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It has been considered that glucose fluctuation (GF) plays a role in renal injury and is related to diabetic nephropathy (DN)
development. But the mechanism is still unclear. Aerobic glycolysis has become a topical issue in DN in recent years. There is
an internal connection between GF, aerobic glycolysis, and DN. Curcumin (Cur) is a principal curcuminoid of turmeric and
possesses specific protective properties in kidney functions. Cur also participates in the regulation of aerobic glycolysis switch.
In this study, we first measured the levels of aerobic glycolysis and evaluated Cur’s inhibitory ability in a cell model of HEK-
293 under the condition of oscillating high glucose. The results indicated that GF exacerbated inflammation injury, oxidative
stress, and apoptosis in HEK-293 cell, while Cur alleviated this cytotoxicity induced by GF. We found that GF increased
aerobic glycolysis in HEK-293 cells and Cur presented a dose-dependent weakening effect to this exacerbation. Next, we
built a panel of 17 miRNAs and 8 lncRNAs that were previously reported to mediate the Warburg effect. Our RT-qPCR
results indicated that GF reduced the miR-489 content in the HEK-293 cell model and Cur could prevent this
downregulation. Then, we planned to explore the character of miR-489 in Cur-triggered attenuation of the Warburg effect
under GF condition. Our findings presented that Cur prevented GF-triggered aerobic glycolysis by upregulating miR-489 in
HEK-293 cells. Next, we choose the miR-489/LDHA axis for further investigation. We confirmed that Cur prevented GF-
triggered aerobic glycolysis via the miR-489/LDHA axis in HEK-293 cells. In conclusion, this study presented that Cur
prevented GF-triggered renal injury by restraining aerobic glycolysis via the miR-489/LDHA axis in the HEK-293 cell model.

1. Introduction

Diabetic nephropathy (DN) is a typical diabetes mellitus-
(DM-) related microvascular complication and one of the
main causes of end-stage renal disease worldwide, which seri-
ously endangers human health [1]. The latest report from
World Health Organization indicated that there were
approximate 463 million DM adults worldwide in 2014,
and about 1/3 of them will develop DN [2]. It has been con-

sidered that glucose fluctuation (GF) is involved to exacerba-
tion of renal injury in DM patients and is related with the
department of DN. Short-dated glucose variability is related
with the reduction of glomerular filtration rate and triggers
an increased risk of chronic kidney disease [3]. GF condition
had apoptosis-inducing and oxidative stress effects on differ-
ent cells, including glomerular mesangial cells (MCs) [4],
podocytes [5], and vascular endothelial cell [6]. However,
the mechanism between GF and DN still remains unclear.
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Mitochondria occupy a crucial role in cellular energy
metabolism. Mitochondrial energy metabolism is a topical
issue in DN in recent years, especially aerobic glycolysis (the
“Warburg effect”). The flux of aerobic glycolysis, presented
as glucose fermentation to lactate under sufficient levels of
oxygen, was first found in cancer cells and regarded as one
of the main hallmarks of cancer cells, leading to tumorigene-
sis and cancer cell rapid proliferation [7]. Interestingly, it was
found that the upregulation of the Warburg effect deeply trig-
gered the activation of myofibroblasts and affected both the
number and function of podocytes [8, 9]. GF could deterio-
rate inflammation damage and apoptosis injury via intensify-
ing the aerobic glycolysis in MC cell model [10]. These results
have provided intrinsic relationships between GF, aerobic gly-
colysis, and DN, suggesting a potential association between
the three.

Curcumin (Cur) is a principal curcuminoid of Curcuma
longa (turmeric), making up around 77% of the total curcu-
minoids in the plant. Turmeric has been used in China for
over millennia because of its medicinal properties and poten-
tial health benefits to metabolic disease [11]. Antioxidant and
anti-inflammatory activities are regarded as two main bene-
fits of Cur [12]. Cur possesses specific protective properties
in kidney functions. Curcumin was found to inhibit podocyte
cell apoptosis, accelerating cell autophagy, alleviating podo-
cyte EMT, and reducing inflammation injury in the in vivo
and in vitro models of DN [13–16]. A randomized, double-
blind trial indicated Cur to be an effective treatment to ame-
liorate proteinuria in patients with type 2 DM [17]. Cur also
takes part in the mediation of aerobic glycolysis. Cur could
suppress cancer cell growth via regulating aerobic glycolysis,
such as gastric tumor cell [18, 19], colon adenocarcinoma cell
[20, 21], hepatocellular carcinoma cell [22, 23], and breast
epithelial cells [24]. Thus, taken into consideration that Cur
presents the ability of kidney protection and property of aer-
obic glycolysis mediation, it is meaningful to investigate
whether Cur alleviates GF-induced renal injury via regulating
aerobic glycolysis.

Noncoding RNAs, including microRNA (miRNA) and
long noncoding RNA (lncRNA), are involved in numerous
biological actions [25]. Both miRNA and lncRNA have been
deeply studied in the fields of regulatory mechanism of aero-
bic glycolysis. For example, the miR-455-3p/FOXM1 axis
increased lactate production, glucose uptake, and ATP gener-
ation in two human lung cancer cells (H1299 and A549) [26].
It indicated that the miR-186-3p/EREG axis triggered aerobic
glycolysis to orchestrate tamoxifen resistance in breast cancer
of ER-positive [27]. More than that, there are a host of miR-
NAs and lncRNAs involving in regulation of aerobic glycol-
ysis, such as miR-142-3p [28], lncRNA-KCNQ1OT1 [29],
and LINC01123 [30].

In this study, we first measured the levels of aerobic gly-
colysis and evaluated Cur’s protective effects in HEK-293
cells under the condition of oscillating high glucose. After
that, we built a panel of 17 miRNAs [26–29, 31–43] and 8
lncRNAs [29, 30, 32, 35, 36, 43–45] that were previously
reported to be regulators of the Warburg effect. After a range
of experiments, we found miR-489/LDHA as vital modulator
axis in kidney protection of Cur administration.

2. Materials and Methods

2.1. Cell Culture and Treatments. The human embryonic kid-
ney (HEK-293) cells were purchased from the Stem Cell
Bank (Shanghai Chinese Academy of Sciences). DMEM
media (Biochrome, Berlin, Germany) with 10% fetal bovine
serum (Sigma, St Louis, MO) and 1% penicillin/streptomycin
solution (Gibco-BRL, Grand Island, NY) were used for cell
culture. A 37°C humidified atmosphere of 5% CO2 and 95%
air was used for incubation condition.

The HEK-293 cells were grouped into seven: normal-
glucose group (NG, 5.6mmol/l glucose), high-glucose group
(HG, 25mmol/l glucose), glucose swing group (GF, oscillated
glucose between 5.6 and 25mmol/l every 8 h), GF+low-dose
Cur group (GF+C20, cells managed with GF under 20μmol/l
Cur treatment), GF+moderate-dose Cur group (GF+C40,
cells managed with GF under 40μmol/l Cur treatment), GF
+high-dose Cur group (GF+C80, cells managed with GF
under 80μmol/l Cur treatment), and mannitol group (MG,
5.6mM glucose plus 19.4mM mannitol used for an osmotic
pressure control).

2.2. Cell Transfections. HEK-293 cells with 70-80% density
were seeded 24 h before transection. Then, the miR-489
inhibitor, LDHA overexpression plasmid, and their negative
controls were transfected via the Lipofectamine 3000 reagent
(Invitrogen, Carlsbad, CA, USA) into the cells for 48 h. Vec-
tors of LDHA overexpression and control were acquired
from http://Origene.com/. At 48 hours post transfection,
cells were further analyzed in downstream experiments.
Transfection was performed in triplicate.

2.3. Cell Counting Kit-8 (CCK-8). The 5 × 103 per well of
HEK-392 cells were plated in 96-well plates. After 24h
serum starvation, cells were managed by different treat-
ments. Then, 10μl CCK-8 solution (Kumamoto, Japan)
was added in each well for 1 h incubation. The 450nm opti-
cal density was recorded, and the mean value was calculated
via three replicates.

2.4. Measurements of Lactate Acid and pH in Cell
Supernatant. The Lac Colorimetric/Fluorometric Assay Kit
(Jiancheng Biotech, CHN) and pH instrument (OHAUS
STARTER 2C, USA) were used for lactate acid (lac) and
pH value tests. All the steps were according to the instruc-
tions of manufacturer.

2.5. Measurement of PFK Activity. The Colorimetric Assay
Kit was used for tests of the phosphofructokinase (PFK)
activity (Sigma-Aldrich, USA). Managed HEK-293 cells
were added with PFK assay solutions according to the
instructions of manufacturer. The optical density value of
the mixtures was recorded at every 30 s. 1.0μM per minute
of NADH generation was mediated by one unit PFK. A
NADH standard line was built to calculate the PFK activity.
After normalization, the PFK activity was presented as milli-
units/mg of protein.

2.6. Inflammation Marker. Contents of tumor necrosis factor
alpha (TNF-α) and interleukin-1β (IL-1β) in culture
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supernatants were quantified by ELISA kits according to the
instructions of the manufacturer.

2.7. Measurements of Oxidative Stress Markers. The activity
of superoxide dismutase (SOD) and contents of malondialde-
hyde (MDA) were selected as oxidative stress markers, which
are measured by the assay kits according to the instruction of
the manufacturer. Activities of mitochondrial and cytoplasmic
SOD were tested as previously described [46].

2.8. Annexin V-APC/7-AAD Double Staining. After different
managements, HEK-293 cells were stained by the apoptosis
assay kit of Annexin V APC/7-AAD cell (Beijing Bjbalb.,
CHN) according to the instructions of the manufacturer. Four
subpopulations were evaluated: cells of Annexin V-APC-/7-
AAD- are normal ones, cells of Annexin V-APC-/7-AAD+
are necrotic ones, cells of Annexin V-APC+/7-AAD- are early

apoptotic ones, and cells of Annexin V-APC+/7-AAD+ are
late apoptotic ones. The total rate of early plus late apoptotic
cells was considered the apoptosis index.

2.9. RT-qPCR. Total RNA was extracted by the TRIzol
reagent (Invitrogen, CA), and PCR amplification was used
via the SYBR Green PCR kit (Thermo). Each sample was
tested with three repetitive wells. GAPDH was used as inter-
nal reference. The 2−ΔΔCt method was used for calculation.
Primer sequences are shown in Table 1.

2.10. Western Blot. Extraction of total protein was performed
via the method of RIPA lysis. The BCA method was applied
to test protein concentration. The 5% fat-free milk-blocked
membranes were incubated with anti-PKM2 (1 : 1000, Boao-
sen, bs-0102M), anti-p-PKM2 (1 : 1000, CST, 3827), and
anti-LDHA (1 : 2000, Boaosen, bs-34202R), respectively.

Table 1: Primer sequences.

Forward Reverse

miR-101-3p 5′-GCCGCCACCATGGTGAGCAAGG-3′ 5′-AATTGAAAAAAGTGATTTAATTT-3′
miR-12116 5′-GCCTTTGGTTCTTCTTAG-3′ 5′-GCTCTGGGTTCTTCTTAG-3′
miR-124-3p 5′-CGGCAAGTTGTCGGAGACG-3′ 5′-CCTGGAGGTTGGGATGCTCT-3′
miR-138-5p 5′-GCTTAAGGCACGCGG-3′ 5′-GTGCAGGGTCCGAGG-3′
miR-139-5p 5′-TCTACAGTGCACGTGTC-3′ 5′-GAATACCTCGGACCCTGC-3′
miR-142-3p 5′-GGCCCATAAAGTAGAAAGC-3′ 5′-TTTGGCACTAGCACATT-3′
miR-186-3p 5′-CGCGCAAAGAATTCTCCTTT-3′ 5′-AGTGCAGGGTCCGAGGTATT-3′
miR-199a-5p 5′-TCAAGAGCAATAACGAAAAATGT-3′ 5′-GCTGTCAACGATACGCTACGT-3′
miR-206 5-GCGTCTGGAATGTAAGGAAGTG-3′ 5′-GTGCAGGGTCCGAGGT-3′
miR-30a-5p 5′-AACGAGACGACGACAGAC-3′ 5′-TGTAAACATCCTCGACTGGAAG-3′
miR-34c-5p 5′-GCG CAT CCC TTG CAT GGT-3′ 5′-AGT GCA GGGTCCGAG GTATT-3′
miR-361-5p 5′-GCCGAGTTATCAGAATCTCCA-3′ 5′-CTCAACTGGTGTCGTGGA-3′
miR-383 5′-GACAGACCTTGTGAAGGTGACTCTG-3′ 5′-GACCAGCTTCCAGAGGACAAGATCTC-3′
miR-455 5′-TAAGACGTCCATGGGCAT-3′ 5′-GTGCAGGGTCCGAGGT-3′
miR-489 5′-CCCCGCCGTGACATCACATAT-3′ 5′-CCAGTCGGTGGCTGCCGTATA-3′
miR-515-5p 5′-TTCTCCAAAAGAAAGCACTTTCTG-3′ 5′-CTCGCTTCGGCAGCACA-3′
miR-765 5′-GUAGCCAAGGAATCCGAAGGA-3′ 5′-GCGAGGAAGGAGGAGGAAGGT-3′
LINC00152 5′-CTCCAGCACCTCTACCTGTTG-3′ 5′-GGACAAGGGATTAAGACACACA-3′
LINC01123 5′-ACAGTGGCCGCACGCATAGCTG-3′ 5′-CTGACGACCGAGGTGACAACGATGA-3′
LINC01391 5′-TGGCACCCGCTATGTCCA-3′ 5′-GTAGCAGGGATTCTGTCTG-3
lnc-Ftx 5′-GAATGTCCTTGTGAGGCAGTTG-3′ 5′-TGGTCACTCACATGGATGATCTG-3′
lnc-MAFG/ASI 5′-ATGACGACCCCCAATAAAGGA-3′ 5′-CACCGACATGGTTACCAGC-3′
lncRNA KCNQ1OT1 5′-TTGGTAGGATTTTGTTGAGG-3′ 5′-CAACCTTCCCCTACTACC-3′
lnc-SNHG9 5′-CCCGAAGAGTGGCTATAAACG-3′ 5′-GGAGGACCAGTGTCCTAAGTGAA-3′
lnc-HULC 5′-CTGGCAATAAACTAAGCA-3′ 5′-CAACATAATTCAGGGAGAA-3′
LDHA 5′-CTTCCTCAGTGTCCCATGTATC-3′ 5′-TTTCCCCACACCATCTCAAC-3′
GAPDH 5′-TGCACCACCAACTGCTTAGC-3′ 5′-GGCATGGACTGTGGTCATGAG-3′
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Figure 1: Continued.
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Figure 1: Continued.
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The ratio of gray value between target protein and GAPDH
was recorded.

2.11. Statistical Analysis. Data were presented as the
mean value ± standard error of themean (SEM). One-way
ANOVA was used to calculate the differences among groups
via the SPSS 22.0 software. A value of p < 0:05 was regarded
as statistically different. All tests were technically repeated
three times.

3. Results

3.1. Cur Protected HEK-293 Cell from GF-Triggered
Cytotoxicity. First, we tested the levels of cytotoxicity triggered
by different high-glucose conditions in the HEK-293 cell
model and evaluated the protective effects of different doses
of Cur. As shown in Figure 1, the cell viability of HEK-293

was markedly reduced in the GF group compared with NG
andHG groups at 24h, 48h, and 72h (Figure 1(a)). Compared
with NG and HG, GF could obviously aggravate inflammation
injury (TNF-α and IL-1β) (Figure 1(b)) and oxidative stress
(MDA, mitochondrial and cytoplasmic SOD) (Figure 1(c))
at 24h, 48h, and 72h in HEK-293 cells. The flow cytometry
test indicated that the apoptosis index was dramatically exac-
erbated in the GF group compared with the NG and HG
groups at 48h, respectively (Figure 1(d)). Cur could signifi-
cantly decrease inflammation damage under GF condition.
Cur could prevent GF-triggered cytotoxicity by increasing
the HEK-293 cell viability, reducing the inflammation injury
and oxidative stress, and decreasing the apoptosis cell number
in a dose-dependent manner. Totally, these results showed
that GF aggravated inflammation injury, oxidative stress,
and apoptosis in HEK-293 cell, while Cur could relieve GF’s
cytotoxicity.
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Figure 1: Cur protected HEK-293 cell from GF-induced cytotoxicity. (a) Viability of HEK-293 cells was measured by CCK8 at 24 h, 48 h, and
72 h. (b) Inflammatory markers of TNF-α and IL-1β at 24 h, 48 h, and 72 h. (c) Levels of oxidative stress marker, including MDA and
mitochondrial and cytoplasmic SOD at 24 h, 48 h, and 72 h. (d) Apoptosis index was tested by flow cytometry at 48 h. GF deteriorated
inflammation injury, oxidative stress, and apoptosis in HEK-293 cell, while Cur could alleviate this GF-induced cytotoxicity. Each error
bar reflects the SEM of at least three independent sets.

6 Mediators of Inflammation



NG
0
6

6.50

6.75

pH
 le

ve
ls 

in
 cu

ltu
re

 m
ed

iu
m

7.00

7.25

7.50

HG GF MG Cur20 Cur40 Cur80

+GF +GF+DG

DG Cur20 Cur40 Cur80

p < 0.05

p < 0.05
p < 0.05

p < 0.05

p < 0.05
p < 0.05

p < 0.05

(a)

NG
0

1

Le
ve

ls 
of

 la
c i

n 
cu

ltu
re

 m
ed

iu
m

(%
 o

f N
G

)

2

3

HG GF MG Cur20 Cur40 Cur80

+GF +GF+DG

DG Cur20 Cur40 Cur80

p < 0.05

p < 0.05
p < 0.05

p < 0.05

p < 0.05
p < 0.05

p < 0.05

(b)

NG
0.0

0.5PF
K 

le
ve

ls 
(%

 o
f N

G
)

1.0

1.5

2.0

HG GF MG Cur20 Cur40 Cur80

+GF +GF+DG

DG Cur20 Cur40 Cur80

p < 0.05

p < 0.05
p < 0.05

p < 0.05

p < 0.05
p < 0.05

p < 0.05

(c)

Figure 2: Continued.
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3.2. Cur Prevented the GF-Induced Warburg Effect in HEK-
293 Cells. Then, we tested the levels of the Warburg effect
under different high-glucose circumstances and verified
Cur’s protective effects in the cell model of HEK-293. As
shown in Figure 2, GF could obviously lead to aberrant cel-
lular levels of energy metabolic product, such as the
decrease of pH (Figure 2(a)) and increase of lac in a
HEK-293 cell culture medium (Figure 2(b)). Our findings
suggested that GF could enhance PFK activity in the HEK-
293 cell model (Figure 2(c)). Western blot presented that p-
PKM2/PKM2 was notably increased under the GF condition
in the HEK-293 cell model (Figure 2(d)). As expected, these
GF-induced energy switches could be dose-dependently pre-
vented by Cur and 2-deoxyglucose (2-DG), a glycolytic path-
way inhibitor. Taken together, these findings showed that GF
deteriorated the Warburg effect in HEK-293 cells and Cur
dose-dependently weakened these intensifications.

3.3. Cur Treatment on Different ncRNAs Related with Aerobic
Glycolysis. Next, we built a panel of 17 miRNAs and 8
lncRNAs that were involved in mediation of Warburg effect.
As shown in Figure 3, RT-qPCR results indicated that GF
reduced the miR-489 content in the HEK-293 cell model
and a moderate dose of Cur (40μM) could prevent this

downregulation. Therefore, we selected miR-489 as the entry
point for further experiments.

3.4. Cur Treatment Prevented GF-Triggered Aerobic
Glycolysis by Regulating miR-489 in HEK-293 Cells. In the fol-
lowing tests, we intended to evaluate the role of miR-489 in
the Cur-triggered attenuation of the Warburg effect under
the GF condition. First, we found Cur could alleviate GF-
induced reduction of miR-489 in a dose-dependent manner
in HEK-293 cells (Figure 4(a)). Then, we found that down-
regulation of miR-489 by inhibitor (Figure 4(b)) could
weaken the protective effects of Cur in the fields of cell viabil-
ity (Figure 4(c)), inflammation injury (Figure 4(d)), oxidative
stress (Figure 4(e)), and apoptosis cell number (Figure 4(f)).
The suppression of aerobic glycolysis by Cur treatment was
also prevented by miR-489 inhibitor (Figures 4(g) and 4(h))
in HEK-293 cells. Taken together, these results presented
that Cur prevented GF-triggered aerobic glycolysis by upreg-
ulating miR-489 in HEK-293 cells.

3.5. Cur Treatment Prevented GF-Triggered Aerobic
Glycolysis via the miR-489/LDHA Axis in HEK-293 Cells.
Next, we choose the miR-489/LDHA axis for further investi-
gation. This axis has been reported as a new explanation for
the Warburg effect [41]. First, we took note of the increase
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Figure 2: Cur prevented GF-induced aerobic glycolysis in HEK-293 cells. (a) pH in each group. (b) lac in each group. (c) PFK activity
measured by colorimetric assay. (d) Western blot presenting PKM2 phosphorylation levels in each group. GF intensified aerobic glycolysis
switch in HEK-293 cells, and Cur could weaken this intensification in a dose-dependent manner. Each error bar reflects the SEM of at
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on LDHA mRNA (Figures 5(a) and 5(b)) and protein
(Figure 5(c)) under the GF circumstance. These increases
could be dose-dependently prevented by Cur administration.
And these Cur’s effects could be weakened by the miR-489
inhibitor. LDHA pcDNA or miR-489 inhibitor could also
whittle Cur’s protective effects including the improvement
of cell viability (Figure 5(d)), decrease of inflammation dam-
age (Figure 5(e)) and oxidative stress (Figure 5(f)), reduction
of apoptosis cell number (Figure 5(g)), and weakening of aer-
obic glycolysis switch (Figures 5(h) and 5(i)) in the HEK-293
cell model. Therefore, these results suggested that Cur
prevented GF-triggered aerobic glycolysis via the miR-
489/LDHA axis in HEK-293 cells.

4. Discussion

In comparison to constant high- or low-glucose condition,
oscillating levels of blood glucose can induce harder cytotox-
icity, such as inflammatory injury, oxidative stress, and apo-
ptosis in the fields of DN development [3, 10] and other DM-
related complication [47]. In the present study, we used
HEK-293 cell to build a cellular model exposed to different
high-glucose circumstances which partly mimic constant
and oscillating high-glucose conditions in DM patients. We
found Cur treatment presented a reduction of aerobic glycol-

ysis rate in HEK-293 cell under the GF condition. This met-
abolic shift is related to a reduction in inflammation injury,
oxidative stress, and apoptosis against the simulated GF-
related cytotoxicity. Our finding provided further evidence
to support the kidney protection of Cur in the fields of cellu-
lar energy metabolism.

In this study, we first tested the levels of cytotoxicity and
the Warburg effect triggered by different high-glucose condi-
tions in HEK-293 cell model. Our results showed GF could
deteriorate inflammation injury, oxidative stress, and apo-
ptosis in HEK-293 cell. Previous studies have shown that
GF condition had apoptosis-inducing and oxidative stress
abilities on cells, including MCs [4], podocytes [5], and vas-
cular endothelial cells [6]. Further, another study presented
that GF increased aerobic glycolysis switch and aggravated
renal injury, such as reducing cell proliferation and exacer-
bating inflammation and apoptosis, in a MC cell model
[10]. Our results were in accordance with previous studies,
and we testified the GF-related renal injury in HEK-293 cell
which further verified the association between GF and DN.

Then, we found Cur treatment could prevent GF-
triggered cytotoxicity in a dose-dependent manner. Cur is a
bioactive component derived from the rhizome of turmeric,
which is a classical herb and has been used for thousands of
years in metabolic disease in China. Cur is involved in
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Figure 4: Cur prevented GF-triggered aerobic glycolysis by regulating miR-489 in HEK-293 cells. (a) RT-qPCR results showed that Cur could
alleviate GF-induced reduction of miR-489 in a dose-dependent manner. (b) Inhibition effects of miR-489 inhibitor tested by RT-qPCR. (c)
Viability of HEK-293 cells was tested by CCK8 at 48 h. (d) TNF-α and IL-1β at 48 h. (e) Levels of oxidative stress marker, including MDA and
mitochondrial and cytoplasmic SOD at 48 h. (f) Apoptosis index was tested by flow cytometry at 48 h. Inhibitor of miR-489 could reduce
Cur’s protective effects in the fields of cell viability, inflammation injury, and oxidative stress. (g, h) The suppression of aerobic glycolysis
by Cur treatment was prevented by the miR-489 inhibitor in HEK-293 cells. Each error bar reflects the SEM of at least three independent sets.
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Figure 5: Cur prevented GF-triggered aerobic glycolysis via the miR-489/LDHA axis in HEK-293 cells. (a–c) RT-qPCR and WB results
showed that Cur could alleviate GF-induced increase of LDHA in a dose-dependent manner at 48 h. (d) Viability of HEK-293 cells was
tested by CCK8 at 48 h. (e) TNF-α and IL-1β at 48 h. (f) Levels of oxidative stress marker, including MDA and mitochondrial and
cytoplasmic SOD at 48 h. (g) Apoptosis index was detected by flow cytometry at 48 h. Downregulation of miR-489 or upregulation of
LDHA could weaken the protective effects of Cur in the fields of cell viability, inflammation injury, oxidative stress, and apoptosis. (h, i)
The suppression of aerobic glycolysis by Cur treatment was prevented by the miR-489 inhibitor or LDHA pcDNA in HEK-293 cells. Each
error bar reflects the SEM of at least three independent sets.
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numerous crucial genetic and biochemical pathways and
produces renal protective effects [48]. It is a potential thera-
peutic drug against DM diseases. A metastudy including 24
clinical trials indicated that the levels of glycosylated hemo-
globin were obviously reduced in Cur-treated patients [49].
Cur was found to inhibit podocyte cell apoptosis, accelerating
cell autophagy, alleviating podocyte EMT, and reducing
inflammation injury in the in vivo and in vitro models of
DN [13–16]. In our study, we found Cur could prevent the
Warburg effect that enhanced under the GF condition, which
might be a novel target in the understanding of Cur’s kidney
protection. Cur takes part in the mediation of aerobic glycol-
ysis. However, these studies are most regarding to cancer
cells [18, 19]. Our results presented the evidence that Cur also
reduces aerobic glycolysis switch in HEK-293 cells.

The mechanism of the Warburg effect is still unclear. We
built a panel of 17 miRNAs [26–29, 31–43] and 8 lncRNAs
[29, 30, 32, 35, 36, 43–45] that were previously reported to
be regulators of theWarburg effect. The results indicated that
GF reduced the miR-489 content in the HEK-293 cell model
and a moderate dose of Cur (40μM) could prevent this
downregulation. Then, we performed rescue experiments to
confirm that Cur prevents GF-triggered aerobic glycolysis
via the miR-489/LDHA axis in HEK-293 cells. The axis of
miR-489/LDHA has been reported as a new explanation for
the Warburg effect. miR-489 was reported to inhibit the
growth of multiple myeloma by regulating the LDHA-
mediated glycolytic metabolism [41]. Inhibition of miR-489
obviously decreased atherosclerotic lesion in a renal injury
mouse model [50]. LDHA plays as a rate-limiting enzyme
and catalyzes pyruvate into lactate instead of leading into
the tricarboxylic acid cycle under the aerobic glycolysis con-
dition. Pancreatic islets of DM individuals showed an
increase in the LDHA expression [51]. The downregulation
of LDHA could significantly improve DM’s glucose metabo-
lism [52]. Inhibition of LDHA decreased reactive oxygen spe-
cies production, reduced lactate secretion, and rescued beta-
cell apoptosis [53]. Our results showed that reduced expres-
sion of miR-489 in GF group could increase the apoptosis
index as determined by flow cytometry in HEK-293 cell. This
effect of miR-489 was also found in a LPS-induced cell injury
model of human embryonic lung WI-38 cells [54]. Interest-
ingly, some studies presented that upregulation of miR-489
could facilitate apoptosis in tumor cells, such as human pan-
creatic cancer PANC-1 cells [55] and human hepatocellular
carcinoma cells [56]. These different effects of miR-489 may
be due to particular characteristics of tumor cells.

There were some limitations in our study. We only built a
panel of the Warburg effect-related miRNAs and lncRNAs,
but not involving DN- or GF-associated ncRNAs. It was
not testified that whether higher expression of LDHA or
lower level of miR-489 was responsible for renal damage. In
vivo evidences were required to prove adverse effects of GF
to aerobic glycolysis on DN development. These will be
performed in a future study.

In conclusion, our study indicated that Cur prevented
GF-triggered renal injury by inhibition of aerobic glycolysis
via the miR-489/LDHA axis in the HEK-293 cell model.
Although further follow-up experiments are required in the

future, our results may provide in-depth understanding on
the mechanism of GF-triggered renal injury and Cur’s pro-
tective capacity.
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