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Hypertrophic cardiomyopathy is a hereditary disease characterized by asymmetric ventricular hypertrophy as the key anatomical
feature. Currently, there exists no effective method for the early diagnosis of hypertrophic cardiomyopathy. In this analysis, we
incorporated multiple GEO datasets containing RNA profiles of hypertrophic cardiomyopathic patient tissues, identified 642
differentially expressed genes, and performed GO and KEGG analyses. Furthermore, we narrowed down 46 characteristic genes
from these differentially expressed genes using random decision forests and conducted transcription factor regulation analysis
on them. Using 40 genes that showed overlap between the training set and the verification set, the artificial neural network was
trained, and the final MPS scoring model was constructed, and a receiver-operating characteristic (ROC) curve was drawn. We
used the MPS model to predict the verification dataset and drew the ROC curve, which demonstrated the good prediction
performance of the model. In conclusion, this study combines a random decision forest and artificial neural network to build a
diagnostic model for hypertrophic cardiomyopathy to predict the disease, aiming at early detection and treatment, prolonging
the survival time, and improving the quality of life of patients.

1. Introduction

Hypertrophic cardiomyopathy (HCM) is a common inher-
ited heart disease characterized by unexplained left ventricu-
lar hypertrophy. HCM occurs in about 1/500–1/200 of the
general population [1, 2]. Among the HCM patients, about
two-thirds have left ventricular outflow tract (LVOT)
obstruction, known as hypertrophic obstructive cardiomy-
opathy or obstructive hypertrophic cardiomyopathy
(OHCM) [3]. For patients with drug-refractory OHCM,
myectomy is the primary treatment for alleviating LVOT
obstruction [4, 5]. Previous studies have shown that myect-
omy can change the natural clinical course in OHCM
patients, and postsurgery, most patients can achieve a life
expectancy similar to normal people of the same age [6].

However, some patients still experience long-term adverse
events after the surgery. Studies have identified several pre-
operative clinical risk factors to optimize patient risk stratifi-
cation and management [7–9]. Preoperative risk factors
included increasing age, increased preoperative N-terminal
probrain natriuretic peptide levels, and increased left atrial
diameter. Identifying high-risk patients and implementing
early interventions are of great clinical significance for
patient management. Therefore, it is essential to explore
the relevant risk factors which affect the long-term prognosis
of patients with hypertrophic cardiomyopathy to optimize
postoperative clinical management strategies.

HCM can lead to adverse outcomes such as sudden
arrhythmic death [10], heart failure [11], and atrial fibrilla-
tion which may lead to embolic stroke [12]. Significant
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Table 1: Dataset information.

Dataset ID Platform Clinical factors No.

GSE36961 GPL15389
Cardiac tissue, HCM 106

Cardiac tissue, control 39

GSE141910 GPL16791

Dilated cardiomyopathy, DCM 166

Hypertrophic cardiomyopathy, HCM 28

Peripartum cardiomyopathy, PPCM 6

Nonfailing donor 166
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Figure 1: Continued.
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progress has been made in understanding HCM, but its
pathogenesis is still not fully understood. As a result, several
patients do not respond well to the treatments resulting in
clinical symptoms and substantial reductions in life expec-
tancy. Several traditional diagnostic methods for hypertro-
phic cardiomyopathy exist such as dynamic auscultation of
cardiac murmur changes, the discovery of myocardial
hypertrophy and left ventricular outflow tract obstruction
using an electrocardiogram (ECG), and cardiac magnetic
resonance imaging (CMRI) [13–15]. However, genetic test-

ing to probe for the presence of disease-causing genes and
mutations offers tremendous advantages over traditional
methods. It could screen first-degree relatives or fetuses even
before birth, taking the diagnosis of HCM to a new level. As
genetic testing guides the diagnosis of HCM, identifying
asymptomatic HCM patients before the onset of clinical dis-
ease and subsequent treatment has become a class I recom-
mended aid in European and North American guidelines
[16–18]. Therefore, comprehensive analysis of the gene sig-
nature associated with HCM and exploring the pathogenesis
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Figure 1: Differentially expressed genes. (a) Volcano plot. The abscissa is log2FoldChange, and the ordinate is -log10pvalue. The red and
green spots are the genes with FC > 1:5 and p value < 0.05, and the green spots are the genes with FC < 1:5 and p value < 0.05. (b)
Heatmap display of differentially expressed genes. The expression quantity is converted into Z-score, and the color in the graph changes
from red to green, indicating that the expression changes from low to high. In the strip chart on the upper side of the graph, red
represents HCM sample, and blue represents control sample.
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Figure 2: Continued.
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of HCM at the molecular level play an extremely important
role in the diagnosis, prevention, treatment, and prediction
of the prognosis of the disease [19].

Deep learning methods are emerging as an important
tool in clinical diagnosis. We hypothesized that a deep learn-
ing method based on the characteristic gene signatures of
HCM could be used to develop a diagnostic model for
HCM. Towards this goal, we used random decision forests
and artificial neural networks. A random decision forest is
a classifier that contains multiple decision trees and is a
supervised learning method. It evaluates the importance of
variables when deciding on categories, making it well suited
for feature filtering. On the other hand, an artificial neural
network is an algorithmic mathematical model that simu-
lates the behavioral characteristics of animal neural net-
works and parallel distributed processes. It is similar to a
biological neuron structure and, like any neural network
processing framework, has an input layer, an implicit layer,

and an output layer. In this study, we aimed to develop a
diagnostic model for hypertrophic cardiomyopathy using
random decision forest and artificial neural networks to
understand disease pathology and aim at early detection
and treatment. The diagnostic model could thereby help
prolong the survival time of patients and improve their qual-
ity of life.

2. Materials and Methods

2.1. Gene Expression Omnibus (GEO) Data Download.
GSE36961 and GSE141910 were downloaded from GEO
(https://www.ncbi.nlm.nih.gov/geo/) for the construction of
the diagnostic model and for verifying the performance of
the model, respectively. The training dataset GSE36961 con-
sisted of transcriptomic profiling of 145 surgical myectomy
tissue samples, as shown in Table 1, which included 106
HCM and 39 normal cardiac tissue samples. HCM samples
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Figure 2: Function and pathway enrichment analyses of DEGs in HCM. (a–c) Significant Gene Ontology terms of the DEGs, including
biological processes (BP), molecular function (MF), and cell component (CC). (d) Significant KEGG pathways of the DEGs associated
with HCM.
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were used as the case group and normal cardiac tissue sam-
ples were used as the control group in the subsequent anal-
ysis. The validation dataset GSE141910 included 366
samples in total (see Table 1 for details). To ensure consis-
tency with the training set samples as much as possible, in
this study, we selected 28 HCM samples as the case group
and 166 nonfailing donors as the control group.

2.2. Screening Differentially Expressed Genes. The gene
expression data were analyzed by using the R software pack-
age limma to obtain the differentially expressed genes
between HCM and normal myocardial tissues in the training
dataset GSE36961. The differentially expressed genes
between HCM (case) group and the normal myocardial tis-
sue (control) group in the training dataset were screened
based on the multiple of difference ðfold change ½FC� > j1:5j
Þ and significance (p value < 0.05). Using these cut-offs, a
total of 642 differentially expressed genes were identified,
which included 250 upregulated and 392 downregulated
genes.

2.3. Enrichment Analysis. Enrichment analysis of differen-
tially expressed genes was performed using the R-package
clusterProfiler, which uses the Gene Ontology (GO) and
KEGG pathway databases. Through GO analysis, we
obtained the biological process (BP), cellular components
(CC), and molecular function (MF) of differentially
expressed genes. Through KEGG analysis, we obtained the

abundant signaling pathways involved with the differentially
expressed genes. p < 0:05 was defined as statistically signifi-
cant enrichment. The top 10 pathways or subgroups of gene
enrichment were selected to draw the bubble map.

2.4. Random Decision Forest Screening for Characteristic
Gene. A random decision forest is a classifier that contains
multiple decision trees and is a supervised learning method.
It evaluates the importance of variables when deciding on
categories, making it well suited for feature filtering. We
used the randomForest package in R to construct a random
decision forest model and screen the characteristic genes.

The filtering steps used are as follows:

(1) The differentially expressed genes were used to train
the random decision forest model, and the genes
with the negative characteristic importance index
(mean decrease accuracy) are deleted to obtain a
new expression matrix

(2) The random decision forest model is retrained with
the new expression matrix, genes with negative fea-
ture importance are deleted, and the step is cycled
until the feature importance no longer has a negative
value. This results in a primary characteristic gene
set

(3) The above two steps are repeated 10 times resulting
in 10 primary characteristic gene sets. The genes that
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Figure 3: Heatmaps of training and verification set expression data.
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appeared more than three times were screened out as
the final set of characteristic genes

2.5. Analysis of Transcription Factor (TF) Regulation of
Characteristic Genes. The human TF regulatory network
data were downloaded from the TR TRRUST database
(https://www.grnpedia.org/trrust/), and the TF regulatory
network data of characteristic genes were obtained. The reg-
ulatory network diagram was drawn using Cytoscape
software.

2.6. Training and Effectiveness Evaluation of Neural
Network. An artificial neural network is an algorithmic
mathematical model that simulates the behavioral character-
istics of animal neural networks and parallel distributed pro-
cesses. It is similar to a biological neuron structure and, like

any neural network processing framework, has an input
layer, an implicit layer, and an output layer. We used the
nnet package in R to train the feedforward back-
propagation neural network. Nnet is an R-package used to
fit a single hidden layer neural network. To facilitate the con-
struction of the MPS model, we selected the number of hid-
den nodes as size = 1. The maximum number of iterations
was set to maxit = 200.

The back-propagation neural network we used is an
important branch of neural networks. The learning of neural
networks depends heavily on back-propagation, and the
back-propagation of error is similar to learning from error.
The errors are corrected by themselves in each iteration until
a convergence point is reached, and the learned weights and
deviations were obtained. The purpose of backpropagation is
to correct the weight of each layer and minimize the overall
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Figure 4: Transcriptional factor regulatory network diagram. The arrows pointed from TF to the target gene. The color of the line was red
for activation, blue for repression, and gray for unknown.
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error of the output layer, both to optimize the overall loss
function L derived as follows:

cos t = L W, B x1, yNð Þjð Þ = 1
N
〠
N

i=1
Li W, B xi, yið Þjð Þ: ð1Þ

Starting from the objective function, the local gradient of
each node (operation) in each layer is solved layer by layer.
According to the following chain rule:

y = f uð Þ, u = f xð Þ,
∂y
∂x

= ∂y
∂u

⋅
∂u
∂x

:
ð2Þ

The partial derivative of the cost function for a neuron in
the whole network from the following derivation:

∂C
∂wj

≈
C w + εej
� �

− C wð Þ
ε

: ð3Þ

The partial derivatives products of the cost function
flowing through all fingers of this parameter are superim-
posed so that the partial derivatives of all parameters can
be obtained by one operation, that is, the gradient of the cost
function. The gradient is transferred layer by layer from back
to front.

2.7. Constructing MPS Molecular Diagnosis Model. Although
the prediction of the neural network model is very good, the
hidden layer and the nonlinear activation functions make

the interpretability of the model low. We deleted the devia-
tion in the model and the weights of some hidden layers
and obtained a linear model on the characteristic genes,
which enhances the interpretability of the model.

3. Results

3.1. HCM Expression Data and Preprocessing. We used
GSE36961, a transcriptomic profiling database from HCM
patients downloaded from GEO as a training dataset.
Another dataset GSE141910, which included transcriptome
profiling from nonfailing donors was used as the verification
set and preprocessed to obtain gene expression data. We
performed data pretreatment as follows: the downloaded
dataset is used as log2-transformed quantity-normalized sig-
nal intensity. First, the probe is mapped to the gene, and the
empty probe is removed. In case multiple probes correspond
to the same gene, we selected the probe with the highest
median and used it to calculate the expression value of that
gene.

3.2. Screening Differential Genes. A total of 642 differentially
expressed genes were identified by comparing the HCM tis-
sue samples and the control tissues from the training dataset
using limma in R as shown in Figure 1. Supplementary
table 1 provides details of the differential genes, where up,
down, and stable in the group column, respectively,
correspond to upregulated and downregulated and
unchanged genes. The heatmap was drawn according to
the expression values of the differential genes.

3.3. Enrichment Analysis. Next, we performed enrichment
analysis on 642 differential genes as described in the “Materials
and Methods” section, using the clusterProfiler package in R.
We performed GO and KEGG analysis on the differential genes
and screened out the top 10 pathways to draw a bubble dia-
gram, as shown in Figure 2. In the KEGG analysis, we found
that feature genes are associated with apoptosis, JAK-STAT sig-
naling pathway, and HIF-1 signaling. Studies have shown that
the formation of pressure-stressed cardiac hypertrophy is
accompanied by apoptosis of cardiomyocytes, resulting in pro-
gressive loss of effective contractile function units-cardiomyo-
cytes, the enhanced compensatory function of viable
cardiomyocytes, and adaptive hypertrophy of cardiomyocytes,
deposition of extracellular matrix, and reactive interstitial fibro-
sis. As the degree of hypertrophy progresses, the increase of
myocardial cell apoptosis further reduces the number of myo-
cardial cells, the overall contractility of the myocardium
decreases, and the increase of fibrosis reduces the compliance
of the left ventricle, and the myocardial contractility cannot
exert its due blood ejection. Therefore, a vicious circle is formed,
resulting in the decompensation of myocardial function and the
occurrence of heart failure. Apoptosis can be seen in the conver-
sion of cardiac hypertrophy to heart failure and plays an impor-
tant role. Therefore, understanding the mechanism and
influencing factors of cardiomyocyte apoptosis is of great signif-
icance for blocking or delaying the occurrence and development
of cardiac hypertrophy. The JAK/STAT pathway is involved in
many important biological processes such as cell proliferation,

Table 2: Feature gene weights.

Gene Weight Gene Weight

ZNF415 -0.3444 MT1X 0.2538

ZFP36 0.4579 MT1M 0.5366

ZDHHC9 0.4951 MT1A 0.4001

TUBA3E 0.2818 MGST1 0.3361

TUBA3D 0.1690 METTL7B 0.4440

TUBA3C 0.1202 MAP3K6 0.3573

TSPYL2 0.7612 LYVE1 0.2352

TKT 0.2494 JAK2 -0.6003

TIPARP 0.2653 IVNS1ABP -0.6081

SORBS2 -0.4329 INPP1 0.5683

SOCS1 0.5096 IFITM2 0.2351

SERPINA3 0.1677 FCN3 0.3213

SAP18 -0.2174 DYRK1B -0.3370

S1PR3 0.2383 DDIT3 -0.5131

S100A9 0.1687 CHRDL2 0.6157

RASD1 0.5417 CHN1 -0.1588

RANGAP1 0.5581 CEBPD 0.1254

PRKCD 0.5690 CDC42EP4 0.6638

PHLDB2 -0.7297 C1R 0.1597

MYH6 0.3718 AP3M2 -0.1000
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differentiation, apoptosis, and immune regulation. However, lit-
tle research has been done on its role in cardiac hypertrophy.
Previous studies have also shown that the HIF-1 signaling path-
way plays a role in cardiac hypertrophy, and the knockdown of
HIF-1α attenuated HIMF-induced cardiomyocyte hypertrophy.

3.4. Selecting Characteristic Genes to Relate to That
Diagnostic Model by Random Decision Forest Screening
with Large Sample Data. We then proceeded to narrow down
the characteristic genes from the differentially expressed genes.
We selected a total of 46 characteristic genes according to step
4 of the “Materials and Methods” (see Supplementary table 2).
We drew the heatmap of the expression levels of these
characteristic genes in the training set and the verification
set, with the abscissa representing the sample and the
ordinate representing the gene, as shown in Figure 3.

3.5. Transcription Factor (TF) Regulation Analysis in
Characteristic Genes. To probe the possible biological func-
tions of the included 46 genes, we constructed TF regulatory
networks. The result shows that myosin heavy chain 6,
MYH6, is one of the core genes in the network. Myosin plays
an important role in the hypertrophic process of the heart as
well as in regulating cardiac function, andmyosin heavy chain,
MYHC, is a key component in the function of myosin. The
expression of its encoding genes,MYH6 andMYH7, is impli-
cated in regulatory processes governing cardiac function and
is also significantly altered in various myocardial diseases. Fur-
ther, both genes have been reported as causative genes for
hypertrophic as well as dilated cardiomyopathy. Although
the twoMYHC types differ widely in their expression in adults,
the ratio can be altered under certain disease conditions indi-
cating that both MYHCs may have roles in the development
and progression of adult myocardial diseases. Therefore, the

study of these two MYHC molecules and their genes, MYH6
andMYH7, will give us further insights into cardiac hypertro-
phy and potentially help us improve the diagnosis and treat-
ment of various other cardiomyopathies (Figure 4).

3.6. Construction of an Artificial Neural Network Model. We
then sought to construct an artificial neural network model
to develop the diagnostic model. We found that six of the
46 genes screened out according to the random decision for-
est algorithm did not exist in the verification set GSE141910.
Therefore, we excluded these six genes from the input vari-
able of the neural network model resulting in 40 genes. It
is a prerequisite to standardize the data before constructing
the neural network model. Hence, we used the standard
deviation method to convert the expression amount to Z
-score, and used it as the model input (Gene_Score).
According to the constructed neural network model,
Gene_Weight of each gene was obtained, as shown in
Table 2.

3.7. Evaluation of Diagnostic Efficiency. The diagnostic
model formula was calculated based on the characteristic
gene and gene_weight, and the receiver-operating character-
istic (ROC) curve was used to evaluate the diagnostic
efficiency.

The product of Gene_Score and Gene_Weight of each
gene was added up to obtain the MPS value of each sample,
as shown in the following formula. The ROC curve was con-
structed based on the MPS value of the samples and whether
they were ill. AUC = 1 may be due to the small sample size
(Figure 5).

MPS = Σ Gene score ∗Gene Weightð Þ: ð4Þ
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Figure 5: Receiver-operating characteristic (ROC) curve of the training set.
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3.8. Verification of the Diagnostic Model. Using the
GSE141910 dataset as the verification set, the disease sam-
ples in the GSE141910 dataset included tissues from dilated
cardiomyopathy (DCM) and peripartum cardiomyopathy
(PPCM) patients in addition to HCM. We selected only
the HCM samples and compared them to the control sam-
ples and calculated the MPS value of each sample based on
the obtained gene_weight and expression value of each gene.
According to the MPS value and the disease status of the
samples, we made the ROC curve (Figure 6), and the area
under the curve (AUC) was calculated to be 0.953.

3.9. Prediction Value for Other Types of Cardiomyopathies.
DCM and PPCM, like HCM, belong to the category of car-
diomyopathy; hence, they might also have similarities in
gene networks associated with them. We also used our
model to assess whether we can predict DCM and PPCM.
Towards this goal, we selected DCM, PPCM, and control
samples from the GSE141910 dataset. As described above,
the MSP value of each sample was calculated based on the
obtained gene_weight and expression value of each gene.
According to the MPS value and sample illness, the ROC
curve was made (Figure 7), and the AUC was found to be
0.868.

4. Discussion

HCM is the most common inherited heart disease character-
ized by asymmetric hypertrophy of ventricular walls, and its
incidence rate is about 1/500 [20]. Although the advances in
diagnosis and treatment in recent years have improved the
prognosis, the annual death rate is still as high as 1%. At
present, hypertrophic cardiomyopathy remains one of the
major causes of sudden cardiac death and heart failure in
young people and athletes, emphasizing the importance of
early identification, especially in high-risk patients [21, 22].
Genetic testing shows its superiority over other diagnostic
methods due to the possibility of early detection and high
specificity. In particular, the advancement of next-
generation sequencing technology has made the detection
of gene signatures rapidly thereby enabling screening of
first-degree relatives, risk stratification, and prognosis judg-
ment. To date, a total of 27 pathogenic genes and more than
1,500 pathogenic mutation sites for hypertrophic cardiomy-
opathy have been found, but no consistent conclusion has
been reached on the relationship between genotype and phe-
notype. The majority of the research focused on one or a few
classes of genes such as the sarcomere gene and ignored the
phenotypic effects of other pathogenic genes, thus biasing
the results [23]. In this study, based on the next-generation
sequencing data of tissue samples from patients suffering
from hypertrophic cardiomyopathy, an artificial neural net-
work and random decision forest method were used to
establish a risk prediction model. The accuracy rate of the
model in the training set is 100% and the accuracy in the test
set was 95.3%. The model accuracy rate and the changing
trend of the loss function value of the training and the test
sets were similar. This indicates that the model established
by the artificial neural networks obtained the generalization

ability through the learning process and can classify the new
data with the same characteristics as the modeling data.

Currently, deep learning is the most widely used
machine learning method in medical research [24, 25].
Due to the huge, complex, and disordered medical data,
the traditional machine learning method is not competent
for developing models based on medical data [26, 27]. In
deep learning, methods such as depth neural network
(DNN) and convolutional neural network (CNN) are gener-
ally used. Unlike the single-layered structure of traditional
computer regression analysis, the neural network is a com-
plex multilayered perception model, which includes three
layers, i.e., an input layer, a simulation neuron layer, and
an output layer. Unlike traditional regression analysis, neu-
ral networks can analyze nonlinear data because of their data
processing ability. As long as appropriate input and output
layers are selected, and a large amount of clinical data are
learned and debugged through the network model, a func-
tional relationship between the input and the output layers
with an association relationship that is infinitely close to
reality can be found [28, 29]. The use of successfully trained
network models has a great role in promoting clinical pre-
diction and treatment.

Conventional clinical diagnosis of HCM is based on
other unexplained left ventricular hypertrophy determined
by ECG or CMRI [30–32]. Despite the prevalence of hyper-
trophic cardiomyopathy, the majority of affected individuals
may still be undiagnosed, and many have not experienced
substantial symptoms or a reduction in life expectancy.
Therefore, the coverage population of clinical diagnosis is
much lower than that of the diseased population. Compared
with traditional disease diagnosis methods, molecular diag-
nostics such as genetic testing has many advantages. Gene

Validation HCM case

Specificity
Se

ns
iti

vi
ty

1.0 0.8 0.6 0.4 0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC: 0.953

Figure 6: Receiver-operating characteristic (ROC) curve of the
validation set.
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testing is a major tool for early diagnosis of HCM that could
potentially prevent poor disease prognosis in contrast; the
current testing methods, in general, could only find the dis-
ease once it manifests as symptoms and could categorize the
disease as early, medium, and so on based on severity. Gene
detection, therefore, has the potential to prevent the progno-
sis of diseases, and in comparison, the traditional physical
examination methods cannot play such a role. Further, the
traditional physical examination is very passive and cumber-
some as many diseases have no obvious early signs or symp-
toms. In addition, in many instances, once the disease
progresses to a certain stage, a lack of medical and surgical
tools could fail to prevent adverse effects leaving the patients
with substantially reduced quality of life and life expectancy.

In this study, for the first time, we put forward a new
model for the diagnosis of hypertrophic cardiomyopathy
utilizing transcriptomic profiling and gene strategies in com-
bination with a random decision forest and artificial neural
networks. Previous studies have mainly focused on the role
of a single gene in the pathogenesis of hypertrophic cardio-
myopathy. Our diagnostic model included the differentially
expressed genes thereby delineating the genetic features of
hypertrophic cardiomyopathy more comprehensively. Our
model could update our understanding of the diagnosis
and treatment of hypertrophic cardiomyopathy significantly.

The limitation of this study is that the number of sam-
ples is small, which could compromise the validity of the
study results. Therefore, in future experiments, expansion
of sample size is required to verify the predictive value of
the model. Also, the age group and ethnicity/race of the
study population could mean that the generalization of the
results needs to be tested in other population groups. Fur-
ther, in the future, the scope of the data collection could be

expanded to test the hypothetic diagnostic model put for-
ward in this paper.

5. Conclusion

In this analysis, we screened out a total of 642 differentially
expressed genes from an RNA seq database of HCM and
normal patient tissues and conducted GO and KEGG analy-
sis on the differentially expressed genes. Furthermore, we
narrowed it down to 46 characteristic genes from the list of
differentially expressed genes using random decision forests
and conducted transcription factor regulation analysis on
the characteristic genes. There were 40 genes with an inter-
section between the training set and the verification set
among the 46 characteristic genes. We used these 40 genes
and trained the artificial neural network and constructed
the final MPS scoring model and drew the ROC curve. Then,
we used the MPS model to predict the verification set and
drew the ROC curve, which validated that the model had
good prediction performance.

In the era of the constant evolution of healthcare and
information technology, several data science and other
information technologies are used to personalize healthcare
and enhance patient interactions. With the rapid develop-
ment of computer science and technology, artificial intelli-
gence (AI) and deep learning technology will continue to
develop and be applied in the field of cardiovascular disease
research. In the future, diagnostic research should involve a
large sample size, multiple centers, and diverse population
demographics of patients with hypertrophic cardiomyopa-
thy. This would allow AI, machine learning, and deep learn-
ing to play a greater role in the diagnosis and treatment of
hypertrophic cardiomyopathy.
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