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Allergic rhinitis and asthma are common airway allergic diseases, the incidence of which has increased annually in recent years.
The human body is frequently exposed to allergens and environmental irritants that trigger immune and inflammatory responses,
resulting in altered gene expression. Mounting evidence suggested that epigenetic alterations were strongly associated with the
progression and severity of allergic diseases. Noncoding RNAs (ncRNAs) are a class of transcribed RNA molecules that cannot
be translated into polypeptides and consist of three major categories, microRNAs (miRNAs), long noncoding RNAs
(lncRNAs), and circular RNAs (circRNAs). Previous studies showed that ncRNAs were involved in the physiopathological
mechanisms of airway allergic diseases and contributed to their occurrence and development. This article reviews the current
state of understanding of the role of noncoding RNAs in airway allergic diseases, highlights the limitations of recent studies,
and outlines the prospects for further research to facilitate the clinical translation of noncoding RNAs as therapeutic targets
and biomarkers.

1. Introduction

Airway allergic diseases, mainly asthma (AS) and allergic
rhinitis (AR) are a group of chronic inflammatory diseases.
Airway allergic diseases’ main pathological features are the
inflammatory response of the airway mucosa and airway tis-
sue remodeling when individuals are exposed to airborne
allergens, resulting in the involvement of multiple immune
cells and the release of inflammatory mediators [1–3]. In
recent years, the prevalence of allergic diseases has increased
globally yearly, with the intensification of environmental
pollution, which seriously adversely affects people’s quality
of life and learning [4, 5]. The occurrence of AS and AR
results from a combination of factors, including individual

differences, genetic inheritance, environmental exposure,
and growth and development, all of which may be closely
related to the onset of the disease. The key pathological fea-
tures of both AS and AR, as heterogeneous chronic airway
diseases, are recurrent inflammation, airway hyperrespon-
siveness, mucus hypersecretion, and reversible airway
obstruction induced by the inflammatory cellular response
[6–9].

Researchers agreed that abnormal activation and func-
tion of intrinsic immune cells and adaptive immune cells
(T helper 2 (Th2) cells) play an extremely critical role in
the pathogenesis of airway allergic diseases [10–12]. Prior
publication suggested that Th2 cells in the airway epithelium
could produce various type 2 cytokines (IL-4, IL-5, and IL-
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13), which in turn promote eosinophil recruitment, while
these cytokines play a key role in airway epithelial cell activa-
tion, chemoattraction of effector cells, regulation of airway
smooth muscle, and remodeling of the epithelial matrix
[13, 14]. In addition, the balance between Th17 cells and T
regulatory cell (Tregs) cells is similarly thought to be associ-
ated with developing airway allergic diseases [15, 16]. Thus,
tapping into the regulatory mechanisms of innate and adap-
tive immune cells from different perspectives is currently a
hot spot and frontier in airway allergic disease research
[17, 18] (Figure 1).

Th0 cell, T helper 0 cell; Th1 cell, T helper 1 cell; Th2
cell, T helper 2 cell; Treg cell, T regulatory cell; Th17 cell,
T helper 17 cell; IL-4, Interleukin-4; IL-5, Interleukin-5; IL-
13, Interleukin-13; IL-10, Interleukin-10; IL-12,
Interleukin-12; IL-17A, Interleukin-17A; IFN-γ, Interferon-
gamma; TGF-β, Transforming growth factor-beta.

In recent years, noncoding RNAs (ncRNAs), mainly
miRNA, lncRNA, and circRNA, have been found to have a
significant relationship with the occurrence and develop-
ment of airway allergic diseases. [19, 20] Therefore, a deeper
exploration of the role of ncRNAs in airway degeneration
and related regulatory mechanisms is expected to provide
new directions for the investigation of biomarkers for diag-
nosis, treatment, and prediction of disease prognosis. This
review summarizes the role of ncRNAs in airway allergic dis-
eases and investigates their regulatory mechanisms on T
cells and their effects on downstream cytokines to better
understand the pathogenesis of airway allergic diseases.
(Figure 2).

ncRNA, noncoding RNA; miRNA, microRNA; lncRNA,
long noncoding RNA; circRNA, circular RNA; Th1 cell, T
helper 1 cell; Th2 cell, T helper 2 cell; Treg cell, T regulatory
cell; Th17 cell, T helper 17 cell.

2. ncRNA and AS

2.1. miRNA and AS. Increasing attention has been paid to
the linkage of epigenetic modifications in AS pathology
and a series of results have been obtained. miRNAs, consist-
ing of 22-24 single-stranded nucleotides, are an essential
component of epigenetic regulation with crucial regulatory
roles in immune cells [21, 22]. miRNA functions primarily
as a repressor of gene expression at the posttranscriptional
level by binding to complementary sequences in the target
mRNA and without altering the genomic sequence
[22–26]. Previous studies confirmed that miRNAs play an
essential role in allergic diseases by influencing Th1/Th2
polarization and Tregs cell/Th17 cell imbalance, promoting
epithelial chronic inflammation and tissue remodeling, and
activating intrinsic immune cells [11, 27, 28]. Recently,
researchers screened and validated various miRNAs that
affected the development of AS by regulating immune cell
function and promoting the release of inflammatory media-
tors [29–31]. Mattes et al. [32] reported that airway hyperac-
tivity and inflammation might be reduced by inhibiting
miR-126 expression, which could affect CD4+ T cell differ-
entiation towards Th2 and the release of inflammatory cyto-
kines. As important inflammatory factors, interleukin-33

(IL-33) and IL-13 could activate Th2 cells, mast cells, den-
dritic cells, eosinophils, and basophils, which promote the
development of AS disease [33, 34]. Thus, screening for
miRNAs can bind to IL-33 or IL-13 mRNA, which inhibit
the expression of IL-33 or IL-13, and further exploring the
potential regulatory mechanisms would help alleviate the
disease progression of AS. A recent study found that miR-
200b and miR-200c were downregulated in alveolar lavage
fluid-derived cells from AS patients and demonstrated their
ability to bind to the 3′ nontranscribed region (UTR) of IL-
33 mRNA and thus affect the expression level of IL-33 by
in vitro and in vivo experiments [35]. In addition, the
miRNA-let-7a family was shown to target the IL-13 mRNA,
resulting in lower levels of IL-13 and alleviating airway
inflammation [36]. Notably, matrix metallopeptidase-16
(MMP-16) can play an essential role in tissue remodeling
and airway inflammation by activating proMMP-2
[37–40]. Lou et al. [41] showed that miR-192-5p plays an
inhibitory role in airway remodeling and autophagy reduc-
tion in asthma patients by targeting MMP-16 and
autophagy-related protein 7 (ATG7). In addition, phospha-
tase and tensin homolog (PTEN), and MAPK/STAT1 path-
way are critical regulatory pathways in allergic diseases [42].
It was shown that overexpression of miR-19a in the airway
enhanced Th2 cytokine production and reduced miR-19a
levels in airway smooth muscle cells, which could promote
airway remodeling by directly targeting PTEN and MAPK/
STAT1 signaling pathways [43, 44]. Besides, a study by
Zhang and colleagues [45] found that decreasing miR-221-
3p expression in epithelial cells could reduce inflammation
by upregulating anti-inflammatory chemokine ligand 17
(CXCL17), which in turn inhibited the expression of chemo-
kine c-c motif ligand 24 (CCL24), CCL26 and osteochondral
proteins because these cytokines act as a key role in the
recruitment of eosinophils and macrophages to the airway
[45–48]. Recently, there were also findings that miRNAs
transported by extracellular vesicles of serum and immune
cell origin could mediate intercellular communication and
play a significant role in the development of AS by regulating
immune cells [49–51]. Li et al. [52] found that macrophage-
derived exosome transporting miR-21-5p could promote
epithelial-mesenchymal transition of airway mucosal epithe-
lial cells by targeting Smad7, consequently exacerbating air-
way inflammation and airway stenosis. In another study,
researchers found that adipose mesenchymal stem cell-
derived exosomal delivery miR-301a-3p targets the STAT3
pathway to regulate the involvement of airway smooth mus-
cle cells in the disease development of AS. [53] Based on the
above findings, miRNAs may be involved in the develop-
ment and progression of AS by affecting intrinsic and adap-
tive immune functions and regulating the release of various
inflammatory mediators and activating signaling pathways.
These specific miRNAs may be used as therapeutic targets
for AS. Additional miRNAs associated with AS are described
in detail in Table 1.

2.2. lncRNA and AS. lncRNAs are composed of more than
200 nucleotides with tissue and cellular specificity, and their
functions include epigenetic regulation and induction of
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immune cell differentiation [22]. lncRNAs could facilitate or
attenuate the translation of target mRNAs and even alter the
stability of mRNAs and proteins through three main path-
ways: (1) acting as regulators of genomic transcription in
the nucleus; (2) participating in posttranscriptional regula-
tion in the cytoplasm; (3) secreting exosomes or other means
to the outside of the cell and participating in cross-cellular
talks [54–59]. lncRNAs were proven to play an integral role
in the pathogenesis of AS by regulating the differentiation
and apoptosis of hematopoietic stem cells, bone marrow
cells, and the activation of monocytes, macrophages, and
dendritic cells in immune regulation [60]. Previous studies
demonstrated that lncRNAs could unlock the binding of
miRNAs to the 3′ UTR of target genes by binding miRNAs
as molecular sponges and then regulating the mRNA tran-
scription of target genes in immune cells, ultimately affecting
the release of inflammatory mediators and immune response
[61]. Qiu et al. [62] found that lncRNA-MEG3 could act as
competitive endogenous RNA to regulate the Tregs/Th17
balance in asthma patients by targeting miRNA-17, which
could contribute to Th17 cell differentiation and affect dis-
ease progression. Additionally, Liang and Tang [63] found
that lncRNA-MALAT1 could compete with miRNA-155
and subsequently alter the Th1/Th2 balance within CD4+

T cells, impacting Th2 cytokine levels and the development
of asthma. The nuclear factor-κB (NF-κB) signaling path-
way, an essential signaling regulatory pathway, affects the
transcription of proinflammatory cytokines such as interleu-

kin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and
interleukin-6 (IL-6), all of which are closely associated with
the development of AS [64, 65]. Moreover, increasing num-
bers of investigators are finding that multiple lncRNAs can
be used as objective biomarkers for AS diagnosis, disease
severity and prognosis assessment. Feng et al. [66] found
that lncRNA-MEG3 was highly expressed in the serum of
AS patients, and its elevated levels were correlated with the
different inflammatory types and courses of AS. Xu et al.
[67] found that lncRNA PCGEM1 could enhance the anti-
inflammatory and respiratory protective effects of montelu-
kast sodium in children with cough variant AS by blocking
the activation of the NF-κB signaling pathway. In another
study, significant variability in lncRNA expression profiles
was found, and lncPVT1 was tested as a predictor of the
occurrence of airway remodeling in AS patients by collecting
smooth muscle cells of airway origin from AS patients and
normal controls for transcriptome sequencing [68]. A recent
study found that the lncRNA-ANRIL/miR-125a axis was
upregulated and positively correlated with disease severity
in plasma samples collected from patients of varying sever-
ity, healthy subjects, and patients with worsening bronchial
AS [69]. In another study, lncRNA GAS5 was identified as
a potential biomarker for the early diagnosis of severe AS
[70]. These studies suggested that lncRNAs were not only
involved in the development of AS but that their expression
levels could be closely related to the clinical severity of the
disease. Importantly, exosome-carried lncRNAs have also
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Figure 1: The interaction between innate and adaptive cells and type 2 inflammatory mediators underlies the pathophysiology of airway
allergic disease. Disruption of the epithelium allows infiltration of viruses, bacteria, or allergens, activating innate and adaptive immune
responses. Antigen presentation by dendritic cells activates the differentiation of naive T-helper cells (Th0 cell) to Th2 and Th17 cells
and attenuates the differentiation to Th1 and Treg cells, immediately followed by the release of cytokines from Th2 and Th17 cells,
leading to eosinophil recruitment, migration, and IgE production, and ultimately to the development of airway remodeling.

3Mediators of Inflammation



been shown to be involved in the development of AS [71,
72]. Zhang et al. [73] found that activated neutrophil-
derived exosomes transporting the lncRNA CRNDE effec-
tively promote differentiation and migration of airway
smooth muscle cells, which were closely associated with dis-
ease progression and airway remodeling in AS. Other
lncRNAs associated with AS disease are detailed in
Table 1. Therefore, it is expected that new ideas for the pre-
cise treatment of AS can be provided by targeting and regu-
lating specific lncRNAs and downstream signaling pathways,
and the related molecular mechanisms are yet to be further
explored in-depth.

2.3. circRNA and AS. CircRNA is a newly discovered endog-
enously expressed ncRNA characterized by a loop structure
without 5′-3′ polarity and a polyphyletic acid tail [74–76].

CircRNA has been shown to be involved in pathophysiologi-
cal processes in various diseases, such as diabetes, cardiovas-
cular diseases, neurological diseases, and tumors [77–81],
and can similarly act as miRNA sponges to regulate gene
expression [82, 83]. Several studies have found that cir-
cRNAs could be involved in developing AS by regulating
innate and adaptive immune responses in recent years [22,
84]. A recent study found that hsa_circ_0005519 could reg-
ulate the expression of IL-6 and IL-13 in CD4+ T cells by tar-
geting hsa-let-7a-5p, which influenced the development of
AS [82]. In another study, circHIPK3 was shown to influ-
ence the pathological process of AS by regulating the miR-
326/STIM1 axis regulating the proliferation of airway
smooth muscle cells [85]. In particular, circRNA levels were
found to be a potential objective assessment marker for diag-
nosing AS and disease severity [86]. Huang et al. [86] found
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Figure 2: ncRNA regulates the mechanism of CD4+ T cell differentiation. ncRNA affects miRNA level via molecular sponge action, which
can influence CD4+ T cell differentiation by binding to mRNA encoding CD4+ T cell genes, resulting in an imbalance between Th1 and Th2,
Th17 and Treg. Thereby, exacerbating or reducing airway remodeling, inflammatory mediators release, and inflammatory responses.
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Table 1: The expression and mechanisms of ncRNAs in asthma.

ncRNA Expression level Signaling pathways or targets Function

miRNA-1248 Upregulation Unknown Elevate Th2 cytokine levels [87]

miRNA-126 Upregulation DNMT1 Promote inflammation [88]

miRNA-21 Upregulation PI3K/Akt, IL13Rα1, STAT6
Modulate ASMCs proliferation, migration, and modulate IL-12

[89, 90]

miRNA-21 Upregulation STAT4 Decrease IL-12 levels [90]

miRNA-98 Upregulation Unknown Suppress the expression of TSP1 [91]

miRNA-155 Upregulation PGE2 Enhance COX2 expression [92]

miR-371 miR-138
miR-544 miR-145
miR-214

Upregulation Runx3 Balance Th1/Th2 [93]

miRNA-16 Upregulation ADRB2 Predictive biomarker of therapeutic response [94]

miRNA-146a-5p Upregulation 5-LO Attenuate inflammation [95]

miRNA-30a Upregulation ATG5 Decrease inflammation [96]

miRNA-126 Downregulation GATA3 Diminish Th2 response [32]

miRNA-200 Downregulation Unknown Inhibit IL-33 levels [35]

miRNA-let-7a Upregulation Unknown Decrease IL-33 levels [36]

miR-192-5p Upregulation MMP-16, ATG7 Enhance airway remodeling and autophagy [41]

miR-19a Upregulation PTEN, MAPK/STAT1 Enhance airway remodeling and Th2 [43, 44]

miR-221-3p Upregulation CXCL17 Aggravate inflammation [45]

miRNA-221 Downregulation Unknown Reduce airway inflammation [97]

miR-142-3p Downregulation WNT Regulate proliferation and differentiation of ASMCs [98]

miRNA-34a Downregulation FoxP3 Attenuate inflammation [99]

miRNA-410 Downregulation Unknown Decrease IL-4/IL13levels [100]

miR-218-5p Downregulation CTNND2 Suppress chemokine expression [101]

miRNA-192 Downregulation CXCR5 Suppresses T helper cell [102]

miRNA-485 Downregulation TGF-β/Smads Decrease smurf2 levels [103]

miR-21-5p Downregulation Smad7 Promote epithelial-mesenchymal transition [52]

miR-301a-3p Downregulation STAT3 Activate smooth muscle cells [53]

lncRNA-MEG3 Upregulation miRNA-17/ RORγt Regulate Treg/Th17 balance [62]

lncRNA-
MALAT1

Upregulation miRNA-155 Promote Th2 inflammation [63]

lncRNA
PCGEM1

Upregulation NF-κB Ameliorate inflammation [67]

lncRNA CRNDE Upregulation Unknown Enhance airway remodeling [73]

lncRNA-BAZ2B Upregulation Unknown Promote M2 macrophage activation [104]

lncRNA-000127 Upregulation Unknown Promote Th2 inflammation [105]

lncRNA-TCF7 Upregulation TIMMDC1/Akt Promote the growth and migration of ASMCs [106]

lncRNA-PVT1 Upregulation
miRNA-149, miR-15a-5p, miR-

29c-3p
Exacerbate inflammation and impact Th1/Th2 imbalance [107,

108]

lncRNA-PVT1 Upregulation miR-590-5p/FSTL1 Attenuate airway remodeling [68, 109]

lncRNA-ANRIL Upregulation miRNA-125a Exacerbate severity and inflammation [69]

lncRNA-Malat1 Upregulation miR-150-eIF4E/Akt Exacerbate inflammation [110]

lncRNA-NEAT1 Upregulation microRNA-124 Increase inflammation [111]

lncRNA- n337374 Upregulation CD86 and ERK Ameliorate inflammation [112]

lncRNA-
BCYRN1

Upregulation Receptor potential 1 Promote inflammation [113]

lncRNA-TUG1 Upregulation microRNA181b/HMGB1 Promote inflammation [114, 115]

lncRNA- LASI Upregulation MUC5AC Promote inflammation [115]

lncRNA-H19 Downregulation
PI3K/Akt/NF-kB, miR21/PTEN/

Akt
Attenuate inflammation [116, 117]
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that upregulation of hsa_circ_0002594 was positively corre-
lated with exhaled nitric oxide levels, and its expression was
positively correlated with the patient’s family history, posi-
tive skin prick test (SPT), and Th2 cytokine expression
levels. To date, only a few circRNA mechanisms of action
in AS have been initially explored (Table 1), and there are
no studies on the expression profile and mechanisms of
exosomal-derived circRNAs in pathological specimens from
AS patients.

3. ncRNA and AR

3.1. miRNA and AR. Although some scholars have observed
some similarities between AR and AS in terms of disease
onset and immune response and proposed the concept of
“one airway, one disease”, significant differences still exist
in the pathological mechanisms and targets of intervention
between the two diseases. Moreover, differentially expressed
miRNAs could be involved in the development of AR by
affecting the function of innate and adaptive immune cells
and the level of inflammatory mediators [124–126]. A previ-
ous study found that modulation of miRNA-let-7e and miR-
let-7 overlap could effectively regulate the expression levels
of various inflammatory factors in AR mouse models and
nasal mucosal epithelial cell models [36, 127]. In addition,
Gao and Yu [128] found that miRNA-16 inhibited IL-13-
induced inflammatory cytokine secretion and mucus pro-
duction in nasal epithelial cells by suppressing the IκB kinase
β/NF-κB pathway, which could promote Th2 cell differenti-
ation. Recent studies have identified multiple miRNAs that
could be involved in PM2.5-induced AR inflammation by
inhibiting autophagy and regulating the AKT/mTOR path-
way, which could prompt Treg/Th17 cell imbalance [124,
125]. In addition, various miRNAs were confirmed to be
correlated with the diagnosis, disease severity, and treatment
efficacy of AR [129]. Previous studies reported that serum
miRNA-223 levels in AR patients were higher than normal

controls and positively correlated with serum eosinophil cat-
ionic protein, eosinophil count, and total nasal symptom
score (TNSS), suggesting that miRNA-223 has been involved
in AR eosinophilic inflammation and disease progression
[130, 131]. Interestingly, miRNA expression profiles were
associated with the efficacy of AR-specific immunotherapy,
where patients received treatment with significant changes
in multiple miRNA expression levels [132, 133]. Other miR-
NAs associated with AR disease are detailed in Table 2. In
conclusion, miRNAs can be involved in AR pathogenesis
by regulating immune cell activity and releasing inflamma-
tory factors. Further exploration of their potential mecha-
nisms could provide a theoretical basis for future precision
treatment of AR.

3.2. lncRNA and AR. Many previous studies confirmed that
lncRNAs have a variety of important biological activities,
including DNA damage, programmed cell death, develop-
ment, inflammation, tumorigenesis, and immune response
[134, 135]. In recent years, researchers focused on the differ-
ential expression levels of lncRNAs in nasal mucosal tissues
of AR patients and mouse models and their involvement in
disease development by affecting different downstream sig-
naling pathways [134, 136, 137]. Yue et al. [138] demon-
strated that lncRNA00632 inhibited Th2 cell differentiation
and IL-13 release by adsorbing miRNA-498, indicating a
protective role of lnc00632 in AR. The JAK signaling path-
way is a critical cytokine signaling pathway [139, 140]. In
contrast, the Th2-associated cytokines IL-4, 5, and 13 are
associated with activating the JAK2 and STAT6 signaling
pathways, respectively [141, 142]. Liu et al. [143] identified
lncANRIL as a potential new target for the treatment of
AR by knocking down lncANRIL to modulate the miR-
15a-5p/JAK2 signaling axis and consequently inhibit the
secretion of IL-13. Moreover, the literature has reported that
lncRNA expression profiles in immune cells of AR patients
and animal models are equally cell-specific [144, 145]. Ma

Table 1: Continued.

ncRNA Expression level Signaling pathways or targets Function

lncRNA-
AK169641

Downregulation Unknown Increase eosinophils infiltration [118]

lncRNA-TUG1 Downregulation miR-29c/B7-H3 Promote Th2 cell differentiation [20]

lncRNA-AK085-
865

Downregulation Unknown Ameliorate inflammation [119]

lncRNA-
BCYRN1

Downregulation miRNA-150 Inhibit the proliferation of ASMCs [113]

lncRNA-
LINCPINT

Downregulation miRNA-265p/PTEN Retard the abnormal growth of ASMCs [120]

circRNA-0005519 Upregulation miRNA-7a-5p Increase IL-6/IL-13levels [82]

circRNA-HIPK3 Upregulation
miR-326/STIM1; miR-375/MMP-

16
Modulate the proliferation of AMSCs [85, 121]

circRNA-0002594 Upregulation Unknown Upregulate in CD4+ T cells [86]

CircRNA-
ZNF652

Upregulation miR-452-5p/JAK2 Promote the goblet cell metaplasia [122]

circRNA-ERBB2 Downregulation miR-98-5p/IGF1R Increase infiltration [123]
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et al. [146] found that the expression profiles of lncRNAs
were significantly cell-specific and involved multiple signal-
ing pathways associated with AR disease development by
comparing the expression profiles of lncRNAs in CD4+ T
cells from AR mouse models and control mice by sequenc-
ing. In parallel, some lncRNAs have been proven to be
potential biomarkers for assessing AR severity and progno-

sis. In a recent study, histopathological specimens revealed
that lncRNA-NEAT1 expression was significantly upregu-
lated in the nasal mucosa of AR patients and positively cor-
related with disease symptom scores and inflammatory
cytokine levels, suggesting that it could be used as a bio-
marker to assess the severity of AR disease [140]. Moreover,
a recent study found that circulating-derived lncRNAs also

Table 2: The expression and mechanisms of ncRNAs in AR.

ncRNA Expression level
Signaling pathways or

target
Function

miRNA-223 Upregulation Unknown Promote inflammation [130]

miRNA-155 Upregulation Unknown Regulate Th2 factors [160]

miRNA-202-5P Upregulation MATN2 Promote M2 polarization [161]

miRNA-202-5p Upregulation MATN2 Promote Tregs polarization [162]

miRNA-17-5P Upregulation ABCA1/CD69 Aggravate seasonal AR [163]

miRNA-375 Upregulation JAK2/STAT3 Ameliorate AR [164]

miRNA-223-3p Upregulation INPP4A
Enhance eosinophil infiltration

[165]

miRNA-let-7a Upregulation OPEN Regulate Th2 cells [166]

miRNA-17-92 Upregulation Unknown Exacerbate AR Inflammation [167]

miRNA-15a-5p Downregulation ADRB2 Inhibit IL-13 levels [168]

miRNA-155 Downregulation SOCS1and SIRT1 Promote Tregs differentiation [169]

miRNA-181a Downregulation PI3K/AKT Upregulate IL-10 and TGF-β [169]

miRNA-146a Downregulation TLR4/TRAF6/NF-κB Regulate Th2 cells [170]

miRNA-466a-3p Downregulation GATA3 Attenuate inflammation [171]

miRNA-345-5p Downregulation TLR4/NF-κB
Increase anti-inflammatory factors

[172]

miRNA-29 Downregulation CD276 Reduce IL-4, IL-6 level [173]

miRNA-133b Downregulation Nlrp3
Ameliorate allergic inflammation

[174]

miRNA-106b Downregulation Egr-2 Regulate Th2 polarisation [175]

miRNA-143 Downregulation IL13Ra1 Inhibit inflammation [176]

miRNA-30a-5p Downregulation SOCS3 Involved in AR pathogenesis [177]

miRNA-135a Downregulation Unknown Regulate Th1/Th2 imbalance [11]

miRNA-let-7e Downregulation SOCS4 Anti-inflammatory [127, 128]

miRNA-16 Downregulation IκB kinase β/NF-κB Inhibit IL-13 secretion [128]

miRNA-487b Downregulation IL-33/ST2 Inhibit IL-13 secretion [178]

lncRNA SNHG16 Upregulation
miR-106b-5p/JAK1/

STAT3
Promote inflammation [179]

lncRNAGABPA-9 : 1, NR103763, CCL21, APOA2,
RAD9B-1 : 4

Upregulation Unknown Involved in AR pathogenesis [134]

lncRNA-ANRIL Upregulation miR-15a-5p/JAK2 Suppress inflammation [143]

lncRNA-NEAT1 Upregulation miR-21, miR-125a Affect allergy inflammation [180]

lncRNA-GAS-5 Downregulation EZH2 and T-bet Promote Th2 differentiation [181]

lncRNA-GAS-5 Downregulation miR-21 and miR-140 Affect Th1/Th2 imbalance [182]

lncRNAFOXD3-AS1 Downregulation Unknown Inhibit Th2 immunoreaction [183]

LncRNATCONS_00147848 Downregulation JAK/STAT3
Reduce inflammatory response

[184]

lncRNA-000632 Downregulation miRNA-498 Inhibit IL-13[143]

circRNA-HIPK3 Upregulation miRNA-495 Promote Th2 differentiation [158]

circRNA-ARRDC3 Downregulation miR-375/KLF4 Promote inflammatory [185]

circRNA-0000520 Downregulation miR-556-5p/NLRP3 Attenuate inflammatory [186]
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play an essential role in the pathogenesis of AR [147–149].
Wang et al. [148] found that the exosome-derived lncRNA
NEAT1 regulates the microRNA-511/NR4A2 signaling axis
and then participates in the disease development of AR.
The above studies suggested that both nasal mucosal and cir-
culating sources of lncRNAs could be involved in developing
AR disease through different pathways. The potential regula-
tory mechanisms need to be explored in further studies.
Additional lncRNAs associated with AR disease are detailed
in Table 2.

3.3. circRNA and AR. circRNA, an emerging endogenous
ncRNA, also plays a critical role in the immune and inflam-
matory responses [150, 151]. Chen et al. [152] identified cir-
cRNA expression profiles in the nasal mucosa of AR mice
using RNA sequencing and found 51 circRNAs upregulated
and 35 circRNAs downregulated, with some circRNAs
involved in activating T and B cells. In another study, inves-
tigators analyzed circRNAs in the nasal mucosa of AR
patients and controls using high-throughput sequencing.
They explored the possible role and mechanism of the
circRNA-miRNA-mRNA interaction network in AR pathol-
ogy by bioinformatic analysis [153]. A previous study con-
firmed that GATA3 plays a crucial role in developing Th2
cells and two innate lymphocytes [154], whose signaling is
a key process inducing Th2 cell development [155, 156].
GATA3 could induce chromatin remodeling at Th2-related
loci and enhance Th2 cytokine production [157]. A new
study revealed that circHIPK3 was highly expressed in the
nasal mucosa of AR mice, and it acted as a sponge for
miR-495 and deregulated the transcriptional repression of
GATA3, promoting CD4+ T cells to Th2 and secreting cyto-
kines that exacerbate d ovalbumin-induced nasal symptoms
[158]. Investigators identified an essential regulatory role for
circARRDC3/miR-375/KLF4z in developing IL-13-induced
inflammation in nasal mucosal epithelial cells by accelerat-
ing Th2 differentiation [159]. Currently, studies on the role
and mechanism of circRNA in AR are less circRNA expres-
sion in AR nasal mucosa and peripheral blood. The related
mechanism of action remains to be further explored.

4. Conclusion and Perspective

As the most common airway allergic diseases, AS and AR
seriously affect patients’ quality of life and impose a substan-
tial economic burden on society. Therefore, it is of great clin-
ical value to explore their pathogenesis and treatment
precisely. In recent years, ncRNAs have been used as a new
biomarker for disease treatment research, especially
lncRNAs and circRNAs are the current hot spots in epige-
netic research. However, circRNAs have been relatively
poorly explored in AS and AR. In this review, most miRNAs,
lncRNAs, and circRNAs currently have essential roles in
developing AS and AR from three initial aspects, respec-
tively. miRNAs can participate in the pathogenesis of AS
and AR by targeting target genes to inhibit their expression
in innate and adaptive immune cells. At the same time,
lncRNAs and circRNAs are mainly involved in the develop-
ment and progression of AS and AR by binding to the cor-

responding miRNAs through the ceRNA mechanism to
relieve the inhibitory effect of the latter on target genes and
regulate immune cells through downstream signaling path-
ways. The role of circulating ncRNAs, especially exosomal-
transported ncRNAs, is gradually coming into the view of
researchers in AS and AR, and whether they can be used
as objective biomarkers for diagnosis, disease symptom
assessment, and prognosis prediction is still under investiga-
tion. Follow-up studies should explore the role and mecha-
nism of ncRNAs in the development and progression of
AS and AR from multiple perspectives to provide new ideas
for future diagnosis, treatment, and prognosis of the
diseases.
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