment of IBD [8–11].

Lipopolysaccharide (LPS), an important risk factor of
inflammation, is widely used in many researches about
intestinal tight junction barriers. Stimulation of intestinal
cells by LPS induces increased Toll-like receptor-4 (TLR4)
expression and triggers the release of proinflammatory
mediators [12–14]. What is more, studies suggest that the
increase in intestinal epithelial TJ permeability is mediated
by the upregulation of myosin light chain kinase (MLCK)
by the TLR4/MyD88 and NF-κB signalling pathway [15, 16].

Numerous phenolic compounds of plant origin have
been shown to alleviate inflammation and improve intestinal
permeability due to their anti-inflammatory and antioxidant
ability [17–21]. SA is a well-known phenolic acid that is
found in various herbal materials, fruits, and grains, as well
as in some vegetables [22, 23]. Modern pharmacological
studies have reported that the SA possesses several pharma-
cological properties including antioxidant [24], anti-
inflammatory [22, 25], antihyperglycemic, hypoglycemic
[26], and anticancer activities [27]. Although SA has a
potential protective role in colitis mice [25], its role in intes-
tinal barrier remains unclear. In view of the important role
of TJ proteins in the intestinal epithelial barrier [28], it is
necessary for us to investigate the effect of SA on TJ proteins
as well as intestinal epithelial barrier. Collectively, this study
is aimed at investigating the effects of SA treatment on anti-
inflammation and the localization and expression of TJ in an
LPS-induced Caco-2 model of inflammation-mediated bar-
rier dysfunction.

2. Materials and Methods

2.1. Materials and Reagents. Caco-2 cells (purchased from
China National Collection of Authenticated Cell Cultures,
SCSP-5027) were a gift obtained from Professor Xian-
qiong Zou, School of Biotechnology, Guilin Medical Univer-
sity. Sinapic acid (SA) was obtained from Aladdin Biochem-
ical Technology Co., Ltd. (Shanghai, China). Nonessential
amino acid (NEAA) solution and LPS were obtained from
Solarbio Life Sciences Co., Ltd. (Beijing, China). TRNzol-
A+ reagent, FastQuant RT Kit, and SuperReal PreMix Plus

(SYBR Green) reagent were obtained from Tiangen Biotech
Co., Ltd. (Beijing, China). Triton X-100, fix solution (4%
paraformaldehyde), bovine serum albumin (BSA), goat
serum (C0265), and other reagents were obtained from
Beyotime Biotechnology Co., Ltd. (Shanghai, China). Pri-
mary antibodies against ZO-1 (AF8394), occludin
(AF7644), claudin-1 (AF6504), NF-κB (AF7569), phospho-
NF-κBp65 (AN371), phospho-IκBα (Ser32) (AF5851), phos-
pho-IKKα/β (Ser176/180) (AI139), MyD88 (AF2116), TLR4
(AF8187), and β-actin (AF0003) were purchased from Beyo-
time Biotechnology Co., Ltd.

2.2. Cell Culture and Treatment. Caco-2 cells were routinely
cultured at 37°C in in a humidified chamber of 5% CO2 in
high glucose Dulbecco’s Modified Eagle’s Medium (DMEM)
containing 10% fetal bovine serum (FBS), 1% NEAA, and
1% penicillin/streptomycin. Then, the cells were subcultured
at 80–90% confluence. In all experiments, Caco-2 cells were
coincubated with LPS (10μg/ml) in the presence or absence
of SA (5, 10, or 15μmol/l) and incubated for 24 h.

2.3. Cell Viability Assay. The MTT assay was used to evalu-
ate the cell viability of SA. The Caco-2 cells were incubated
with SA (5, 10, or 15μmol/l) for 24 h or 48 h. After that,
MTT solution (5.0mg/ml) was added for a further 4 h. The
absorbance of the MTT-formazan product was read at
490 nm after dissolving with 150μl dimethyl sulfoxide
(DMSO)/well; each sample was analyzed in quintuplicate
(n = 3).

2.4. Epithelial Permeability Assay. The TJ permeability assays
used in this study were the transepithelial electrical resis-
tance (TEER) assay and the fluorescein isothiocyanate-
(FITC-) conjugated dextran probe (FD-40) assay. For the
TEER and FD-40 assays, monolayer Caco-2 cells were
seeded and cultured on 12-well inserts (pore size 0.4μm;
Millipore, Bedford, MA, USA). Then, the Caco-2 cells were
treated according to cell culture and treatment groups. The
TEER value was determined using an ERS-2 voltohmmeter
(Millipore) according to the manufacturer’s instructions.
For the FD-40 assay, the Caco-2 cells were washed with
HBSS (pH7.4) three times, and FD-40 (1mg/ml) was subse-
quently applied to the apical side. After incubation for 2 h at
37°C, the media (100μl) were collected from the apical to

Table 1: Primers used to measure mRNA expression.

Gene Forward Reverse

Gapdh CCATTTGATGTTAGCGGGATCTC TGGTCTACATGTTCCAGTATGACT

Tlr4 GTACCTGGGGAACAACCTCTT GCAGCTTGACTAGACTCTCCA

Nfκbp65 GTGGGGACTACGACCTGAATG GGGGCACGATTGTCAAAGATG

Il1β GAATGACGCCCTCAATCAAAGT TCATCTTGGGCAGTCACATACA

Il8 CCTGAACCTTCCAAAGATGGC TTCACCAGGCAAGTCTCCTCA

Mlck CAACAGGGTCACCAACCAGC GCCTTGCAGGTGTACTTGGC

Occludin CTTCCAATGGCAAAGTGAATG TACCACCGCTGCTGTAACGAG

Claudin-1 CCAGGTACGAATTTGGTCAGG TGGTGTTGGGTAAGAGGTTGT

Zo1 GAGCCTAATCTGACCTATGAACC TGAGGACTCGTATCTGTATGTGG
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basolateral side, and the fluorescent absorbance was mea-
sured by a with ex/em 480/530 nm.

2.5. Assessment of NF-κB Nuclear Translocation. Caco-2 cells
were seeded in 8-well cover slips (Thermo Fisher, USA).
Then, the Caco-2 cells were treated according to cell culture
and treatment groups. The slides were fixed and blocked
(with 10% goat serum) at 25°C. The first antibodies NF-
κBp65 were used to incubate the slides (overnight at 4°C).
After being washed with PBS 3 times, the slides were incu-
bated with fluorescent secondary antibody at 25°C for 1 h.
Following PBS washing 3 times, the incubated Caco-2 cells
were stained with 4′,6-diamidino-2-phenylindole (DAPI)
solution to visualize nuclei. Finally, all images were obtained
using a microscope (Leica Microsystems Inc., Buffalo Grove,
IL, USA). Cellular characteristics were observed by a micro-
scope with a magnification (50x).

2.6. Quantitative Reverse-Transcription- (qRT-) PCR Assay.
After different treatment, total RNA was extracted from
the Caco-2 cells using a TRIzol-A+ reagent. Extracted
RNA reverse transcribed into cDNA according to the kit
protocols (Tiangen, Beijing, China). qRT-PCR analysis
reacted using QuantStudio™ 6 Flex Real-Time PCR System
(Life Technologies, USA) with conditions set to 95°C for
3min for the initial denaturation and followed by 35~50
cycles with denaturation at 95°C for 10 s, annealing at 56°C
for 10 s, and extension at 72°C for 60 s. Based on the 2-ΔΔ

Ct formula, we calculated relative mRNA levels. The
sequences of primer are listed in Table 1.

2.7. Protein Extraction and Western Blot Analysis. Caco-2
cells were seeded in 8-well cover slips (Thermo Fisher,
USA). Then, the cells were treated according to cell culture
and treatment groups. Total proteins from Caco-2 cells were
extracted after different treatments using cell lysis buffer for
western blotting and IP reagent (Beyotime). The concentra-

tion of the extracted proteins was determined using the BCA
assay, and the samples were denatured by boiling (100°C) for
further study. The total protein samples (30μg) were sepa-
rated by SDS-PAGE gel for 90-120min and then transferred
to a PVDF membranes (Millipore). The membrane with
separated proteins was blocked with nonfat milk (5%) for
2 h and immediately incubated with first antibodies (over-
night at 4°C) TLR4, IKKα, p-IKKα, MyD88, p-NF-κBp65,
IκB, and p-IκB. After washed with 3 times of PBS, all mem-
branes were incubated with the accordingly secondary anti-
body for 60min at 25°C. The blots were visualized with ECL
detection reagents (7sea Biotech, Shanghai, China), and the
ImageJ software (NIH, Bethesda, MD, America) was
employed to numeralization for band analysis (https://
imagej.nih.gov/ij/).

2.8. Immunofluorescent Localization of TJ Proteins. Localiza-
tion of the TJ proteins (ZO-1 and claudin-1) was analyzed
with immunofluorescence staining. For immunofluores-
cence staining, the non-SA-treated and SA-treated Caco-2
cells were fixed with fix solution for 15min and then infil-
trated with Triton X-100 for 15min. Then, the cells were
washed and blocked for 1 h with 5% BSA in PBS. After 1 h
of blocking with 5% BSA, the cells were incubated with first
antibodies (claudin-1 and ZO-1) overnight at 4°C. All cells
were then incubated with the corresponding secondary anti-
bodies and stained with DAPI solution for 3min at room
temperature. Images were obtained using a microscope
(Leica Microsystems Inc., Buffalo Grove, IL, USA). Cellular
characteristics were observed by a microscope with a magni-
fication (100x).

2.9. Statistical Analysis. The mean ± standard deviation (SD)
is used to describe data. The SPSS 25.0 software (SPSS Inc.,
Chicago, USA) was employed. One-way ANOVA and Dun-
can’s multiple range tests were used to determine statistically
significant differences between the treatments (p < 0:05).
The GraphPad Prism version 5.0 statistical software package
was used for the analysis.

3. Results

3.1. Toxicity Assay in SA-Treated Caco-2 Cells. The cell via-
bility after 24 h and 48h of SA treatment (ranging from
1μmol/l to 20μmol/l) is shown in Figure 1. SA treatment
for 24 h showed no significant effect on cell viability at any
concentration compared to the control conditions. Besides,
the cell viability in Caco-2 cells was significantly inhibited
by SA treatment for 48h, which effect was in a
concentration-dependent manner (p < 0:05). A high concen-
tration of SA (20μmol/l) showed cytotoxicity in Caco-2 cells
after 48 h of treatment. Therefore, we selected 5, 10, and
15μmol/l SA as safe concentration for further study in
Caco-2 cells.

3.2. Effects of SA on Epithelial Permeability in LPS-Treated
Caco-2 Cells. As shown in Figure 2, LPS treatment induced
a significant decrease in TEER values in Caco-2 cells
(p < 0:05). Administration of SA effectively increased the
TEER values in LPS-treated Caco-2 cells. However, SA
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Figure 1: Effect of sinapic acid (SA) on the viability of Caco-2 cells.
The viability of Caco-2 cells was determined after treatment with
SA (1, 5, 10, 15, or 20 μmol/l) for 24 h and 48 h. The results are
expressed as the mean ± SD of three independent experiments. #

denotes p < 0:05 vs. the non-SA-treated cells.
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concentration of 10 and 15μmol/l led to significantly higher
TEER values in Caco-2 cells than the low concentration of
SA (5μmol/l) (p < 0:05). In addition, SA induced a
concentration-dependent decrease in FD-40 permeability
in LPS-treated Caco-2 cells.

3.3. Effects of SA on NF-κB Nuclear Translocation in LPS-
Treated Caco-2 Cells. As shown in Figure 3, NF-κBp65 was
present in the cytoplasm of untreated Caco-2 cells. LPS
treatment markedly increased the activation of nuclear NF-
κBp65 and promoted its translocation (p < 0:05). The SA-
treated group showed significantly lower translocation of
nuclear NF-κBp65 than that in the LPS group (NF-κBp65
nuclear translocation rate: 45.45%), and the effect was most
significant in the group treated with 15μmol/l SA (NF-
κBp65 nuclear translocation rate: 18.18%).

3.4. Effects of SA on the mRNA Levels of Tlr4, Nfκbp65, Il1β,
and Il8 in LPS-Treated Caco-2 Cells. IL-1β and IL-8 are typ-

ical inflammatory cytokines that mediate and promote the
inflammatory response. The mRNA levels of Tlr4, Nfκbp65,
Il1β, and Il8 in Caco-2 cells were analyzed by qRT-PCR
assay. Treatment with LPS significantly increased the mRNA
expression of Tlr4, Nfκbp65, Il1β, and Il8 compared with no
treatment (p < 0:05; Figure 4). However, this effect was mit-
igated by treatment with different concentrations of SA
(p < 0:05). This finding suggests that SA can inhibit the acti-
vation of the inflammatory cascade and may decrease the
mRNA levels of TLR4/NF-κB signalling pathway compo-
nents in LPS-treated Caco-2 cells.

3.5. Effects of SA on the Protein Levels of TLR4, MyD88, p-
NF-κB, p-IKKα, and p-IκB in LPS-Treated Caco-2 Cells.
The protein expression levels of TLR4, MyD88, p-NF-
κBp65, p-IKKα, and p-IκB were analyzed using a protein
blotting assay, and the effect of SA on the TLR4/NF-κB path-
way was evaluated. As shown in Figure 5, the protein levels
of MyD88, p-NF-κBp65, TLR4, p-IKKα, and p-IκB were
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Figure 2: Effects of sinapic acid (SA) on the TEER and FD-40 levels in LPS-treated Caco-2 cells. The TEER and FD-40 levels were
determined after treatment with SA (5, 10, or 15 μmol/l) for 24 h in LPS-treated Caco-2 cells. The results are expressed as the mean ± SD
of three independent experiments. # denotes p < 0:05 vs. the normal control group (Nor.), and ∗ denotes p < 0:05 vs. the LPS group.
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Figure 3: Effect of sinapic acid (SA) on NF-κBp65 translocation in LPS-treated Caco-2 cells. Caco-2 cells were incubated with LPS
(10 μg/ml) and SA (5, 10, or 15μmol/l) for 24 h and then subjected to immunofluorescence analysis (50x).
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Figure 4: Effects of sinapic acid (SA) on the mRNA levels of Tlr4, Nfκbp65, Il1β, and Il8 in LPS-treated Caco-2 cells. Caco-2 cells were
incubated with LPS (10 μg/ml) and SA (5, 10, or 15 μmol/l) for 24 h and then subjected to qRT-PCR analysis. The results are expressed
as the mean ± SD of three independent experiments. # denotes p < 0:05 vs. the normal control group (Nor.), and ∗ denotes p < 0:05 vs.
the LPS group.
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Figure 5: The effects of sinapic acid (SA) on the protein levels of NF-κB-related factors in LPS-treated Caco-2 cells. Caco-2 cells were
incubated with LPS (10 μg/ml) and SA (5, 10, or 15μmol/l) for 24 h and then subjected to western blot analysis. The results are
expressed as the protein expression level (normalized to β-actin) relative to that in unstimulated cells and are shown as the mean ± SD
of three independent experiments. # denotes p < 0:05 vs. the normal control group (Nor.), and ∗ denotes p < 0:05 vs. the LPS group.
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increased following treatment with LPS (p < 0:05). However,
administration of different concentrations of SA modulated
the expression levels of these proteins (p < 0:05). These
results clearly indicate that SA inhibits the TLR4/NF-κB sig-
nalling pathway in LPS-treated Caco-2 cells.

3.6. Effects of SA on the Protein Levels of MLCK and MLC in
LPS-Treated Caco-2 Cells. MLCK regulates the spatial con-
formation and function of the cytoskeleton and TJ of intes-
tinal epithelial barrier cells. LPS treatment significantly
induced the activation of MLCK and MLC (p < 0:05;
Figure 6). In addition, treatment with different concentra-
tions of SA significantly reduced the activation of MLCK
and MLC in LPS-treated Caco-2 cells (p < 0:05).

3.7. Effects of SA on the mRNA Levels of ZO-1, Claudin-1,
and Occludin in LPS-Treated Caco-2 Cells. Normal levels of
ZO-1, claudin-1, and occludin, the main members of the
TJ protein family, act as a vital role in maintaining normal
intestinal barrier function. qRT-PCR analysis showed that
LPS treatment significant decreases in the mRNA levels of
Zo1, claudin-1, and occludin in Caco-2 cells (Figure 7).
However, administration of SA increased the mRNA levels
of Zo1, claudin-1, and occludin in LPS-treated Caco-2 cells.
At a concentration of 15μmol/l, SA markedly increased the

mRNA expression of these TJ factors (including Zo1, clau-
din-1, and occludin) (p < 0:05).

3.8. Effects of SA on the Protein Levels of Occludin, Claudin-1,
and ZO-1 in LPS-Treated Caco-2 Cells. LPS reduced the pro-
tein levels of ZO-1, claudin-1, and occludin in Caco-2 cells
(p < 0:05; Figure 8). However, treatment with SA (15μmol/l)
markedly attenuated the downregulation of these TJ proteins
(p < 0:05).

3.9. Effects of SA on Claudin-1 and ZO-1 Localization and
Distribution in LPS-Treated Caco-2 Cells. As shown in
Figure 9, claudin-1 and ZO-1 were appropriately localized
to their respective intercellular junctions and were con-
nected without damage in untreated Caco-2 cells. However,
local claudin-1 and ZO-1 staining in the pericellular was dis-
continuous in the cells treated with LPS. These discontinu-
ous pericellular expressions of both claudin-1 and ZO-1
were counteracted by SA treatment, and a strong fluores-
cence intensity was observed at the periphery of the cells.

4. Discussion

Plant-derived phenolic compounds are a type of organic acid
that contains either a benzoic or cinnamic acid skeleton with
phenol as the basic framework and a relatively simple
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structure. Recent studies have suggested that SA has anti-
inflammatory effects on intestinal inflammation and can
regulate the intestinal microbiota and improve the redox
state [25, 29, 30]. In the current investigation, we attempted
to appraise the effects of SA on intestinal inflammation and
permeability. Our results clearly confirmed that SA reduced
epithelial permeability, increased the expression of the TJ
proteins, and attenuated LPS-induced inflammation by
modulating the TLR4/NF-κB pathway.

The intestinal epithelial barrier can effectively prevent
pathogenic microorganisms, antigens, and toxic substances
from entering the body from the gut [31, 32]. Epithelial bar-
rier function is mediated by intercellular junctions [33]. TJ
formation and assembly involve a complex of proteins. The
TJ proteins (such as ZO-1, occludin, and claudin-1) are gen-
erally known as the main event during the change course of
intestinal permeability [34]. Therefore, our investigation
focused on the expression and distribution of ZO-1, occlu-
din, and claudin-1.

Numerous studies have shown that LPS increases intesti-
nal barrier permeability regulates the expression of TJ pro-
teins and eventually lead to intestinal barrier dysfunction
[35, 36]. On the other hand, the excessive accumulation of
proinflammatory cytokines, including IL-1β and IL-8, is
associated with promoting the generation of inflammation
and ultimately causes the destruction of the intestinal epithe-
lial barrier. LPS decreases TJ proteins in intestinal act as a
centrical role in the cellular mechanisms of intestinal barrier
defects [32]. In our study, LPS (10μg/ml) was used to suc-

cessfully establish the inflammation model. Here, our results
suggested that the LPS-induced increases in the IL-1β and
IL-8 expression and decreases in the protein levels of ZO-
1, occludin, and claudin-1 were alleviated by SA.

TLR4, one of the best characterized pattern recognition
receptors, is activated by LPS, leading to the activation of
NF-κB and subsequently inducing the production of proin-
flammatory mediators. Recently, many studies have indi-
cated that NF-κB is a key factor in inflammatory gene
expression [37–39]. Under normal conditions, NF-κB binds
with IκB to form an inactivation complex. NF-κB is released
through IκB kinase (IKK), leading to IκB-α phosphorylation
and degradation. Some stimulatory factors, such as proin-
flammatory cytokines, antigen receptors, growth factors,
and LPS, may activate the IκB kinase (IKK) complex, which
phosphorylates IκB. The phosphorylation of IκB causes its
ubiquitination and proteasomal degradation, releasing NF-
κB from the complex. In addition, NF-κB subunit p65 is
transferred from the cytoplasm into the nucleus and initiates
an inflammatory response [40]. A study reported that cin-
namic acid downregulated the protein and mRNA expres-
sion of p-NF-κB and p-IKKα/β, which exerted anti-
inflammatory effects in LPS-treated Caco-2 and RAW264.7
coculture systems [41]. Similar results were also found that
ferulic acid treatment decreased the phosphorylation of IκB
and NF-κBp65 in LPS-treated bovine endometrial epithelial
cells [42]. Here, these results suggested that that SA treat-
ment significantly diminished the activation of NF-κBp65;
decreased the mRNA or protein expression of TLR4,
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Figure 8: Effects of sinapic acid (SA) on tight junction protein levels in LPS-treated Caco-2 cells. Caco-2 cells were incubated with LPS
(10 μg/ml) and SA (5, 10, or 15μmol/l) for 24 h and then used for western blot analysis. The results are expressed as the protein
expression level (normalized to β-actin) relative to that in unstimulated cells and are shown as the mean ± SD of three independent
experiments. # denotes p < 0:05 vs. the normal control group (Nor.), and ∗ denotes p < 0:05 vs. the LPS group.
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MyD88, p-NF-κB, p-IKKα, and p-IκB; and inhibited LPS-
induced IL-1β and IL-8 expression via modulation of the
TLR4/NF-κB pathway. Moreover, the effects of SA treatment
were concentration-dependent. These results suggest that SA
has strong anti-inflammatory activity and can inhibit the
LPS-induced activation of TLR4/NF-κB signalling pathway.

Activation of the MLCK-MLC pathway mainly regulates
the spatial conformation and function of the cytoskeleton
and plays a key role in regulating the tight junctions of intes-
tinal cells. MLCK is a Ca2+/calmodulin-dependent kinase.
Under physiological or pathological conditions, the tight
junctions of cells can be regulated, and the cytoskeleton
can be remodeled by catalyzing the phosphorylation of
MLC, thus affecting the permeability of the intestinal epithe-
lium [43]. It has been reported that overexpression of MLCK
leads to increase intestinal epithelial TJ permeability [15, 44].
Many studies have reported that increased MLCK activity
phosphorylates MLC and subsequently leads to the centrip-
etal contraction of the TJ complex, eventually result in the
opening of the intestinal epithelial barrier [45–47]. The

results from our study clearly indicate that LPS promoted
the expression of MLCK and MLC and diminished the
expression of key sealing TJ proteins, such as ZO-1, occlu-
din, and claudin-1, causing varying degrees of displacement
of the claudin-1 and ZO-1 proteins. In contrast, SA inhibited
the overactivation of MLCK and partially restored the
expression and localization of related TJ proteins, reflecting
that SA may alleviate injury to the intestinal epithelial bar-
rier by inhibiting the MLCK/MLC pathway.

5. Conclusions

This study demonstrated that SA could ameliorate damage
to the intestinal epithelial barrier and inhibit inflammation
in LPS-stimulated intestinal epithelial cells. SA restored tight
junction protein expression and protein localization via
inhibition of the TLR4/NF-κB/MLCK-MLC pathway. Future
research will reveal in more detail the potential of SA in the
treatment or prevention of inflammation-induced intestinal
barrier defects. In addition, SA also has the potential to be
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Figure 9: Effects of sinapic acid (SA) on claudin-1 and ZO-1 localization and distribution in LPS-treated Caco-2 cells. Caco-2 cells were
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a possible alternative for the treatment of gastrointestinal
diseases.
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