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Consumption of alcohol (ethanol) in various forms has been an integral part of human civilization. Since ages, it also has been an
important cause of death and health impairment across the globe. Ethanol-mediated liver injury, known as alcoholic liver disease
(ALD), is caused by surplus intake of alcohol. Several studies have proposed the different pathways that may be lead to ALD. One
of the factors that may affect the cytochrome P450 (CYP2E1) metabolic pathway is gut dysbiosis. The gut microbiota produces
various compounds that play an important role in regulating healthy functions of distal organs such as the adipose tissue and
liver. Dysbiosis causes bacteremia, hepatic encephalopathy, and increased intestinal permeability. Recent clinical studies have
found better understanding of the gut and liver axis. Another factor that may affect the ALD pathway is dysfunction of
adipose tissue metabolism. Moreover, dysfunction of adipose tissue leads to ectopic fat deposition within the liver and disturbs
lipid metabolism by increasing lipolysis/decreasing lipogenesis and impaired glucose tolerance of adipose tissue which leads to
ectopic fat deposition within the liver. Adipokine secretion of resistin, leptin, and adiponectin is adversely modified upon
prolonged alcohol consumption. In the combination of these two factors, a proinflammatory state is developed within the
patient leading to the progression of ALD. Thus, the therapeutic approach for treatments and prevention for liver cirrhosis
patients must be focused on the gut-liver-adipose tissue network modification with the use of probiotics, synbiotics, and
prebiotics. This review is aimed at the effect of ethanol on gut and adipose tissue in both rodent and human alcoholic models.

1. Introduction

In 2018, according to World Health Organization (WHO)
global report on alcohol and health, nearly 3 million people
died in the year 2016 due to abuse of alcohol [1]. Alcohol
consumption has been found to be one of the major causes
of organ dysfunction and tissue injury leading to the ALD,
cancer, compromised immune system, pancreatitis, heart
diseases, and disturbance in circadian clock [2]. Although
alcohol is primarily necessary for organ dysfunction, it is
not the only factor causing ALD. Subsequently, other factors
that contribute to the toxicity of alcohol pathology are the
alcohol-induced modifications in the composition and func-
tion of the gastrointestinal tract (GIT) microbiota and func-
tion of adipose tissue.

The GIT contains trillions of microbes with more than
1000 different species; the major groups from the vast phyla
are Firmicutes and Bacteroidetes [3]. There is a symbiotic

relationship between the microbes of the intestine and GIT.
Gut microbiota helps in the extraction of energy and synthe-
sis of amino acids and vitamins from food as well as main-
taining the vital barriers against pathogens and therefore
maintaining the general homeostasis of a healthy human
being. With disturbance in the healthy microbiome of GIT,
the homeostasis might also be affected and prolonged alter-
ation may cause ALD, inflammatory bowel disease (IBD),
type I and II diabetes, and cardiovascular disease [2]. How-
ever, it is not yet evident whether dysbiosis is the cause of
the disease or the outcome of disease.

Chronic alcohol consumption leads to lipolysis and
ectopic fat deposition in the liver which signifies the impor-
tance of function of adipose tissue in progression of ALD
[3]. Function of adipose tissue derived fatty acids and lipid
metabolism is impaired due to chronic alcoholism. More-
over, in long-term exposure to alcohol, lipogenesis is
decreased and lipolysis is increased leading to fat loss [4, 5].
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White adipose tissue (WAT) is an endocrine organ which
releases several adipokines such as adiponectin, leptin, and
resistin which are modulated negatively in ALD [6, 7].
Tumor necrosis factor alpha (TNF-α), Interleukin-6 (IL-6),
and Monocyte chemoattractant protein-1 (MCP-1) are
essential modulators of lipid metabolism and are affected
by chronic alcoholism [8]. Lastly, a proinflammatory state
developed within WAT contributes to lipodystrophy result-
ing in fat deposition in the peripheral organs, which
enhances the pathological state of ALD. Therefore, this
review focuses on the current knowledge of regulation of
gut microbiota composition and adipose tissue in ALD.

2. Gut Microbiota Composition Analyses with
Intake of Alcohol

Due to the vast genetic diversity, it is incredibly difficult for
absolute characterization of microbial communities in the
GIT. Thus, researchers use molecular tools such as RNA,
DNA, and PCR-based target approaches from colonic tissue
biopsies and fecal samples to analyze these complex GIT
communities. A supporting study of four healthy individuals
on microbiota community in the stomach, mouth, duode-
num, colon, and stool showed that the context of GIT and
feces is mostly similar. However, three of four individuals
had reduced number of Bacteroidetes in fecal samples,
resulting in the alteration of the Firmicutes and Bacteroidetes
ratio, which is used as a diagnostic parameter for ALD [9].

An inadequate study has been performed on correlating
the structure and activity of GIT microbiota under the influ-
ence of alcohol as compared to other effects on the body.
Previous studies suggest that C57BL/6 mice that were fed
30.9 g/kg per day of alcohol for 3 weeks have developed
ALD as compared to the control group. The study observed
the bacterial overgrowth in a small intestine and cecum dys-
biosis [10]. In another rat model study, 10-week alcohol
feeding (8 g/kg/day) experiment found the occurrence in
dysbiosis with alcohol induced endotoxemia [11]. These
studies evidently suggested that alteration of microbiota,
intestinal permeability, proinflammatory factors, and endo-
toxemia may potentially contribute to liver pathology or
intestinal dysbiosis [12].

Supporting evidences were also found in humans. A
study of shotgun metagenomic sequencing elucidated that
the sensitive microbial pathways are altered consistently
with the degree of hepatic steatosis in the patients who have
stop drinking alcohol for 2 weeks [13]. A study reported that
minimal hepatic encephalopathy (MHE) and liver cirrhosis
have found overgrowth of aerobic and anaerobic bacteria
in the small intestine using a culture-based method [14].
Another study of sigmoid biopsies from alcoholic and
healthy individuals showed alteration of mucosa associated
microbiota [15]. An in vivo study also suggests the detection
of higher level of endotoxin and bacterial products in the
blood circulation, signifying the hyperpermeability of the
intestinal lumen [16]. Evidential increase in the families of
Prevotellaceae, Enterobacteriaceae, Veillonellaceae, and
Streptococcaceae was observed in the alcoholic cirrhosis
patients as compared to the hepatitis B control group [17].

Another interesting study suggests the microbial community
difference in the alcoholics and alcoholic cirrhotic patients.
Apparently, alcoholic without cirrhosis patients have shown
decrease in Veillonellaceae and Clostridia spp. while alco-
holic with cirrhosis patients have shown an increase in Veil-
lonellaceae, Prevotellaceae, Enterobacteriaceae, and
Fusobacteria which may affect the prognosis of the patient
condition [18]. These differences in finding of bacterial com-
munity between alcoholics and alcoholic cirrhosis may result
in the progression of the liver disease or may act as a bio-
marker for the same. More studies are required to determine
the relationship between the microbiota and liver diseases
under the influence of chronic alcohol.

Alcohol consumed in certain amount can be beneficial
for GIT microbial composition. One such study was per-
formed where red wine (272mL per day), dealcoholized
red wine (272mL per day), or gin (100mL per day) for 20
days was consumed by the patients. Red wine and dealcoho-
lized red wine consumption increased the abundance of ben-
eficial bacteria Bifidobacterium in the GIT. Consumption of
gin increases Clostridium when compared to dealcoholized
red wine drinking which increases Fusobacteria [19]. It has
been evident that consumption of polyphenols is linked with
growth in bacteria which are known to promote healthy eco-
system of GIT. Thus, they can be utilized as dietary supple-
ments to alter the bacterial community in a specific way.
Additionally, regular intake of red wine polyphenols rises
the growth of Bifidobacterium which could be allied as a pre-
biotic effect on gut microbiota [20]. A study on alcoholic
hepatitis patients has shown negative correlation between
liver disease score and Shannon diversity; further relative
abundance of Akkermansia is decreased, and that of Veillo-
nella is increased. Also, antibiotic-treated patients have
shown reduction in Bacteroides and Shannon diversity,
while patients on steroids have increase in Veillonella abun-
dance. It was signified that the modification in the gut
microbiome in alcoholic hepatitis patient is distinct and
can be an attractive target for prevention or treat ALD
[21]. Alcohol altering the gut microbiota or the disturbance
in gut microbiota leading to progression of ALD is yet to
be completely understood and recognized.

3. Overview of the Dysbiosis Linkage in
ALD Progression

The pathological onsets during chronic consumption of
alcohol are gradual, with the change in the gut microbiota
under the persistent influence of alcohol [20]. Studies have
shown that the oxidative stress in the intestinal lumen
caused by alcohol consumption disrupts the tight junction
of the intestine leading to intestinal hyperpermeability [20],
due to which the translocation of gram-negative bacteria
and its products occur through portal vein circulation. Expo-
sure to such endotoxins can cause inflammation in the liver,
which would add to the conjunction effect of direct alcohol
and cause ALD. Overgrowth of bacteria or translocation of
the bacterial products or metabolites may cause infection
and may result in mortality of the ALD cirrhotic patients
[22]. It has also been reported that leaky gut alone did not
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explain increased microbial translocation in patients. Rather,
duodenal dysbiosis with an increase in Streptococcus, Shut-
tleworthia, and Rothia leads to intestinal permeability and
elevated markers of microbial translocation in alcoholic
disorder patients with progressive ALD [23]. A study on
peroxisome proliferator-activated receptors-delta (PPAR δ)
suggests that activation of PPAR δ agonist seladelpar ele-
vates proliferation of epithelial cells in the small intestine
and suppresses macrophage-derived inflammation as a
result of stabilizing gut barrier function and dysbiosis [24].
Gut signifies a vital role in the prognosis of ALD and thera-
peutic approaches.

4. Lactobacillus Used to Modify Gut
Microbiota in Alcoholic Liver Disease

Probiotic and synbiotic intervention may modify the dysbio-
sis caused by ALD. Probiotics are defined as live organisms
that are beneficial to host more than their nutrition value
[25], while synbiotics are combinations of prebiotic (nondi-
gestible fibers) and probiotic that stimulate growth of micro-
biota in the intestine. Lactobacillus rhamnosus GG (LGG) is
one of the most studied probiotic bacterial strains which is
known to be effective for intestinal development and immu-
nity, ameliorate diarrhea, ulceration, colitis, and improved
intestinal barrier function [26, 27].

A study suggested that with the administration of LGG
(2:5 × 107 cfu/mL), oats (10 g/kg) along with alcohol (8 gm/
kg/day) for 10 weeks in SD rats resulted in the prevention
of alcohol associated dysbiosis [9]. Amelioration of intestinal
hyperpermeability and oxidative stress are few of the factors
that altered the progression of alcohol steatohepatitis [28].
Another study also supports the beneficial role of LGG,
where 1mL of LGG along with Lieber-DeCarli Diet, with
and without 5% (w/v) alcohol, was found to decrease the
count of Bacteroidetes but Firmicutes, Proteobacteria, and
Actinobacteria increased considerably [29]. However, LGG
administration did increase the Firmicutes along with Lacto-
bacillus, while other studies have suggested the prevention of
ALD by maintaining the gut permeability, endotoxemia, and
liver injury [30, 31]. Human studies with LGG administra-
tion show that minimal hepatic encephalopathy (MHE)
patients with cirrhosis do have beneficial microbial growth
but do not have increased Lactobacillus or improved cogni-
tive function [14]. The above-mentioned studies can confirm
that use of probiotic or synbiotics can alter the host microbi-
ota in a more beneficial way for the clinical trial. With the
gut dysbiosis, the second hit of alcohol consumption is on
the adipose tissue in ALD.

5. Adipose Tissue Metabolism in the
Presence of Alcohol

The progression of ALD is a multifactorial disease condition.
The above-mentioned facts indicate that prevention is better
than cure as the life expectancy of the patients after clinical
diagnosis of alcoholic steatohepatitis (ASH) is very short
[32, 33]. The known deleterious consequences of alcohol
from hepatic oxidative stress, inflammation, and cell apopto-

sis may not be the only route for the progression of ALD.
Adipose tissue is mainly considered the primary organ for
storage, but the recent advancement has discovered that adi-
pokines have led to considering the white adipose tissue
(WAT) as a major endocrine organ [34–36]. Thus, dysfunc-
tion of adipose tissue might be correlated with the patho-
physiology of many metabolic diseases including alcoholic
liver disease as shown in Figure 1 [37].

Dysfunction of adipose tissue may affect the hepatic
metabolism by adipocyte cell death and inflammation
release of free fatty acids (FFA) [8]. Simultaneously, release
of endotoxin from the compromised gut microbiota in por-
tal circulation may play an important role in mediating
inflammatory responses and liver injury in the presence of
alcohol [38–42]. Thus, the dual hit of inflammation in adi-
pose tissue and leaky gut plays a vital role in the progression
of ALD.

The process of production of FFA and glycerol from the
hydrolysis of triglyceride as an energy source by other tissues
during inflammation is known as lipolysis [43]. These circu-
lating FFA are normally removed by the liver. An in vivo
radio-labeled triglyceride study suggested the increase of
lipolysis in adipose tissue upon intake of chronic ethanol
[37, 44]. Catecholamine like epinephrine and norepineph-
rine stimulation via B adrenergic receptor is a potential acti-
vator for lipolysis upon intake of alcohol [45]. Lipolysis is
also activated by fibroblast growth factor 21 (FGF21) to
reduce accumulation of lipid via peroxisome proliferator-
activated receptor gamma (PPARγ) and CCAT-enhancer-
binding protein (C/EBP). WAT is mainly responsible for
the secretion of FGF21 as energy responsive adipokines in
the presence of glucose metabolism in the adipose tissue [44].

To support the role of FGF21, a deficiency of FGF21
upon intake of chronic-binge alcohol resulted in the increase
of plasma and eWAT FGF21 expression, and increase in
lipolysis was prevented [45]. A contradicting study in
FGF21 knockout mice indicated the decrease in plasma cat-
echolamine concentration and eWAT mass [43]. The role of
FGF21 as a metabolic regulator upon alcohol intoxication
requires further investigation. In contrast to lipolysis, the
process of energy storage is known as lipogenesis, while
effects of alcohol on lipolytic surpass its lipogenic effects.

Alcohol does alter the lipogenic pathway. After chronic
ethanol consumption, PPARγ decreased in WAT, which is
known as a prominent lipogenic stimulant [46–48]. The
mitogen-activated protein kinase (MAPK) pathway regu-
lates PPARγ. Thus, the partial suppression of MAPK helps
to restore levels of PPARγ [49]. The effect of chronic alcohol
intake on modulators of lipid metabolism relies on the
in vivo vs. in vitro model system. Finally, in vivo administra-
tion of labeled triglyceride into chronic ethanol fed rats did
not indicate any significant difference in the synthesis of
triglyceride [37], since early changes developed by alcohol
intake give insight into the initiation of long-term effects
induced by lipodystrophy.

Adipose tissue also contains visceral adipose tissue
(VAT) which is also affected upon intake of alcohol. In
one of the studies, the possible mechanism upon alcohol
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induction suggested that increase in VAT and hypertrophic
adipocytes leads to hypoxia which induces factor-1A (HIF-
1A) and GLUT1 activation resulting in inflammation of
the adipocytes and secretion of inflammatory adipokines
such as leptin, TNF-α, and IL-6, which are vital for the prog-
nosis of ALD [50, 51].

Binge or chronic alcohol consumption affects the body
as a whole. The immunomodulatory response to the alcohol
affects antimicrobial defense and inflammatory responses
which results in the prognosis of the disease. Immunometa-
bolism between adipose tissue and systemic metabolism
plays a significant role in impairing the insulin uptake [49].
Mechanisms of homeostasis of immune cell-mediated meta-
bolic responses in adipose tissue in ALD are not known.
Another study in the rat model suggested mesenteric lym-
phatic leak, presence of dendritic cells and Treg into perilym-
phatic adipose tissue, decreased CD4/CD8 ratio in the
mesenteric lymph node, and decreased glucose uptake by
perilymphatic adipose tissue indicating possible dysregula-
tion of immunometabolism [52].

It is well established that ethanol consumption increases
reactive oxygen species (ROS) in a central mechanism,
which induces vascular toxicity [53–55]. Acute ethanol con-
sumption is also linked with cardiovascular events [56]. The
enzyme NADPH oxidase produces ROS in both vascular
and endothelial muscle cells [57]. In the vasculature, acute
ethanol intake activates NAD(P)H oxidase which further
leads to elevation of O2

– and lipoperoxidation [55, 58].
Vascular composition such as perivascular adipose tissue

(PVAT) is a vital modulator of various agonists in vascular
contraction of blood vessels [59, 60]. Thus, PVAT functions

as a paracrine modulator for secreting adipocyte-derived
relaxing factors (ADRF), which are still not completely char-
acterized [61]. PVAT regulates vasoconstriction through
ADRF and can also contract perivascular nerve stimulation
as it comprises reactive oxygen species and superoxide anion
[62]. In a study of acute ethanol exposure in rats, the obser-
vation suggested that PVAT protects against vascular dys-
function through increased production of H2O2 [56]. This
can be a possible new mechanism of deposition of VAT
resulting in hypoxia and inflammation within the tissue.

The specific immune response that drives the dysfunc-
tion of adipose tissue is not known. Another possible mech-
anism is the role of toll-like receptor 4 (TLR4) in adipocyte
metabolism. Due to deposition of lipids in hepatocytes, the
adipose tissue is the second organ being affected in pathogen-
esis of ALD. Several chronic alcoholic studies reported that
PPARγ, CYP2E1, Bid, and C1q are potential mediators for
the inflammation in adipose tissue [63–65]. Simultaneously,
anti-inflammatory adipokines are decreased in adipose tissue
[66]. This phenomenon will trigger the inflammatory state in
adipose tissue resulting in metabolic dysfunction of both the
adipose tissue and liver [49]. A previous study suggests that
in the absence of TLR 4 knocked out, TLR 2 and 9 are
involved in the inflammation in adipose tissue [49, 67].
TLR4 expression in a nonmyeloid cell type can switch M1
macrophage phenotype. While in myeloid cells, dendritic cell
accumulation is absent when TLR4 is deleted in the presence
of alcohol. Accumulation of neutrophil and depletion of
CD8+ T-cell are not dependent on TLR4. These conclusions
help determine a role of adipose tissue inflammation in
ALD [68].
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Figure 1: Effect of ethanol on adipose tissue contributing to the advancement of alcoholic liver disease condition.
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6. Role of CYP2E1 in Adipose Tissue and Innate
Immunity in ALD

Ethanol is metabolized by CYP2E1 leading to oxidative and
endoplasmic stress, which alters adipokine regulation leading
to prognosis of ALD. 4-Hydroxynonenal, an indicator of oxi-
dative stress, was identified in the adipose tissue upon
chronic ethanol feeding [44, 69]. Progression of inflamma-
tion in adipose tissue is co-related with the increase of etha-
nol induced CYP2E1 expression via triggering redox-
sensitive transcription factors that leads to increase in ROS
production. Moreover, amplified CYP2E1 expression also
leads to activation of C1q-dependent complement system
and apoptosis facilitated by Bid causing a secondary CYP2E1
facilitated inflammatory response [70]. Simultaneously,
levels of macrophage migration inhibitory factor (MIF) and
inflammatory cytokines are amplified in alcoholic cirrhosis
patients, though the exact mechanism of MIF increase is
unknown [71–73]. Disruption of adipokine release from adi-
pose tissue and increase in filtration of macrophages upon
intake of alcohol is well known [74, 75]. This results in alter-
ation of adipose tissue accredited to oxidative stress induced
by alcohol metabolism [7]. A study indicated that upon
chronic alcohol exposure, increased proinflammatory cyto-
kines not only modify the metabolism of adipose tissue but
also deregulate adipokine regulation [76].

7. Adipokine Regulation upon
Alcohol Induction

More than 600 adipokines are secreted from the WAT endo-
crine organ, which regulates the metabolism of multiple tis-
sues [67]. Among several adipokines, leptin and adiponectin
are the major ones which affect the liver.

7.1. Adiponectin. It is an adipokine, i.e., anti-inflammatory
with insulin sensitizing and adipogenic effects via alteration
of AMPK pathway which affects glucose metabolism and
fatty acid oxidation in tissues.

The center for ectopic fat storage and lipid storage is
through adiponectin. The majority of animal investigations
on prolonged alcohol intake show a drop in circulating adi-
ponectin [39, 48, 49, 77–82]. One contradicting study has
suggested that the decrease in adiponectin in chronic
drinkers (>50 g/day) had no correlation between levels of
adiponectin and alcohol intake [83]. Results of adiponectin
response in rodents and humans upon alcohol consumption
are listed in Table 1. The result discrepancy of/in rodents
shows decrease in adiponectin, while in humans’ lower doses
of alcohol increased adiponectin is species-specific response.
A definitive explanation for such a response has not been
elucidated.

Potential mechanisms for the decrease of adiponectin in
rodents have been identified. In an in vitro rat study, VAT
cells upon exposure to alcohol MAPK pathway and PPARγ
pathway were activated resulting in the decrease of adipo-
nectin secretion [49]. Also, alcohol-treated animals contrib-
ute to the impairment of cellular stress and decrease of
adiponectin. Alcohol feeding for four days leads to upregula-

tion of CYP2E1 and induction of oxidative stress, including
increase of 4-hydroxynonenol (4-HNE) accumulation and a
decrease glutathione (GSH/GSSG) ratio [7, 77]. Another
investigation presented that intake of 4 weeks of alcohol
elevated CHOP mRNA in eWAT and decreased adiponectin
[84]. This correlation of ER stress and CHOP may be due to
alcohol-induced increase in homocysteine levels, a decline in
methylation of S-adenosylmethionine (SAM)/S-adenosylho-
mocysteine (SAH) ratio and the enzyme cystathionine β-
synthase, which is important for the conversion of homocys-
teine to cysteine in eWAT.

7.2. Leptin. Intake of food, energy expenditure, lipolysis,
lipogenesis, and fatty acid oxidation are the processes which
are regulated by leptin. Since receptors of leptin are present
all over the body, it has both paracrine and autocrine func-
tions. Lipid deposition in the liver can be inhibited by activa-
tion of β-oxidation of fatty acids by leptin hormone [85].
Circulating leptins are correlated with the alteration in fat
mass more than the presence of alcohol. There are contra-
dicting reports on chronic alcohol uptake in rodent models;
a few suggested increase in leptin [84, 86, 87] while decrease
in leptin is also reported [88, 89] and one study observed no
change [84]. Therefore, considering the conflicting findings,
no clear pattern or consistencies are derived.

In human studies, serum leptin concentration is not cor-
related with alcohol intake [90–95]; however, there are few
studies which demonstrated conversely [96, 97]. The study
reported that the fat mass is directly correlated with the
serum leptin levels in alcoholics [96].

Increased leptin protein [75] and mRNA [97–99] within
adipose tissue of chronic alcohol-fed rats and mice were
observed, while in subcutaneous adipose tissue of alcoholic
patients, leptin mRNA remains unaffected. Taking together
the above findings, it has been concluded that serum leptin
level decreases after administration of ethanol under leptin
suppression by adipose tissue into the systemic circula-
tion [100].

7.3. Resistin. Adiponectin can be suppressed by resistin and
stimulate lipolysis to initiate the release of glycerol and fatty
acids in blood circulation [101], while in rodent’s chronic
alcohol increases serum resistin [102]. Similar results were
observed in men, the absentia of alcohol for 7 days did not
normalize the level of resistin, while alcoholics had little
effect in women [103]. In adipose tissue, resistin mRNA
expression in rats did not differ, while protein content was
increased upon 4 weeks of alcohol induction [102, 104].
Resistin in VAT is increased with 22 weeks of high alcohol
feeding (5 g/kg/day), while with lower dose (0.5 and 2.5/g/
kg/day) did not alter the resistin level [99]. However, with
data being limited, it can be concluded that chronic alcohol
is required to raise serum and adipose tissue resistin.

7.4. Chemerin and Visfatin. Chemerin is not known for adi-
pokine, but it has important paracrine and autocrine func-
tions in controlling the differentiation and adipogenesis of
adipocyte [105]. In studies of the chronic alcohol model of
humans and rats, elevation of levels of chemerin is observed
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in both serum and VAT [106]. In men, levels of chemerin
are positively correlated with BMI, body fat levels, and tri-
glycerides [106].

Visfatin is associated with adipose tissue glucose metabo-
lism. A study on rats determines a dose-dependent associa-
tion with alcohol and expression of visfatin levels in serum
and VAT [84]. A regular dose of 5 g/kg/day was required to
elevate the plasma visfatin concentrations, while a lower dose
of 2.5 g/kg/day did not modify visfatin levels in rat serum
[107], though the same constant dose for 3 days did decline
the plasma peptide levels [108].

Accumulated evidence supports a chronic alcohol effect
on the foremost adipokines, i.e., leptin and adiponectin.
Conversely, these effects are not coherent while comparing

rodents and humans. The alcohol stimulated modification
in adipokine response in various models is presented in
Table 1.

A possible treatment strategy to modify gut-adipose
tissue-liver axis by the ingestion of probiotic and synbiotic
leading to the restoration of gut microbiota is represented
in Figure 2.

8. Conclusion

Chronic alcohol consumption leads to intestinal dysbiosis
in rodents as well as in humans’ studies. Altering intesti-
nal barrier function, gut leakiness, triggering proinflam-
matory cytokines, and pathogenic microbial products

Table 1: Adipokine response to consumption of alcohol in rodents and humans.

Model Effect of alcohol consumption Reference

Rodent

Decrease in circulating adiponectin [77]

Decrease in adiponectin and cartonectin levels [82, 86, 89, 109–112]

Increase in leptin, resistin, IL-6, visfatin, chemerin, TNF-a, MCP-1, and RBP-4 [70, 83, 111, 113, 114]

Decrease leptin [88, 89]

Unchanged leptin levels [99]

Increase resistin, chemerin, and visfatin [102, 104, 106]

Increase in triglyceride gradation and insulin resistance [115, 116]

Human

Increase plasma adiponectin in chronic alcohol model [117–119]

Decrease plasma leptin in plasma chronic alcohol model [97, 120, 121]

Increase in leptin, resistin, and chemerin [99, 103, 106]

Unchanged leptin and resistin [90–95, 103]

Increase in adiponectin, resistin, ghrelin, TNF-alpha, and IL-6 [43, 48, 70, 78, 122–126]

Decrease in acylation of stimulating protein [127]

Glucose intolerance [97, 128, 129]

Adipose Tissue

Lipogenesis

Gram Negative Bacteria
Enterobacteriaceae
Streptococcaeae
Prevotellaceace
Fusobacteria

Gram Negative Bacteria
Enterobacteriaceae
Streptococcaeae
Prevotellaceace
Fusobacteria

Gram Positive Bacteria
Firmicutes
Lactobacillus
BifidoBacterium

Gram Positive Bacteria
Firmicutes
Lactobacillus
BifidoBacterium

Gut Microbiota Dysbiosis

Lipolysis
Resistin

Alcoholic Liver

Healthy Liver

Probiotic /
Synbiotic

Gut Microbiota Restoration
Leptin
Inflammation

Adiponectin

Glucose uptake
PPARγ

Figure 2: Possible treatment strategy to modify gut-adipose tissue-liver axis by the ingestion of probiotic and symbiotic leading to the
restoration of gut microbiota.
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lead to endotoxemia which causes liver injury as well as adi-
pose tissue dysfunction. Metabolic changes in adipocytes lead
to an impaired lipolysis, glucose metabolism, TLR4 activa-
tion, and adipokine secretion leading to the inflammatory
environment. These cascades of adipokines are not exclusive
to adipose tissue as it affects hepatic steatosis as well as other
tissues all over the body. Till date, research implies that prog-
nosis of ALD can be reduced or prevented by improving the
function of adipose tissue and gut. Although considerable
development has been made in understanding the adipose
tissue metabolism in the presence of alcohol, the exact essen-
tial molecular mechanisms connecting adipose tissue injury
and development of liver disease upon alcohol ingestion need
to be elucidated. Adipokines play a vital role in ALD and
drug targeting adipokine, and gut pathways needs to be
established and tested for prevention and amelioration of
ALD. Therapeutic innervations such as probiotics, prebiotics,
synbiotics, or polyphenols may alleviate intestinal microbiota
composition with better understanding of the intestinal
microbiota homeostasis which may be helpful in preventing
the prognosis of ALD.
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