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Osteoarthritis (OA), a chronic degenerative joint disease, always occurred in the aging population. There is evidence suggests that
chondrocytes’ survival, inflammation, and apoptosis play critical roles in OA pathogenesis. LMX1B has been shown to be involved
in antiosteogenic function in early patterning of the calvaria. However, the role and mechanism of LMX1B in OA is not unknown.
The present study observed that LMX1B was highly expressed in OA patients compared with normal patients. Besides, we found
that IL-1β increased LMX1B mRNA and protein expression in SW1353 and C28/I2 chondrocytes. LMX1B knockdown increased
IL-1β-induced cell viability and proliferation and suppressed cell apoptosis and inflammation response, including IFN-γ, TNF-α,
IL-6, prostaglandin E2 (PGE2), and NO both in SW1353 and C28/I2. Furthermore, LMX1B silence inhibited MMP-3 and MMP-
13 expression both in SW1353 and C28/I2 cells. Also, the activation of the NF-κB and NLRP3 signaling pathway was suppressed
in LMX1B silence cells by decreasing the p-p65 and NLRP3 protein expressions. Additionally, inhibition of NF-κB by PDTC
suppressed NLRP3 expression. Moreover, NLRP3 overexpression reversed the effects of LMX1B silence on chondrocytes’
survival, proliferation, apoptosis, and inflammation. Finally, we confirmed that LMX1B depletion had protective effects in OA
rats in vivo.

1. Introduction

Osteoarthritis (OA) is an age-related disease that affects axial
and peripheral articulations and weight-bearing joints affect-
ing tens of millions of people all over the world [1]. The dis-
order is characterized by inflammation of synovial joints,
anabolism of articular cartilages, degradation of articular
cartilage, improper catabolism, and thickening of subchon-
dral bone [2, 3]. In the progression of OA, inflammatory
cytokines like IL-1β resulted in tissue injury and articular
cartilage degeneration of the OA joints and associated with
many pathological processes, including metabolic imbal-
ance, hypertrophy, apoptosis of chondrocytes, and dysregu-
lation of autophagy [4–7]. Although some therapeutic
approaches have been used for OA, such as surgical replace-
ment of joint and pain management, these treatments were

not satisfactory, and the loss of articular cartilage could not
be reversed [8, 9]. Therefore, it will be necessary to find
and understand the effective molecular and associated mech-
anisms that contributed to the pathological processes of
chondrocytes inflammation and apoptosis for OA treatment.

LIM homeobox transcription factor 1 beta (LMX1B)
which consists of 395 amino acid residues was located on
autosomal 9q34.1 and encodes by LMX1B gene that contains
eight exons [10]. LMX1B is a transcription factor and
belongs to LIM homeodomain family proteins [10, 11]. It
is reported that LMX1B was involved in organ and extremity
development, including limb, kidney, brain, eye, glomerular
basement membrane, and neuron; moreover, LMX1B has
been shown implicated in cancer development [11–16].
Moreover, emerging studies have revealed that LMX1B plays
a vital function in the development of the central nervous
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system, limbs, and kidney [15, 17, 18]. Also, evidence sug-
gested that LMX1B plays important roles in the cell apopto-
sis inhibition under hypoxia and reoxygenation condition in
renal tubular epithelial cells [19]. However, the specific role
and molecular mechanism of LMX1B in IL-1β-induced
human osteoarthritis chondrocytes are poorly understood.

Nod-like receptor protein 3 (NLRP3) inflammasome,
known as innate immune sensors, contains NLRP3 protein,
pro-caspase-1, and apoptosis-associated speckle-like protein
which is involved in cell apoptosis and inflammation
response [20, 21]. There is convincing evidence that the ele-
vation of NLRP3 is closely connected with proinflammatory
cytokine production, including tumor necrosis factor-α
(TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)
[22]. Moreover, the nuclear factor-kappaB (NF-κB) tran-
scription factor is a major mediator of immune homeostasis
and inflammation, and evidence suggested that NF-κB plays
a central role in the inflammation response [23]. However,
whether LMX1B regulated NF-κB and NLRP3 signal path-
way and involved in OA development remains unclear. In
the current study, we determined the specific role of LMX1B
on cell apoptosis and inflammatory response in IL-1β-
induced human osteoarthritis chondrocytes. Our study
uncovers the role of LMX1B and its regulation of NF-κB
and NLRP3 signal pathway in chondrocytes.

2. Methods

2.1. Patients. Tissue collection in this study was approved by
the Ethic Committee of Central Hospital Affiliated to Shen-
yang Medical Collage (Shenyang) and according to the prin-
ciples of the Declaration of Helsinki. Human cartilage
samples were obtained from 20 osteoarthritis patients (age
58:2 ± 9:8) undergoing total knee arthroplasty and 10
healthy donors (age 55:4 ± 7:6) undergoing total hip replace-
ment surgery because of femoral neck fracture. Moreover,
healthy donors do not have arthritis or rheumatoid arthritis.
The informed consent form was obtained from all donors.
Tissue samples were collected after surgery and stored at
-80°C.

2.2. Cell Culture and Treatment. Human chondrosarcoma
cell line SW1353 and C28/I2 cells (American Type Culture
Collection, Manassas, VA, USA) were maintained in Dul-
becco’s modified Eagle medium (DMEM), supplemented
with 10% fetal bovine serum in humidified incubated air
with 5% CO2 at 37

°C. IL-1β was purchased from the R&D
Systems (Abingdon, UK) and dissolved in phosphate-
buffered saline (PBS). SW1353 and C28/I2 cells were treated
with 10ng/ml IL-1β to simulate osteoarthritis injury.

2.3. Cell Grouping and Transfection. The SW1353 cells were
divided into seven groups: control group, IL-1β group, IL-
1β+control siRNA group, IL-1β+LMX1B siRNA group, IL-
1β+PDTC group, IL-1β+LMX1B siRNA+pcDNA3.1 group,
and IL-1β+LMX1B siRNA+pcDNA3.1-NLRP3 group. The
C28/I2 cells were divided into four groups: control group,
IL-1β group, IL-1β+control siRNA group, and IL-
1β+LMX1B siRNA group. In the IL-1β group, SW1353

and C28/I2 cells were treated with 10 ng/ml IL-1β for 24 h.
In the IL-1β+control siRNA group and IL-1β+LMX1B
siRNA group, the SW1353 and C28/I2 cells were transfected
with control siRNA or LMX1B siRNA for 24h by using
Lipofectamine 2000 reagent and then treated with 10 ng/ml
IL-1β for 24 h. In the IL-1β+PDTC group, SW1353 cells
were treated with 10 ng/ml IL-1β and PDTC for 24 h. In
the IL-1β+LMX1B siRNA+pcDNA3.1 group and IL-
1β+LMX1B siRNA+pcDNA3.1-NLRP3 group, SW1353 cells
were cotransfected with LMX1B siRNA and pcDNA3.1 con-
trol vector or LMX1B siRNA and pcDNA3.1-NLRP3 vector
for 24 h and then treated with 10ng/ml IL-1β for 24 h.

2.4. Cell Viability Assay. SW1353 and C28/I2 cell viability
was determined using a Cell Counting Kit-8 (CCK8) assay.
Briefly, SW1353 cells were seeded in 96-well plates at a den-
sity of 5 × 103 cells/well for 24h and then treated and trans-
fected as above. At the appropriate time, CCK8 solution
(10μl) was added to each well then cultured at 37°C for
another 4 h. Absorbance at a wavelength of 490nm was
measured and recorded with a microplate reader (Model
680; Bio-Rad, Hercules, CA, USA).

2.5. Cell Proliferation Assay. SW1353 and C28/I2 cell pro-
liferation was determined using 5-ethynyl-2′-deoxyuridine
(EdU) assay according to the manufacturer’s protocol.
SW1353 and C28/I2 cells were seeded in 96-well plates
at a density of 2 × 103 cells/well for 24h and then treated
and transfected as above. The cells were treated with
50μM EdU at 37°C for another 2 h, and cell nuclei were
stained with DAPI at room temperature for 15min.
Images were obtained by using an inverted fluorescent
microscope.

2.6. Cell Apoptosis. According to the instructions of the man-
ufacturer, Annexin V-APC/7-AAD kit (BD Pharmingen,
San Diego, CA, USA) was used to detect cell apoptosis.
SW1353 and C28/I2 cells were treated as above. Subse-
quently, cells from different treatment groups were resus-
pended in 500μL of 1 × binding buffer, stained with
Annexin V-APC (5μL) and 7-AAD (5μL) for 15min in
the dark, respectively, and then examined using a flow cyt-
ometer (Beckman Coulter, CA, USA).

2.7. Enzyme-Linked Immunosorbent Assay (ELISA). The
supernatant from each group was collected, and the concen-
tration of IFN-γ, TNF-α, IL-6, MMP-3, MMP-13, and PGE2
was measured with the appropriate ELISA kit (R&D Sys-
tems, Minneapolis, MN USA) according to the manufactur-
er’s instructions.

2.8. NO Measurement. Griess reaction method was used to
detect NO concentrations in the supernatant according to
the manufacturer’s instructions. The supernatant was col-
lected from SW1353 and C28/I2 cells which were treated
and transfected as mentioned above. An equal volume of cell
suspension and Griess reagent was mixed and then incubated
for 10min at room temperature. Absorbance at a wavelength
of 550 nm was measured and recorded with a microplate
reader (Model 680; Bio-Rad, Hercules, CA, USA).
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2.9. RT-PCR. Total intracellular RNA from SW1353 and
C28/I2 cell was obtained using the TRIzol® Plus RNA Puri-
fication Kit (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. RNA was reverse tran-
scribed to cDNA by using the ThermoScript RT-PCR system
(Invitrogen). RT-PCR was performed using SYBR Green
PCR Master Mix (Applied Biosystems, Foster City, CA,
USA) and the ABI prism 7900HT sequence detection system
(Applied Biosystems). GAPDH was used as an internal con-
trol. Gene expression was calculated by the 2-ΔΔCt method.

2.10. Western Blot. Total protein from SW1353 and C28/I2
cell was obtained using radio-immunoprecipitation assay
lysis buffer. Protein concentration was quantified using a
BCA Protein Assay kit (Beyotime Biotechnology, Shanghai,
China). 30μg of proteins was separated using 10% SDS-
PAGE and then transferred onto the PVDF membranes.
The membranes were incubated with primary antibodies
overnight at 4°C and sequentially incubated with the corre-
sponding secondary antibodies conjugated by horseradish
peroxidase (HRP) for 1 h at room temperature. GAPDH
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Figure 1: LMX1B was upregulated in OA cartilage tissue and IL-1β-induced chondrocytes. (a, c, and e) qRT-PCR analysis for LMX1B
mRNA expression in cartilage tissue (a), SW1353 cells (c), and C28/I2 cells (e). (b, d, and f) Western blot analysis for LMX1B protein
expression in cartilage tissue (b), SW1353 cells (d), and C28/I2 cells (f). SW1353 and C28/I2 cells were treated with 10 ng/ml IL-1β for
24 h. ∗P < 0:05. 20 OA patients and 10 normal subjects were used in this study; moreover, all experiments were repeated three times in
SW1353 and C28/I2 cells.
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was used as a control. The following primary antibodies were
used in this study: rabbit polyclonal to LMX1B antibody
(ab139736, 1.5μg/ml), rabbit monoclonal to NLRP3 antibody

(ab263899, 1 : 1000) rabbit monoclonal to p-P65 (ab76302,
1 : 1000), rabbit monoclonal to NF-κB p65 (ab32536,
1 : 5000), and rabbit polyclonal to GAPDH (ab9485, 1 : 2500).
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Figure 2: LMX1B knockdown increased IL-1β-induced SW1353 cell growth and suppressed its apoptosis. (a) Western blot analysis for
LMX1B protein expression; (b) CCK-8 analysis for SW1353 cell survival; (c) 5-ethynyl-2′-deoxyuridine (EdU) assay was used to
determine SW1353 cell proliferation; (d) SW1353 cell apoptosis was detected by using flow cytometer analysis. SW1353 cells were
transfected with control siRNA or LMX1B siRNA for 24 h by using Lipofectamine 2000 reagent and then treated with 10 ng/ml IL-1β for
24 h. ∗P < 0:05, compared with the control group; #P < 0:05, compared with the IL-1β group. All experiments were repeated three times.
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Figure 3: LMX1B knockdown increased IL-1β-induced C28/I2 cell growth and suppressed its apoptosis. (a) Western blot analysis for
LMX1B protein expression; (b) CCK-8 analysis for C28/I2 cell survival; (c) 5-ethynyl-2′-deoxyuridine (EdU) assay was used to
determine C28/I2 cell proliferation; (d) C28/I2 cell apoptosis was detected by using flow cytometer analysis. C28/I2 cells were transfected
with control siRNA or LMX1B siRNA for 24 h by using Lipofectamine 2000 reagent and then treated with 10 ng/ml IL-1β for 24 h. ∗P <
0:05, compared with the control group; #P < 0:05, compared with the IL-1β group. All experiments were repeated three times.
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2.11. Lentivirus Vector Construction. For the following
experiments, recombinant lentivirus vectors pCDH-CMV-
MCS-EF1-puro expressing LMX1B siRNA and siRNA con-
trol were obtained from Genechem (Shanghai, China).

2.12. OA Model in Rats and Animal Treatment. 9-10-week-
old male Sprague-Dawley rats (270–285 g) were purchased
from the Animal Center of Chinese Academy of Sciences
(Shanghai, China) and housed with free access to food and
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Figure 4: LMX1B depletion suppressed IL-1β-induced inflammatory cytokines secretion in SW1353 cells. ELISA kits were used to
determine the expression of IFN-γ (a), TNF-α (b), IL-6 (c), and PGE2 (d); (e) NO concentration was determined by the Griess reaction.
SW1353 cells were transfected with control siRNA or LMX1B siRNA for 24 h by using Lipofectamine 2000 reagent and then treated with
10 ng/ml IL-1β for 24 h. ∗P < 0:05, compared with the control group; #P < 0:05, compared with the IL-1β group. All experiments were
repeated three times.
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water under a 12 h light/dark cycle at room temperature. An
animal study in this study was approved by the Animal Care
and Use Committee of Central Hospital Affiliated to Shen-
yang Medical Collage. 28 rats were randomly distributed
into four groups: a sham control group (control), an osteoar-
thritis group (OA), an osteoarthritis treated with control

siRNA group (siRNA), and an osteoarthritis treated with
LMX1B siRNA group (LMX1B siRNA). Rat knee OA model
was established by anterior cruciate ligament transection
(ACLT) as described previously [24]. Briefly, the anesthe-
tized rats were made with a parapatellar skin incision on
the medial side of the right knee joint; the patella was
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Figure 5: LMX1B depletion suppressed IL-1β-induced inflammatory cytokines secretion in C28/I2 cells. ELISA kits were used to determine
the expression of IFN-γ (a), TNF-α (b), IL-6 (c), and PGE2 (d); (e) NO concentration was determined by the Griess reaction. C28/I2 cells
were transfected with control siRNA or LMX1B siRNA for 24 h by using Lipofectamine 2000 reagent and then treated with 10 ng/ml IL-1β
for 24 h. ∗P < 0:05, compared with the control group; #P < 0:05, compared with the IL-1β group. All experiments were repeated three times.

7Mediators of Inflammation



dislocated before the ACL was transected. Rats in the control
group received a sham operation, incision in the joint with-
out ACLT. One week after the surgery, rats were intra-
articular injected with LMX1B siRNA lentivirus vector
(1 × 109 PFU) or control siRNA lentivirus vector (1 × 109
PFU) 2 times per week. After six weeks of treatment, the rats
were sacrificed and knee samples were obtained.

2.13. Histological Analysis. Knee samples were fixed with 4%
paraformaldehyde, embedded into paraffin, and then cut
into 5μm sections using a rotary microtome. The samples
were stained with hematoxylin-eosin (HE) and Safranin O
and Fast Green.

2.14. Statistical Analysis. Data in the present study were pre-
sented as mean ± SD from three independent experiments.
Statistical analysis was carried out using the GraphPad
Prism 5 software (GraphPad Software, Inc., La Jolla, CA,

USA) and Statistical Product and Service Solutions (SPSS)
17.0 (SPSS Inc., Chicago, IL, USA). Differences between
groups were analyzed using one-way ANOVA with a subse-
quent post hoc Tukey’s test. P < 0:05 was considered statisti-
cally significant.

3. Results

3.1. Expression of LMX1B Was Upregulated in Cartilage
Tissue of OA Patients and IL-1β-Induced Chondrocytes. For
investigating the function of LMX1B in OA pathogenesis,
we first detected the expression of LMX1B in cartilage tissues
of 20 OA patients and 10 normal subjects. Results from the
qRT-PCR and western blot assay suggested that LMX1B
mRNA and protein levels were significantly increased in
OA cartilage tissues against normal control (Figures 1(a)
and 1(b)). In the present study, we used 10 ng/ml of IL-1β
to simulate the OA environment in human chondrosarcoma
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Figure 6: LMX1B depletion suppressed IL-1β-induced MMP3 and MMP13 expression. ELISA kits were used to determine the expression of
MMP3 (a and c) and MMP13 (b and d). SW1353 and C28/I2 cells were transfected with control siRNA or LMX1B siRNA for 24 h by using
Lipofectamine 2000 reagent and then treated with 10 ng/ml IL-1β for 24 h. ∗P < 0:05, compared with the control group; #P < 0:05, compared
with the IL-1β group. All experiments were repeated three times.
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cell line SW1353 and C28/I2 cells. Moreover, we determined
the expression of LMX1B in IL-1β-induced SW1353 and
C28/I2 cells. qRT-PCR analyses and western blot assay
revealed that the mRNA and protein levels of LMX1B were
already more expressed in IL-1β-induced SW1353
(Figures 1(c) and 1(d)) and C28/I2 (Figures 1(e) and 1(f))
cells in comparison to the control group. Altogether, the
above results indicated that LMX1B was increased in OA tis-
sue and cells, and its dysregulate may be involved in OA
pathogenesis.

3.2. LMX1B Silence Promoted Cell Growth and Suppressed
Cell Apoptosis in SW1353 and C28/I2 Cells. We next sought
to investigate whether LMX1B silence mediated SW1353
and C28/I2 cell survival, proliferation, and apoptosis.
LMX1B siRNA transfection significantly inhibited LMX1B
expression both in SW1353 (Figure 2(a), P < 0:05) and
C28/I2 (Figure 3(a), P < 0:05) cells compared with the IL-
1β group. The results of the CCK-8 assay suggested that
IL-1β treatment markedly suppressed SW1353 and C28/I2
cell survival, whereas LMX1B knockdown encouraged cell
survival in IL-1β-exposed SW1353 (Figure 2(b), P < 0:05)
and C28/I2 (Figure 3(b), P < 0:05) cells. Results from the
EdU assay indicated that LMX1B knockdown significantly
promoted SW1353 and C28/I2 cell proliferation when com-
pared with the IL-1β group (Figures 2(c) and 3(c), P < 0:05).
Moreover, IL-1β treatment resulted in cell apoptosis
increased to 34% and 27.58% in SW1353 and C28/I2 cells,
respectively; moreover, LMX1B knockdown reversed the
effects of IL-1β on SW1353 and C28/I2 cell apoptosis
(Figures 2(d) and 3(d), P < 0:05); cell apoptosis rate in the
LMX1B knockdown group was 14.8% and 16.29%. These
results imply a regulatory role of LMX1B depletion on IL-
1β-induced SW1353 and C28/I2 cell survival, proliferation,
and apoptosis.

3.3. LMX1B Is Essential for the Production of Inflammatory
Cytokines in IL-1β-Induced SW1353 and C28/I2 Cells. Next,
to validate the effects of LMX1B knockdown on the inflam-
mation response in IL-1β-induced chondrocyte, the expres-
sion of inflammatory cytokines IFN-γ, TNF-α, IL-6, PGE2,
and NO was analyzed by the appropriate ELISA kit accord-
ing to the manufacturer’s instructions. IFN-γ, TNF-α, IL-6,
PGE2, and NO levels were already significantly increased
after IL-1β treatment compared to the control group
(Figures 4 and 5, P < 0:05). Additionally, at IL-1β+control
siRNA group, IFN-γ, TNF-α, IL-6, PGE2, and NO were all
almost unchanged compared to the IL-1β-treated group
(Figures 4 and 5, P > 0:05), and importantly, these inflam-
matory cytokines were considerably downregulated com-
pared to the IL-1β-treated group and IL-1β+control siRNA
group (Figures 4 and 5, P < 0:05).

3.4. LMX1B Depletion Plays Important Role in IL-1β-
Induced MMP3 and MMP13 Expressions in SW1353 and
C28/I2 Cells. In order to assess whether the LMX1B deple-
tion mediated MMP3 and MMP13 expressions in IL-1β-
induced SW1353 and C28/I2 cells, ELISA assay was carried
out. In fact, stimulation with IL-1β significantly increased
the release of MMP3 and MMP13 into the culture medium
both in SW1353 (Figures 6(a) and 6(b), P < 0:05) and C28/
I2 cells (Figures 6(c) and 6(d), P < 0:05). Additionally,
MMP3 and MMP13 expressions were significantly reduced
after LMX1B siRNA transfection as compared with the IL-
1β group (Figure 6).

3.5. LMX1B Knockdown Inhibits NF-κB Activation and
Attenuates NLRP3 Expression. To understand the regulatory
role of LMX1B, NF-κB, and NLRP3 signal pathway has been
investigated. As shown in Figure 7(a), IL-1β proinflamma-
tory stimulus enhanced NF-κB signal pathway activation
through promoting p-P65 expression, whereas total P65
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Figure 7: LMX1B depletion suppressed IL-1β-induced NF-κB and NLRP3 activation. Western blot was used to determine the protein
expression of p-P65, P65 (a), and NLRP3 (b). SW1353 cells were transfected with control siRNA or LMX1B siRNA for 24 h by using
Lipofectamine 2000 reagent and then treated with 10 ng/ml IL-1β for 24 h, or SW1353 cells were treated with 10 ng/ml IL-1β and PDTC
for 24 h. ∗P < 0:05, compared with the control group; #P < 0:05, compared with the IL-1β group. All experiments were repeated three times.
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Figure 8: Continued.
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expression was unchanged. Moreover, IL-1β treatment sig-
nificantly increased NLRP3 expression, compared with the
control group (P < 0:05). Additionally, expression of p-P65
and NLRP3 in the IL-1β+LMX1B siRNA transfection group
markedly declined, compared with the IL-1β group
(Figure 7(a), P < 0:05). Additionally, we observed that the
NF-κB activation and NLRP3 expression showed a tight pos-
itive correlation in SW1353 cells treated with IL-1β. Results
from western blot assay showed that the inhibitor of NF-κB
signal pathway reversed the effects of IL-1β on the expres-
sion of NLRP3 (Figure 7(b)). The above results indicated
that LMX1B silence inhibited NLRP3 expression which
may be through inhibiting NF-κB activation.

3.6. NLRP3 Overexpression or NF-κB Activation Restrained
the Effects of LMX1B Silence on SW1353 Cell Biology. To
investigate the effects of NF-κB and NLRP3 signal pathway
on the action of LMX1B silence in IL-1β-induced SW1353
cells, we used NF-κB activator LPS (400μg/ml) and engi-
neered NLRP3 overexpression plasmids for restoring the
expression of p-P65 and NLRP3. As shown in Figures 8(a)
and 8(b), NF-κB activation and LMX1B overexpression sig-
nificantly suppressed cell survival and proliferation com-
pared with the LMX1B knockdown group (P < 0:05). We
also examined the influence of LPS and LMX1B overexpres-
sion vector on cell apoptosis, inflammatory cytokines, and
MMP3 and MMP13 expression in LMX1B silence and IL-
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Figure 8: NLRP3 overexpression or NF-κB activation reversed the effects of LMX1B silence on SW1353 cell biology. (a) CCK-8 analysis for
SW1353 cell survival; (b) 5-ethynyl-2′-deoxyuridine (EdU) assay was used to determine SW1353 cell proliferation; (c) SW1353 cell
apoptosis was detected by using flow cytometer analysis. (d) ELISA kits were used to determine the expression of IFN-γ, TNF-α, IL-6,
and PGE2; (e) NO and PGE2 concentration was determined by the Griess reaction and ELISA kit, respectively; (f) ELISA kits were used
to determine the expression of MMP3 and MMP13. SW1353 cells were transfected with LMX1B siRNA for 24 h by using Lipofectamine
2000 reagent and then treated with 10 ng/ml IL-1β for 24 h or SW1353 cells were cotransfected with LMX1B siRNA and pcDNA3.1
control vector or LMX1B siRNA and pcDNA3.1-NLRP3 vector for 24 h and then treated with 10 ng/ml IL-1β for 24 h, or SW1353 cells
were treated with 10 ng/ml IL-1β and LPS (400 μg/ml) for 24 h. ∗P < 0:05, compared with the IL-1β group; #P < 0:05, compared with the
IL-1β+LMX1B siRNA group. All experiments were repeated three times.
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1β-induced SW1353 cells. Cell apoptosis, IFN-γ, TNF-α, IL-
6, PGE2, NO, MMP3, and MMP13 expressions were aug-
mented significantly after exposure to LPS and transfecting
with LMX1B overexpression vector, compared with LMX1B
knockdown group (P < 0:05). These results indicated that
LMX1B silence plays effective roles in cell apoptosis and
inflammatory response dependent on NF-κB and NLRP3
signal pathway.

3.7. LMX1B Depletion Suppressed Pathogenesis of
Osteoarthritis in Sprague-Dawley Rats. We next assessed
whether LMX1B depletion plays roles in the regulation of
OA cartilage destruction. Lentiviruses with LMX1B siRNA
were injected into the knee joints of OA rats. Hematoxylin
and eosin (HE) and Safranin O staining were performed. In
the results as shown in Figure 9, compared with the control
group, OA group rats exhibited osteoarthritis characteristics
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Figure 10: LMX1B depletion suppressed inflammatory cytokines secretion in OA rats. ELISA kits were used to determine the expression of
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with severely degraded cartilage and clear hypocellularity.
Moreover, we observed that LMX1B depletion significantly
alleviated symptoms of OA (Figure 9). Moreover, IFN-γ,
TNF-α, IL-6, PGE2, and NO levels were already significantly
increased in OA rats, and these inflammatory cytokines were
considerably downregulated after LMX1B depletion
(Figures 10(a)–10(e), P < 0:05). These data indicated that
LMX1B depletion had protective effects in vivo.

4. Discussion

Osteoarthritis (OA) is a highly prevalent chronic disorder of
joints featuring degeneration of articular cartilage. Up to
now, treatment of osteoarthritis remains a difficult problem,
and although physical therapy and pain medications are
used, there have been limited effects and significant side
effects [1, 25]. The present study firstly provided evidence
that LMX1B knockdown plays effective inhibition roles in
the pathogenesis of OA. Firstly, we found that LMX1B
expression presented a significant elevation in OA patients’
tissues and IL-1β-induced human chondrocytes. Secondly,
we observed that LMX1B silence promoted cell survival
and proliferation and suppressed cell apoptosis and inflam-
matory response in IL-1β-induced human osteoarthritis
chondrocytes. Thirdly, we demonstrated that NF-κB/NLRP3
signal pathway plays an irreplaceable role in the action of
LMX1B depletion in IL-1β-induced chondrocytes. Finally,
we used OA model in Sprague-Dawley rats to confirm the
protective effects of LMX1B silence against OA. Based on
our data, we suggested that LMX1B might play an important
role in the progression of OA.

LIM homeodomain LMX1B was composed of two cyste-
ine-enriched, zinc-binding NH2-terminal LIM domains,
including a COOH-terminal glutamine-rich domain and a
homeodomain consisting of 60 amino acids [26, 27]. Evi-
dence suggested that LMX1B is widely expressed in types
of human tissues, including testis, thyroid, pancreatic islets,
ocular, and skeletal muscle [15, 28, 29]. LMX1B has been
shown associated with cell proliferation, migration, apopto-
sis, and inflammatory cytokine production [30–32]. As a
transcription factor, LMX1B could regulate multiple path-
ways and cell physiologies via mediating associated target
genes [11]. Microarray analysis from the previous reports
suggested that LMX1B upregulated NF-kappaB target genes,
including IL-6 and IL-8 expressions in tetracycline-inducible
HeLa cells [30]. It is now well established that inflammatory
cytokine IL-1β is involved in the pathogenesis of OA
through mediating matrix metalloproteinases (MMPs) and
inflammatory cytokines expression [33, 34]. Also, evidence
indicated that MMP members MMP-3 and MMP-13 are
the most important enzymes in OA [35]. In the present
study, we demonstrated that LMX1B plays important roles
in IL-1β-induced inflammatory cytokines and MMP-3 and
MMP-13 expressions.

We next determined the effects of LMX1B on the expres-
sion of NF-κB-p65, and the results from WB suggested that
LMX1B knockdown significantly suppressed IL-1β-induced
NF-κB activation through inhibiting p-p65 expression.
Emerging studies have revealed that NF-κB proteins are a

member of the transcription factor family which is stimu-
lated by chemokine, extracellular matrix (ECM) degradation
products, stress-related factors, and proinflammatory cyto-
kines [36]. A recent study also suggested that the expression
of the NLRP3 inflammasome was accompanied by the acti-
vation of Toll-like receptors (TLRs) and NF-κB [37]. In the
present study, we confirmed that NF-κB inhibitor sup-
pressed NLRP3 expression. In addition, evidence suggested
that NLRP3 contributed to inflammatory cytokine produc-
tion [38]. Moreover, recent studies indicated that NLRP3
was a potentially novel biomarker of OA and might play
essential roles in the pathogenesis of OA [39, 40]. In the cur-
rent study, we observed that LMX1B depletion suppressed
NF-κB-p65 activation and NLRP3 expression, and NF-κB-
p65 activation and NLRP3 overexpression both reversed
the effects of LMX1B knockdown on chondrocytes apoptosis
and inflammation.

5. Conclusion

Collectively, the present study provided the first evidence
that LMX1B knockdown exerts protective activity in IL-
1β-induced human chondrocytes and OA model. Also, the
possible mechanisms of LMX1B knockdown in IL-1β-
induced chondrocytes might involve the inactivation of
NF-κB and the inhibition of NLRP3. In summary, LMX1B
knockdown may be effective in the treatment of OA.
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