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The liver is vulnerable to sepsis, and sepsis-induced liver injury is closely associated with poor survival of sepsis patients. Studies
have found that the overproduction of reactive oxygen species (ROS) is the major cause of oxidative stress, which is the main
pathogenic factor for the progression of septic liver injury. The mitochondria are a major source of ROS. Mito-TEMPO is a
mitochondria-specific superoxide scavenger. The aim of this study was to investigate the effect of Mito-TEMPO on
lipopolysaccharide- (LPS-) induced sepsis mice. We found that Mito-TEMPO pretreatment inhibited inflammation, attenuated
LPS-induced liver injury, and enhanced the antioxidative capability in septic mice, as evidenced by the decreased MDA content
and the increased SOD activity. In addition, Mito-TEMPO restored mitochondrial size and improved mitochondrial function.
Finally, we found that the levels of pyroptosis-related proteins in the liver of LPS-treated mice were lower after pretreatment
with Mito-TEMPO. The mechanisms could be related to Mito-TEMPO enhanced antioxidative capability and improved
mitochondrial function, which reflects the ability to neutralize ROS.

1. Introduction

Sepsis is a systemic disease elicited by an unregulated host
reaction to infection [1], which is the primary cause of mor-
tality in the intensive care unit and imposes a great challenge
for clinicians with restricted therapeutic options [2]. The
liver plays an important role in immune homeostasis and
energy metabolism, and it is vulnerable in the acute phase
of sepsis [3]. Septic liver injury, as a common clinical feature,
is regarded as an independent indicator of mortality [4]. In
addition, liver dysfunction is strongly associated with poor
survival of sepsis patients; damaged hepatocytes could
release damage-associated molecular patterns to trigger sys-
temic inflammatory responses, exacerbating the dysfunction
of the liver and other organs [5]. Therefore, effective protec-
tion of liver function is crucial for the treatment of sepsis
and the improvement of patient prognosis.

Sepsis is characterized by hyperactivation of the immune
response, which triggers an excessive inflammatory response

[6]. Recent studies have demonstrated that oxidative stress is
a common mechanism of sepsis-induced liver injury. It not
only directly leads to genotoxic damage (DNA damage)
but also exacerbates the inflammatory pathway to amplify
the injury of hepatocytes [7]. Oxidative stress is regarded
as an imbalance between reactive oxygen species (ROS) pro-
duction and elimination by antioxidant systems [8]. In fact,
inflammation and oxidative stress are inseparably intercon-
nected. Inflammation is the initial response in the early stage
of sepsis and it induces the production of ROS, and the gen-
eration of ROS results in oxidative stress [9]. Excessive ROS
can also trigger the inflammatory cascade and amplify the
inflammatory response via the release of proinflammatory
factors, such as IL-6 and TNF-α in hepatocytes, resulting
in liver damage [10]. ROS and inflammation have mutual
stimulatory effects and form a vicious feedback loop, which
causes sustained damage [11]. Recent work in this field sug-
gests that ROS contribute to Nod-like receptor 3 (NLRP3)
inflammasome activation [12, 13]. It is well known that
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activation of the NLRP3 inflammasome plays a major role in
pyroptosis, which is an inflammation-dependent type of
programmed cell death [14]. Studies have indicated that
pyroptosis is related to various types of disease, including
Alzheimer’s disease, acute liver injury, and acute kidney
injury [15]. Hence, we can deduce that the accumulation
and overproduction of excessive ROS exacerbate pyroptosis,
aggravating acute liver injury. Thus, eliminating ROS or
reducing ROS production may be a potential strategy for
sepsis-induced liver injury therapy. In fact, the protection
of organs from excessive ROS by antioxidants is an attractive
area in cancer chemoprevention [16]. However, the role of
antioxidants in sepsis-induced liver injury is still unclear.

The mitochondrion is an important organelle for cell
energy metabolism, which modulates the redox status, cell
growth, and death [17]. As a major site of ROS generation,
mitochondria have received considerable attention. It was
recently discovered that mitochondrial ROS (mtROS)
directly stimulate the production of proinflammatory cyto-
kines and contribute to the development of disease, such as
autoimmune diseases and cardiovascular diseases [18]. Of
note, mitochondria are also a predominant target of ROS,
which can easily lead to mitochondrial dysfunction [19],
which is closely related to sepsis-induced organ dysfunction
[20]. Therefore, in the last few years, mitochondria-targeted
antioxidant therapeutics have been proposed as novel thera-
pies for inflammatory diseases and cancers [21]. Recent
studies have indicated that the main challenge of
mitochondria-targeted antioxidant therapy is to maintain
adequate concentrations of antioxidants at ROS-producing
sites [22]. Mito-TEMPO is a mitochondria-targeted antioxi-
dant with strong antioxidant activity and a specific scavenger
of mitochondrial superoxide. Studies have found that Mito-
TEMPO can accumulate severalfold within mitochondria
[23]. Its antioxidative property has been extensively verified
in various diseases. A recent study found that Mito-TEMPO
rescued burn-induced cardiac dysfunction by recovering
cardiac mitochondrial dysfunction [24]. In addition, one
study suggests that Mito-TEMPO alleviates aldosterone-
induced renal tubular cell injury by inhibiting apoptosis
[25]. However, the role of Mito-TEMPO in sepsis-induced
acute liver injury remains uncertain. The purpose of this
study was to investigate the protective effect of Mito-
TEMPO against sepsis-induced liver injury. In addition,
the influence of Mito-TEMPO on oxidative stress and
pyroptosis was further explored.

2. Materials and Methods

2.1. Animal Experiments. Male 8-week-old C57BL/6 mice
were supplied by Chongqing Medical University. Prior to
the experiments, the mice were housed in a specific
pathogen-free environment for at least 1 week with free
access to food and water. The care and use of mice were
approved by the Chongqing Medical University Institutional
Animal Care and Use Committee. The experimental proto-
col was approved by the Ethics Committee of the Second
Affiliated Hospital of Chongqing Medical University (lot
number: 2020-21).

2.2. LPS-Induced Sepsis Mouse Model and Mito-TEMPO
Pretreatment. To investigate the role of Mito-TEMPO in
sepsis-induced liver damage, a lipopolysaccharide- (LPS-)
induced experimental sepsis mouse model was established
by injecting male mice intraperitoneally with LPS (E. coli
0111: B4, Sigma, USA) at a dosage of 5mg/kg body weight.
The control group was injected with the same volume of
sterile phosphate-buffered saline (PBS), as in previous stud-
ies [26, 27].

The mice were randomized and divided into three
groups: the control group, the LPS group, and the LPS
+Mito-TEMPO group (pretreatment with Mito-TEMPO
followed by LPS injection). Mito-TEMPO (Sigma, USA)
was intraperitoneally injected at a dose of 20mg/kg body
weight 1 h prior to LPS injection. The dosage of Mito-
TEMPO is comparable with previous studies [28, 29]. Ani-
mals were euthanized 24 h after LPS administration, and
whole blood and liver samples were harvested for analysis.

2.3. Cytokine Measurement. Whole blood was harvested and
serum was prepared as previously described [30]. Liver tis-
sues of septic mice were homogenized with PBS (10mg tis-
sues/100μl of PBS), and the supernatants of homogenates
were collected according to the manufacturer’s instructions.
Serum alanine transaminase (ALT) and aspartate transami-
nase (AST) levels were measured using commercial ALT
and AST assay kits (Jiancheng, Nanjing, China) to reflect
liver injury. Increased serum levels of inflammatory cyto-
kines are critical pathological factors and valuable indicators
of sepsis [31]. The levels of inflammatory factors including
IL-6, IL-10, IL-1β, and TNF-α in serum and liver homoge-
nates were determined with ELISA kits (eBioscience, USA)
to indicate systemic inflammation.

2.4. Histological Analysis. Liver tissues of septic mice were
harvested and fixed in 4% paraformaldehyde overnight at
4°C and embedded in paraffin. Next, 4μm thick slices were
placed on glass. The slices were stained with H&E to assess
histological damages using light microscopy. The histopa-
thologic scoring analysis was conducted in a blinded manner
using previously described methods [32, 33]. In brief, the
following six indicators were scored: vacuolization, nuclear
condensation, nuclear fragmentation, nuclear fading, eryth-
rocyte stasis, and inflammatory cell infiltration. Scores were
assigned based on the percentage of cells showing these phe-
nomena in five microscopic fields (×200) as follows: 0 = 0%,
1 = 0 – 10%, 2 = 10 – 50%, and 3 = 50 – 100%. The six sub-
scores were then summed; the higher the total score, the
more severe the injury.

2.5. TUNEL Staining. TUNEL staining was conducted as
described in a previous study [34]. In brief, liver tissues of
septic mice were fixed, embedded, and sectioned into 4μm
thick slices. The Apoptosis Assay Kit (Beyotime) was used
to detect apoptotic cells in liver tissue sections according to
the manufacturer’s instruction. The liver slices were deparaf-
finized, rehydrated with graded ethanol dilutions, incubated
with 20μg/ml Proteinase K (Beyotime) at 37°C for 30min,
and washed with PBS three times. Then, the slices were
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incubated with 50μl TUNEL working solution at 37°C for
60min, followed by incubation with DAPI (Beyotime) for
15min protected from light. The slices were washed with
PBS three times, and the fluorescence signals (488 nm excita-
tion wavelength) were observed by fluorescence microscopy.
For statistical analysis, three fields under ×200 magnification
were observed and TUNEL-positive cells were counted, as
previously described [35].

2.6. Immunofluorescence Staining. Liver paraffin slices were
deparaffinized and rehydrated. Tris-ethylenediaminetetraacetic
acid (EDTA) retrieval solution (Servicebio, China) was used
for antigen retrieval, and then, 5% BSA was used to incubate
the slices. Then, slices were incubated with anti-mouse
caspase-1 (1 : 1000, Servicebio) or anti-mouse HSP60 (1 : 3000,
Servicebio) overnight at 4°C in a humidified chamber. The slices
were subsequently incubated with PE-Cy3-conjugated second-
ary antibody (for caspase-1) or FITC-conjugated secondary
antibody (Servicebio, Wuhan, China; for HSP60) at room tem-
perature in the dark. DAPI was used to stain the nuclei. Images
were obtained by a confocal microscope (Nikon), and statistical
analysis was performed using Image-Pro Plus 6.0 software as
described in a previous study [36].

2.7. Western Blot. The livers of septic mice were collected
and lysed with RIPA buffer. Total and nuclear proteins were
extracted using the RIPA Lysis Buffer (Beyotime, Beijing,
China) and a nuclear extraction kit (Beyotime, Beijing,
China), respectively. Protein samples were separated using
10–12% SDS-PAGE and transferred onto PVDF mem-
branes. Then, the membranes were washed and blocked for
120min, followed by incubation with primary antibodies
against NF-κB p-p65 (Abcam, USA), histone H3 (Affinity,
China), Sirt3 (Abcam, USA), PGC-1α (Abcam, USA),
SOD2 (Abcam, USA), acetylated SOD2 (Ac-SOD2) (Abcam,
USA), caspase-1 (Abcam, USA), GSDMD (Abcam, USA),
IL-1α (Abcam, USA), IL-1β (Abcam, USA), or GAPDH
(Affinity, China) at 4°C overnight. All antibodies were
diluted according to the manufacturers’ instructions. The
membranes were washed and incubated with secondary
antibodies at room temperature for 1 h. Finally, the blots
were detected using enhanced chemiluminescence substrate
(ECL kit, Millipore). Signal intensities were measured using
Fusion software.

2.8. RNA Extraction and Quantification. Quantitative real-
time PCR (qPCR) was performed as described previously
[37]. Briefly, total mRNA was extracted from the liver sam-
ples of septic mice using RNAiso plus reagent (Takara Bio,
China). cDNA was synthesized using the Takara cDNA syn-
thesis kit (Takara Bio, China) according to the instruction
manual. qPCR was performed, and the mRNA levels of the
genes encoding NF-κB, PGC-1α, caspase-1, Gasdermin-D
(GSDMD) were measured using TB Green™–Premix Ex
Taq™ II (Takara, China) on a CFX96 system (Bio-Rad
CFX96, CA, USA). The primers were synthesized by
Tsingke-biology (Chongqing, China). The primer sequences
are listed in what follows: NF-κB: sense 5′-CGACGTATT
GCTGTGCCTTC-3′, antisense 5′-TGAGATCTGCCCAG

GTGGTAA-3′; caspase-1: sense 5′-GAAACGCCATGGCT
GACAAG-3′, antisense 5′-CGTGCCTTGTCCATAGCAG
T-3′; PGC-1α: sense 5′-AAAGGGCCAAGCAGAGAGA-
3′, antisense 5′-GTAAATCACACGGCGCTCTT-3′;
GSDMD: sense 5′-GCGATCTCATTCCGGTGGACAG-3′,
antisense 5′-TTCCCATCGACGACATCAGAGAC-3′;
GAPDH: sense 5′-TTCACCACCATGGAGAAGGC-3′,
antisense 5′-GGCATGGACTGTGGTCATGA-3′. The
2−ΔΔCt method was used to assess the mRNA levels.

2.9. Oxidative Stress Assays. Malondialdehyde (MDA) and
superoxide dismutase (SOD) are oxidative stress-associated
indicators [38]. MDA levels in the serum of septic mice were
measured with the Lipid Peroxidation MDA Assay Kit
(Beyotime, S0131M) according to the manufacturer’s
instructions, as described in a previous study [39]. In brief,
thiobarbituric acid (TBA) working solution and standard
curves were prepared. Then, 100μl serum was mixed with
the TBA working solution, and the mixture was heated by
boiling water for 15min, cooled down to room temperature,
and centrifuged at 1000 g for 10min. About 0.2ml of the
supernatant was collected, transferred to a 96-well plate,
and measured with a microplate reader (Bio-Rad Instru-
ments) at 532nm.

The SOD levels in serum were detected by the Total
Superoxide Assay Kit (Beyotime, S0101M) according to the
manufacturers’ instructions, as previously described [40,
41]. In brief, working solution and SOD standards were pre-
pared. Then, 20μl serum or SOD standards were mixed with
working solution in a 96-well plate. The mixture was incu-
bated at 37°C for 30min and measured with a microplate
reader (Bio-Rad Instruments) at 450nm. The SOD standard
curve was made and used for all samples.

2.10. Liver mtROS Assays. mtROS levels in liver tissues of
septic mice were measured by MitoSOX™ Red reagent
(Thermo Fisher, USA) as described in a previous study
[42, 43]. Briefly, 5μM MitoSOX™ reagent working solution
was prepared. The fresh liver tissues were frozen and cut
by a cryostat into 5μm thick slices. Then, the slices were
incubated with MitoSOX dye for 30min at 37°C. DAPI
was used for nuclear detection. The images were taken with
a fluorescence microscope (excitation/emission maxima:
510/580 nm). MitoSOX fluorescence intensity was quantified
using Image-Pro Plus software.

2.11. Electron Microscopic Assessment. Fresh mouse liver tis-
sues were fixed in 2.5% glutaraldehyde, dehydrated, and
embedded in Epon resin. Epon-embedded liver tissue speci-
mens were cut into ultrathin sections and assessed by trans-
mission electron microscopy (H-600, Hitachi). Then, the
mitochondrial length/width ratio and mean area were
assessed by Image-Pro Plus 6.0 software, as previously
described [44], ten mitochondria were randomly selected
from each image, the length parameter was used to track
and measure the length and width of mitochondria, and
mitochondrial area was assessed with area parameter.
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2.12. Relative mtDNA Copy Number Assay. Relative mito-
chondrial DNA (mtDNA) copy numbers were detected by
qPCR. Firstly, total DNA was extracted from liver samples
using the DNA tissue kit (Beyotime, China), and 100ng
DNA was prepared for the qPCR assay. Referring to previ-
ously described methods [45], the ratio of mtDNA copy
number to nuclear DNA copy number can be calculated by
comparing ND1 and 16S expression to HK expression.

2.13. Statistical Analysis. Statistical analysis was done using
SPSS 20.0 (IBM, Armonk, NY, USA) and GraphPad Prism
8.0 (GraphPad Software, San Diego, CA, USA). All data
are expressed as the mean ± standard deviation (SD). The
data were tested for normality by the Shapiro-Wilk normal-
ity test and Kolmogorov–Smirnov test (P > 0:05), and the
Brown-Forsythe and Bartlett’s tests were run to validate
the homoscedasticity assumption (P > 0:05). Comparisons
between multiple groups were measured by one-way
ANOVA, followed by Dunnett’s multiple comparisons test.
P < 0:05 was considered statistically significant.

3. Results

3.1. Mito-TEMPO Pretreatment Protects Mice against LPS-
Induced Acute Liver Injury. Serum ALT and AST levels are
the most used biochemical markers of liver injury. Com-
pared with the control group, the serum levels of ALT and
AST were elevated approximately 3- and 4-fold in the LPS
group (P < 0:0001, Figure 1(a)). In the LPS+Mito-TEMPO
group, the levels of ALT and AST were approximately 1.5-
and 2-fold lower compared with those in the LPS group
(P < 0:005, Figure 1(a)). Based on liver histopathology anal-
ysis, we found that the liver injury score in the LPS group
was markedly increased compared with that in the control
group (P < 0:005, Figure 1(b)), due to severe congestion
(indicated by yellow arrows), nuclear fading (indicated by
green arrows), vacuolization, and inflammatory cell infiltra-
tion (indicated by black arrows) (Figure 1(b)). However, the
observed liver injury was ameliorated by pretreatment with
Mito-TEMPO (Figure 1(b)). Similarly, the liver injury score
in the LPS+Mito-TEMPO group was decreased compared
with that in the LPS group (P < 0:01, Figure 1(b)). Further-
more, we found that the number of TUNEL-positive cells
in the mouse liver was higher in the LPS group compared
with the control group (P < 0:0001, Figure 1(c)). However,
Mito-TEMPO pretreatment reduced these numbers
(Figure 1(c)).

3.2. Mito-TEMPO Pretreatment Reduces LPS-Induced Liver
Inflammation. Inflammation is one of the main factors of
liver injury during sepsis [2]. Previous studies indicated that
LPS-induced liver inflammation may be mediated by the
activation of NF-κB, which increases the transcription of
proinflammatory cytokines [46]. In the present study, the
qPCR data indicate that the liver mRNA levels of NF-κB
were increased after LPS injection compared with the con-
trol group (P < 0:0001, Figure 2(c)) and decreased after
Mito-TEMPO pretreatment compared with the LPS group
(Figure 2(c)). To determine the effect of Mito-TEMPO on

nuclear translocation of NF-κB (p65), nuclear proteins were
extracted from mouse livers for western blotting. We found
that Mito-TEMPO pretreatment suppressed LPS-induced
NF-κB (p65) nuclear translocation compared with the LPS
group (P < 0:01, Figure 2(b)). Additionally, we measured
the concentrations of cytokines in liver tissue homogenate
and serum. LPS injection increased the expression of IL-6,
IL-1β, and TNF-α in the serum and liver homogenate, and
Mito-TEMPO pretreatment significantly reduced the levels
of these proinflammatory cytokines (Figure 2(a)). The levels
of IL-10 slightly increased following LPS challenge and
remarkably increased after Mito-TEMPO pretreatment
compared with the LPS group (P < 0:0001, Figure 2(a)).

3.3. Mito-TEMPO Improves LPS-Induced Oxidative Stress in
the Liver. An increasing body of evidence suggests that oxi-
dative stress plays an important role in the pathogenesis of
septic liver injury [47, 48]. To evaluate oxidative stress con-
ditions, we measured the antioxidant enzyme activity of
SOD and the serum levels of the lipid peroxidation product
MDA. Our results show that compared with the LPS group,
pretreatment with Mito-TEMPO significantly decreased
serum MDA contents (P < 0:01, Figure 3(a)) and increased
SOD activity (P < 0:01, Figure 3(a)). These findings suggest
that Mito-TEMPO administration enhanced the antioxida-
tive capability in septic mice, which reflects the ability to
neutralize ROS. We measured ROS levels by fluorescence
assays; the fluorescence intensity of MitoSOX was elevated
in the livers of the LPS group compared with the control
group (P < 0:0001, Figures 3(b) and 3(c)), but decreased by
pretreatment with Mito-TEMPO (Figures 3(b) and 3(c)).
We detected the levels of Sirt3 and Ac-SOD2 in the liver
using western blot. We found that the levels of Sirt3 were
reduced in the LPS group (P < 0:05, Figure 3(d)) and that
SOD2 acetylation was increased in the LPS group (P < 0:01
, Figure 3(d)) compared with the control group. However,
these results were reversed by Mito-TEMPO pretreatment,
showing the potent antioxidative capacity of Mito-TEMPO
in vivo.

3.4. Mito-TEMPO Attenuates LPS-Induced Mitochondrial
Dysfunction. To confirm the effect of Mito-TEMPO on
mitochondrial function, we measured the levels of mito-
chondrial functional indicators. Mitochondrial morphology
was examined by electron microscopy. As shown in
Figure 4(a), in the livers of the LPS group, mitochondria
were swollen and broken, membrane integrity was dis-
rupted, and mitochondrial cristae were broken or missing
(Figure 4(a)). HSP60 is regarded as an indicator of mito-
chondrial stress, and its levels increase when mitochondria
are injured [49]. We found increased HSP60 expression in
the LPS group compared with the control group
(P < 0:0001, Figure 4(e)), but HSP60 expression was
decreased by Mito-TEMPO pretreatment (Figure 4(e)).
Moreover, the livers of LPS mice showed severe mitochon-
drial injury, as evidenced by decreased relative mtDNA
levels (Figure 4(b)), PGC-1α protein (P < 0:001,
Figure 4(c)) and mRNA levels (P < 0:001, Figure 4(d)), mito-
chondrial area (P < 0:001, Figure 4(a)), and mitochondrial
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length/width ratio (P < 0:001, Figure 4(a)) compared to the
control group. However, mitochondrial size and function
were partially restored in the LPS+Mito-TEMPO group
compared with the LPS group.

3.5. Mito-TEMPO Relieves Caspase-1 Activation and
Pyroptosis in the Liver. Sepsis is closely associated with
pyroptosis, which is a novel type of programmed cell death
[50]. To clarify whether Mito-TEMPO alleviates sepsis-
induced liver damage by regulating caspase-1 expression
and pyroptosis, we detected the protein and mRNA levels
of pyroptosis-related proteins in the liver. Compared with
the control group, we found that mRNA levels of caspase-1
(P < 0:0001, Figure 5(a)) and GSDMD (P < 0:0001,
Figure 5(a)) were increased in the LPS group, and Mito-
TEMPO pretreatment reduced this effect (Figure 5(a)).
Western blot analysis indicated similar results; Mito-
TEMPO pretreatment inhibited the expression of cleaved
caspase-1, cleaved GSDMD, IL-1α, and IL-1β (Figures 5(b)

and 5(c)). In addition, immunofluorescence showed that
the expression levels of caspase-1 were increased in the
LPS group compared with the control group (P < 0:001,
Figure 5(e)), whereas Mito-TEMPO pretreatment reduced
caspase-1 expression (Figures 5(d) and 5(e)).

4. Discussion

Although inflammation is an essential biological defense
mechanism, aberrant immune responses can lead to host tis-
sue damage [51]. Sepsis is characterized by hyperactivation
of the immune response, which triggers an excessive inflam-
matory response. The liver plays a major role in the immune
response and releases a large number of inflammatory cyto-
kines. It is also vulnerable to inflammatory injury. Sepsis-
related liver damage is an independent risk factor for multi-
ple organ dysfunction and sepsis-induced mortality [3]. The
development of new treatment strategies or optimization of
existing therapies is important for recovering liver function
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Figure 1: Mito-TEMPO mitigates liver injury in LPS-induced sepsis mice. (a) Serum ALT and AST levels of LPS-induced sepsis mice. (b)
Scoring and representative pictures of hepatic H&E staining (scale bar = 100μm, 50μm). Liver injury scores were estimated by the following
six indicators: vacuolization, nuclear condensation, nuclear fragmentation, nuclear fading, erythrocyte stasis, and inflammatory cell
infiltration. Scores were assigned based on the percentage of cells showing these phenomena in five microscopic fields (×200) as follows:
0 = 0%, 1 = 0 – 10%, 2 = 10 – 50%, and 3 = 50 – 100%. The six subscores were summed; the higher the total score, the more severe the
injury. (c) The TUNEL-positive cells in the liver of LPS-induced sepsis mice (scale bar = 50μm, 20μm). The proportion of positive cells
was assessed in five random fields (×200). n = 5 per group. Data are presented as the mean ± SD from at least three independent
experiments. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:005, and ∗∗∗∗P < 0:0001.
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and improving mortality rates in patients with sepsis.
Recently, some studies reported that agents with antioxida-
tive capacity could effectively suppress the systemic immune
response and improve the outcome of patients with sepsis.
In fact, there are several small molecules that prevent the
uncontrolled production of ROS and are known to be bene-
ficial in the maintenance of tissue homeostasis during sepsis
[52], such as glucocorticoids [53], Stefin B (an endogenous
cysteine cathepsin inhibitor) [54], and maresin 1 (a metabo-
lite of theomega-3 fatty acid) [55]. Targeted delivery of anti-
oxidants to mitochondria has been suggested as a potential
therapeutic strategy against sepsis. Mito-TEMPO is a
mitochondria-targeted superoxide mimetic that has protec-
tive effects against acetaminophen-induced acute liver injury
[29]. Recent studies have shown that Mito-TEMPO recov-
ered renal function and improved survival in septic mice

[56]. Other results have shown that Mito-TEMPO therapy
rescues mice from doxorubicin-induced cardiotoxicity by
improving mitochondrial function [57]. In the present
study, we found that liver injuries, as indicated by increased
ALT and AST activities in serum, were significantly
decreased following pretreatment with Mito-TEMPO
(Figure 1(a)). In line with this, compared with the LPS
group, the LPS+Mito-TEMPO group showed an improve-
ment in the severity of liver injury (Figure 1(b)) and a decrease
in the apoptosis of liver cells (Figure 1(c)). The inflammatory
response is an initial feature of sepsis. Proinflammatory cyto-
kines in serum are important pathological factors and valuable
indicators of sepsis. We observed that the expression levels of
proinflammatory cytokines including IL-6, IL-1β, and TNF-α
in serum and liver tissue homogenates of mice were reduced
after Mito-TEMPO pretreatment (Figure 2(a)). This may be
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Figure 2: Mito-TEMPO diminishes liver inflammation in LPS-induced sepsis. (a) Expression of cytokines in serum and liver tissue
homogenate. (b) Nuclear proteins from mouse liver tissues were extracted, and p-NF-κB (p65) protein levels in the liver were detected
by western blotting. (c) NF-κB relative mRNA levels in the liver. n = 5 per group. Data are presented as the mean ± SD from at least
three independent experiments. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:005, and ∗∗∗∗P < 0:0001.
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associated with inhibited nuclear translocation of NF-κB (p65)
(Figures 2(b) and 2(c)), which is an important factor upstream
of the inflammatory response. Taken together, these results
indicate that Mito-TEMPO is able to relieve LPS-induced liver

injury and suppress the expression of proinflammatory
factors.

Oxidative stress is a common concept in disease [58].
Accumulating evidence has indicated that oxidative stress
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Figure 3: Mito-TEMPO alleviates oxidative stress in LPS-induced sepsis. (a) MDA and SOD activity in serum from LPS-induced sepsis
mice. (b, c) Measurement of mitochondrial superoxide production in the liver from LPS-induced sepsis mice using a fluorescent
MitoSOX probe (scale bar = 50μm, 20μm). (d) The protein expression levels of Sirt3, SOD2, and Ac-SOD2 in the liver were detected by
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Figure 4: Continued.
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plays an important role in the pathogenesis of liver injury.
One study on hepatitis C virus (HCV) infection suggested
that HCV and its proteins/components trigger oxidative
stress and inflammation signaling cascades and in turn stim-
ulate ROS production. ROS can lead to host genetic muta-
tion and inflammation, consequently causing liver injury
[59]. In the progression of sepsis, the generation of ROS is
closely linked to the occurrence and development of liver
damage, not only via the direct damage to hepatocytes by
promoting the formation of oxidative protein adducts and
lipid peroxides but also through the proinflammatory
response accentuated by oxidative stress [7]. In fact, as the
main metabolic organ responsible for deoxygenation, lipid
synthesis, and glycogen storage, the liver is more vulnerable
to oxidative stress induced by a variety of factors, including
sepsis-associated inflammatory responses [60]. Redox
imbalance could cause impairment of biochemical and met-
abolic processes in hepatocytes. Thus, oxidative stress relief
has been suggested as a potential therapeutic strategy against
liver injury in sepsis [61]. Oxidative stress results from ROS
accumulation or the impairment of ROS clearance and/or
oxidative damage repair ability [62]. Studies have shown that
impairment of antioxidant capacity leads to increased ROS
production [63], and endotoxemia, sepsis, and septic shock
are associated with the generation of ROS [64]. Therefore,
we studied whether Mito-TEMPO exerted its therapeutic
effect on septic liver injury via the prevention of oxidative
stress. MDA is an end product of lipid peroxidation, and
increased MDA levels reflect oxidative stress [65]. SOD is
known to be part of the primary defense system against oxi-
dative stress [66]. In this study, the activity of SOD in serum
was increased by pretreatment with Mito-TEMPO; in con-
trast, Mito-TEMPO pretreatment decreased MDA levels
(Figure 3(a)). Furthermore, we found the fluorescence inten-
sity of MitoSOX was decreased by pretreatment with Mito-
TEMPO (Figure 3(b)). These results indicate the potent anti-
oxidative capacity of Mito-TEMPO in vivo. Mitochondria
are the major organelle for ROS production, and mitochon-
drial SOD2 is regarded as the main ROS-depleting antioxi-
dant enzyme [67]. A previous study suggested that SOD2

activity was influenced by acetylation at several conserved
lysine residues, and Sirt3 plays a major role in maintaining
the deacetylation and activity of SOD2, which results in
ROS depletion and reduces excessive oxidative stress [68].
Specifically, Sirt3 regulates the expression of SOD2 and
exerts its protective effects against ROS and mitochondrial
oxidative stress by transforming Ac-SOD2 into SOD2 [69].
One study found that diminished Sirt3 expression signifi-
cantly increased mtROS production due to SOD2 acetyla-
tion, which promotes the development of hypertension
[68]. Of note, the Sirt3–SOD2 pathway may play a vital role
in modulating mtROS formation. In the present study, we
observed that Mito-TEMPO increased Sirt3 levels and
decreased Ac-SOD2 levels (Figure 3(d)). These results were
consistent with other studies and support the specific effects
of mitochondria-targeted drugs on the Sirt3–SOD2 path-
way [42].

The mitochondrion is an important organelle for energy
generation, calcium homeostasis, ROS production, and cell
death [70]. An increasing number of studies have found that
mitochondrial injury is the primary pathogenesis site for
ischemic disease, cardiomyopathy, and sepsis-related organ
failure [71]. Mitochondrial dysfunction can result in cellular
and tissue dysfunction and promote perpetuation of infec-
tion. Mitochondrial dysfunction is associated with mito-
chondrial morphological changes, elevated mtROS levels,
and mtDNA depletion [72, 73]. In this study, we found evi-
dence of mitochondrial damage reduction in the livers after
pretreatment with Mito-TEMPO, which reduced mtROS
levels (Figure 3(b)) and partially recovered the liver mtDNA
level (Figure 4(b)) and the mitochondrial length/width ratio
(Figure 4(a)). HSP60 is normally localized in the mitochon-
dria and is involved in protein folding [74]. However, under
stress conditions, HSP60 is translocated to the plasma mem-
brane and released extracellularly. HSP60 is thought to be an
indicator of mitochondrial stress [49]. PGC-1α is a tran-
scriptional coactivator that acts as a master regulator of
mitochondrial biogenesis, mitochondrial respiration, and
antioxidant activity. Mitochondrial biogenesis is essential
to cell division, and PGC-1α promotes mitochondrial
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Figure 4: Mito-TEMPO improves mitochondrial function in LPS-induced sepsis. (a) Representative transmission electron microscopy
images of mitochondria in the liver of LPS-induced sepsis mice (scale bar = 2μm, 1μm). (b) Measurement of mtDNA copy numbers in
the liver of mice. (c) The liver protein levels of PGC-1α as assessed by western blot. (d) The liver mRNA levels of PGC-1α as assessed by
qPCR. (e, f) The proportion of HSP60-positive cells in the liver was determined by immunofluorescence (scale bar = 50 μm). n = 5 per
group. Data are presented as the mean ± SD from at least three independent experiments. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:005, and ∗∗∗∗P
< 0:0001.
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biogenesis and oxidative metabolism [75]. In this study,
PGC-1α and HSP60 levels were partially recovered
(Figures 4(c)–4(f)). This further supports the notion that
mitochondrial dysfunction is a contributing factor in the
induction of liver injury in sepsis. Furthermore, our results
also demonstrate that Mito-TEMPO attenuates sepsis-

induced liver mitochondrial dysfunction. In addition, mito-
chondria are recognized to be key regulators of cell death
[76]. Previous studies reported that mitochondrial dysfunc-
tion leads to the release of proapoptotic proteins, such as
cytochrome c, resulting in apoptosis, playing a major role
in the inflammatory response of sepsis-induced liver injury
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Figure 5: Mito-TEMPO alleviates caspase-1-dependent pyroptosis in the liver upon LPS-induced sepsis. (a) The mRNA levels of caspase-1
and Gasdermin-D. (b, c) The levels of pyroptosis-related proteins as detected by western blot. (d, e) Immunofluorescence assays of caspase-1
(scale bar = 50μm, 20 μm). n = 5 per group. Data are presented as the mean ± SD from at least three independent experiments. ∗P < 0:05,
∗∗P < 0:01, ∗∗∗P < 0:005, and ∗∗∗∗P < 0:0001.
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[77]. Emerging studies have suggested that the mortality of
sepsis is largely associated with the development of pyropto-
sis [78], a new kind of programmed cell death induced by
inflammatory caspases [79], resulting not only in cell death
but also in excessive inflammatory damage. Pyroptosis can
be induced by caspase-1. Active caspase-1 cleaves the pore-
forming protein GSDMD, which subsequently forms mem-
brane pores, causing proinflammatory factors release [80].
Research indicated that uncontrolled ROS production from
impaired mitochondria is the main trigger of caspase-1 acti-
vation and induces pyroptosis [76]. Our results revealed that
pretreatment with Mito-TEMPO reduced the expression
levels of cleaved caspase-1, cleaved GSDMD, IL-1α, and
IL-1β (Figures 5(b) and 5(c)). These results provide evidence
that Mito-TEMPO can mitigate caspase-1 activation and
pyroptosis by alleviating cellular oxidative stress and restor-
ing mitochondrial function. Therefore, ameliorating mito-
chondrial damage and inhibiting the level of ROS may be a
viable strategy to suppress pyroptosis and prevent sepsis-
associated liver injury.

In summary, sepsis can induce mitochondrial damage,
which can cause oxidative stress by the production of ROS
and trigger pyroptosis and subsequent cell death. Mito-
TEMPO mitigates oxidative stress and alleviates caspase-1-
dependent pyroptosis.

5. Conclusion

Mito-TEMPO is able to relieve LPS-induced liver injury and
suppress the expression of proinflammatory factors. This
action of Mito-TEMPO is achieved through the alleviated
oxidative stress and restored mitochondrial function. Our
results also revealed that ROS exacerbates pyroptosis activa-
tion in LPS-induced liver injury and that Mito-TEMPO
scavenging of ROS has a protective effect on the septic liver.
These findings suggest that targeted delivery of antioxidants
to mitochondria may be a potential therapeutic strategy
against sepsis.
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