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There has been a significant amount of interest in the past two decades in the study of the evolution of the gut microbiota, its
internal and external impacts on the gut, and risk factors for cerebrovascular disorders such as cerebral ischemic stroke. The
network of bidirectional communication between gut microorganisms and their host is known as the microbiota-gut-brain axis
(MGBA). There is mounting evidence that maintaining gut microbiota homeostasis can frequently enhance the effectiveness of
ischemic stroke treatment by modulating immune, metabolic, and inflammatory responses through MGBA. To effectively
monitor and cure ischemic stroke, restoring a healthy microbial ecology in the gut may be a critical therapeutic focus. This
review highlights mechanistic insights on the MGBA in disease pathophysiology. This review summarizes the role of MGBA
signaling in the development of stroke risk factors such as aging, hypertension, obesity, diabetes, and atherosclerosis, as well as
changes in the microbiota in experimental or clinical populations. In addition, this review also examines dietary changes, the
administration of probiotics and prebiotics, and fecal microbiota transplantation as treatment options for ischemic stroke as
potential health benefits. It will become more apparent how the MGBA affects human health and disease with continuing
advancements in this emerging field of biomedical sciences.

1. Introduction

Stroke is the second leading cause of mortality and a significant
contributor to disability globally [1]. Strokes come in two dif-
ferent varieties: ischemic and hemorrhagic. Ischemic stroke
(IS) is caused by a thrombus or embolus blocking a cerebral
artery, whereas hemorrhagic stroke is caused by a ruptured
cerebral vessel [2]. Themost prevalent type of stroke worldwide
is IS, with 24.9 million cases annually, which imposes a consid-
erable burden on society [1]. Due to its complicated pathogen-
esis, it exhibits refractory properties, particularly regarding the
secondary damage caused by an early ischemia time window
and reperfusion [3]. Therefore, the development of measures
to lower the prevalence of IS and its detrimental consequences
is highly warranted. Recent research has demonstrated that the

gut microbiota regulates the pathogenesis of IS via the
microbiota-gut-brain axis (MGBA) [4, 5].

The gut microbiota and gut microbiome refer to the col-
lection of all the gastrointestinal (GI) microorganisms and
their genetic material, respectively. These commensal micro-
organisms include eukaryotes (fungi and parasitic hel-
minths), prokaryotes (bacteria and archaea), and viruses
[6]. The community of microbes that resides in the GI tract
is the largest and most diverse of all the communities of
microorganisms and has received a great deal of attention
[6]. Naturally, there is mounting evidence for a two-way
exchange of information between the central nervous system
(CNS) and the GI microbiota, also known as the MGBA,
which has been demonstrated to be a significant contributor
to the physiology of the brain. The gut microbiota can affect
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the cardio-cerebral-vascular system, immune system, gut
function, and physiological activities through signaling
molecules and bioactive metabolites. Additionally, the
prevalence of IS are closely related to unchangeable factors
(sex, age, and genetic predisposition or pathological alter-
ations) and modifiable factors (hypertension, diet, lifestyle,
obesity, hyperlipidemia, smoking, and abnormal blood
glucose) [7, 8]. They all significantly impact the diversity
and abundance of the gut microbiota.

Here, we concentrate on the gut microbiota’s current
role in the pathogenesis of IS and how it affects its associated
risk factors. We also discuss the potential of the gut microbi-
ota as a novel therapeutic option for the prevention and
treatment of IS.

2. Healthy Microbiome and Dysbiosis

The respiratory tract, skin surface, genitourinary systems,
and GI tract all include commensal microorganisms. The
gut contains commensal microbes, which comprise approx-
imately 95% of the human microbiome. There are over 100
trillion bacteria, representing up to 5000 different species,
and they weigh approximately 2 kg in the human gut, which
contains ten times more microbial cells than the entire body
[9]. More than 100 bacterial phyla constitute the human GI
microbiota, with the majority of these species belonging to
two phyla, namely, Firmicutes (Ruminococcus, Clostridium)
and Bacteroidetes (Prevotella, Porphyromonas), with rela-
tively small amounts of Actinobacteria (Bifidobacterium),
Proteobacteria, and Verrucomicrobia [10]. It has been estab-
lished that the ratio of the bacterial species of Bacteroidetes
to Firmicutes significantly impacts health and disease [11].
In addition, it is crucial to emphasize that the gut microbiota
is heterogeneous, with microbial density and diversity rising
along the GI tract following immunological, chemical, and
nutritional gradients [12]. As a result, each species is
exceptionally well adapted to carry out particular functions
in a specific digestive tract environment [12]. These micro-
organisms have developed a close, mutually advantageous
symbiotic relationship with their hosts during the eons of
coevolution rather than passively colonizing their hosts’ guts
[12]. The host supplies shelter and nutrition for its microbial
subtenants, and the microorganisms provide numerous
health benefits in exchange [13]. Specifically, the digestion
of food, production of metabolites, facilitation of nutrient
absorption, and metabolism of xenobiotics and drugs are
all positive functions of the intestinal microbiota in a healthy
condition that supports host nutrition metabolism [14]. A
well-balanced intestinal microbiota maintains a normal
intestinal epithelial barrier by maintaining the structural
integrity of tight-junction proteins, upregulating mucin
genes, and limiting the adhesion of epithelial cells to patho-
genic bacteria [15]. It also helps immunological initiation,
modulation, and pathogen resistance [16].

Gut dysbiosis, also known as gut microbial dysbiosis,
refers to pathological abnormalities in the composition,
diversity, and abundance of intestinal flora that affect intes-
tinal metabolism, the immune state, systemic inflammation,
and other responses [17]. It is characterized by decreased

microbial diversity, fewer beneficial bacteria, or a higher
concentration of pathogenic microorganisms. The disrup-
tion of MGBA signaling caused by dysbiosis of the intestinal
flora usually contributes to alterations in the intestinal struc-
ture and increased permeability of the mucosal epithelial
barrier, resulting in pathophysiological effects [18]. Specifi-
cally, multiple factors inducing gut microbial dysbiosis can
lead to leakiness of the intestinal wall, resulting in easier
entry of endotoxins, microbial elements, and microbial
metabolites into the systemic circulation, ultimately trigger-
ing an immune response and exacerbating systemic inflam-
mation [19]. Gut dysbiosis causes T cells to polarize into
proinflammatory Th17 (IL-17), Th1 (IFN-γ), or γδcells.
These cells then migrate from the small intestine to the
ischemic brain, where they cause infarct damage [20, 21].
Therefore, IS may develop when there is an imbalance in
the bacterial species.

3. Alterations in the Gut Microbiota during
Ischemic Stroke

Microbiome-associated molecular patterns (MAMPs) and
metabolites secreted by the microbiome can interact with
the mucosal epithelium and intestinal immune cells, stimu-
late the vagus nerve (VN), or enter the systemic circulation
to communicate with the brain and potentially modify neu-
ronal and immune responses [22]. In turn, the parasympa-
thetic and sympathetic nerve fibers of the gut wall convey
signals to the brain to influence immune cell and gut motil-
ity activity and alter the composition of the gut [23] (this is
described in detail below). The commensal microbiota
change such that opportunistic pathogens become dominant
after IS. This change is most likely caused by the release of
cytokines and chemokines produced in the brain, altered
intestinal motility and permeability, and mucus production,
all of which contribute to dysbiosis. The result of an IS is
subsequently worsened by dysbiosis. Acute IS risk factors
such as age, hypertension, diabetes, obesity, and vascular
dysfunction have also been linked to gut flora dysbiosis [24].

Experimental and clinical research has demonstrated
that the gut microbiota composition significantly influences
the incidence and outcome of IS [20, 21]. Furthermore, the
gut’s microbial composition substantially changes during
the acute stage of IS [25]. Singh and colleagues showed that
cerebral IS results in microbiota dysbiosis, with decreased
bacterial diversity in mouse feces including a reduced abun-
dance of Firmicutes and an excessive increase in Bacteroi-
detes. These changes are connected to decreased intestinal
motility and increased intestinal wall permeability. Addi-
tionally, they discovered that microbiota transplantation
might improve IS outcomes and impact immunity [21].
Yin and colleagues studied the gut microbes of patients with
IS. They found that transient ischemic episodes were pri-
marily associated with opportunistic pathogenic bacteria
such as Enterobacter, Desulfovibrio, and Megasphaera, while
beneficial bacteria such as Faecalibacterium and Prevotella
were depleted [26]. Another study found that individuals
with IS had higher levels of Atopobium and Lactobacillus
ruminans, but Lactobacillus levels were decreased [27]. Chen
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and colleagues found an increased relative abundance of
Bacteroidetes and decreased relative levels of Faecalibacter-
ium, Oscillospira, Lactobacillus, and Streptococcus in a study
of monkeys with focal cerebral ischemia, suggesting a corre-
lation with the poststroke inflammatory response [28].
Additionally, they discovered a decline in plasma butyrate
concentrations, which may be connected with a reduction
in Oscillospira and Faecalibacterium levels. Monkeys with
cerebral ischemia for 6-12 months had decreased plasma
levels of short-chain fatty acids (SCFAs), suggesting that
persistent gut flora dysbiosis may also influence the genera-
tion of SCFAs [28]. Li and colleagues’ findings imply that the
intestinal flora is related to stroke severity. Lachnospiraceae,
Pyramidobacter, and Enterobacter were increased in patients
with mild stroke, but Ruminococcaceae and Christensenaceae
were increased in patients with severe stroke [29]. Therefore,
dysbiosis not only develops after stroke but also plays a role
in its onset.

Benakis et al. [20] reported the relationship between the
gut microbiome and the neuroinflammatory response to IS
for the first time. They found that the symbiotic gut micro-
biota protects the brain by controlling immune cells in the
small intestine; bacterial priming of dendritic cells leads to
the growth of Treg cells, which suppress IL-17+γδ T cells.
Additionally, they showed that T cells move from the
intestines to the meninges, where they control the neuroin-
flammatory reaction [20]. Studies have indicated that lipo-
polysaccharides (LPS) may play a key role in chronic
systemic inflammation after stroke [30], and elevated levels
of plasma LPS or inflammatory cytokines are strongly con-
nected with the overgrowth of Bacteroidetes [28]. The higher
levels of proinflammatory tumor necrosis factor (TNF-α),
interleukin-6 (IL-6), and interferon-gamma (IFN-γ) in the
plasma of focal cerebral ischemia monkeys suggest both
intestinal microecological dysregulation and chronic sys-
temic inflammation following cerebral infarction [28]. As a
result, chronic systemic inflammation and the poststroke
gut microbiota may be potential stroke therapeutic targets.

4. Mechanism of the Interactions between the
Gut Microbiota and Brain

The CNS, neuroendocrine, immunological, and autonomic
nervous system (ANS) are all involved in the MGBA, which
links the brain and the gut via direct and indirect channels.
What is known is that constant communication within the
MGBA maintains particular aspects of homeostasis, partly
via signals originating from gut microbes. This exchange is
bidirectional; hence, the gut microbiota can influence the
host by altering homeostasis components in both directions.
The ability of bacteria to produce neuroactive molecules that
promote the communication of the MGBA is becoming
clearer (Figure 1).

4.1. Neural Pathways. The bidirectional connection of the
MGBA occurs along two distinct neuroanatomical path-
ways. One is the direct gut-brain communication that occurs
through the spinal cord’s VN and ANS. The other is com-
munication between the spinal cord’s VN and ANS and

the gut’s enteric nervous system (ENS) [31]. The VN is a
mixed nerve that connects to the brain and gut and has
anti-inflammatory capabilities through its afferent and
efferent fibers. VN afferent fibers can be stimulated by
microbiota components either directly or indirectly via
ENS. Through the inflammatory reflex, VN afferent fibers
can activate efferent fibers. The vagal efferents in the medul-
lary dorsal motor nucleus of the vagus, which are part of the
vago-vagal anti-inflammatory reflex loop, have the ability to
regulate the levels of proinflammatory cytokines in the cir-
culation [32]. The VN transports approximately 70% of the
parasympathetic fibers and innervates the whole GI system
as well as thoracic and abdominal organs [33]. In stroke,
the α7 nicotinic acetylcholine receptor (α7-nAchR) plays a
vital role as a modulator of cholinergic anti-inflammatory
pathways. It has been discovered that endotoxemic mice
lacking α7-nAchR have higher amounts of TNF-α, IL-1β,
and IL-6 in their systems [34]. VN stimulation activates
α7-nAchR, which lowers pyroptosis, a type of programmed
cell death, and increases blood–brain barrier (BBB) tight-
junction proteins such as occluding junctions [32, 35].

The ANS is composed of sympathetic and parasympa-
thetic branches. The parasympathetic nervous system con-
trols mood, memory, and appetite and senses microbial
metabolites [36]. GI transit, secretion, and motility are all
affected by altered sympathetic neurophysiology, principally
due to changes in cholinergic transmission and the contrac-
tions of smooth muscle. The sympathetic and parasympa-
thetic systems can impact the neuronal circuitry of the
ENS, leading to altered motility, which can affect the delivery
rate of probiotics and other essential microbial nutrition to
the small intestine and colon [37]. The ENS is made up of
the submucosal plexus, which controls water and electrolyte
flow, and the intermuscular plexus, which controls peristal-
sis [38]. Acetylcholine and 5-hydroxytryptamine (5-HT)
are two of the ENS neurotransmitters that enteroendocrine
cells (EECs) can release in response to elevated microbiota
metabolites (e.g., SCFAs). The communication between the
microbiota and the ENS can transform luminal metabolites
into neurochemical signals that control intestinal physiology
and may be involved poststroke. The administration of the
L. rhamnosus strain JB-1 affected mouse behavior via the
vagus nerve and caused changes in the expression of γ-ami-
nobutyric acid (GABA) receptors in specific brain regions
[39]. Mechanisms for the effects of the L. rhamnosus strain
JB-1 on ENS function further demonstrate that intact epi-
thelium is necessary to mediate the action of JB-1-derived
microvesicles, which in turn reflects the effects of the strain
on the ENS. This finding suggests that epithelial components
may be paramount in mediating microbial signaling from
the intestinal lumen to the ENS [40]. These findings suggest
that the gut microbiota mediates the neuronal pathways of
the MGBA.

4.2. Immune Pathways. The immune system and the CNS
are intricately organized systems that govern and manage
various bodily activities. They both have similar traits in
their operational modes and developmental processes. Our
intestinal single-cell layer plays an important role in
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restricting the contact of the gut microbiome with visceral
tissue. To do this, the goblet cells of the epithelium secrete
a protective viscous mucus layer. Most host-microbe interac-
tions occur at this lumen-mucosal interface, where molecu-
lar interactions between mucus layers and epithelial cells
facilitate communication between the gut and immune sys-
tem by distinguishing between self and nonself antigens,
enabling the immune system to recognize potentially harm-
ful pathogens [41].

The activity of cells from the myeloid lineage, including
neutrophils, macrophages, microglia, mast cells, natural
killer T cells, and lymphocytes (T cells), is called innate
immunity and is thought to be the body’s main line of
defense against potentially infectious organisms [42]. It was
determined that the maturation of microglia and mainte-
nance of their healthy functional condition require a varied
GI microbiome [43]. In contrast, the lack of diverse host
microbiota (i.e., GF mice) in the increased microglia
population resulted in defects inmicroglia maturation and dif-
ferentiation, changed microglia morphology, and impaired
immune responses to bacterial infections [44]. Another study
revealed that GFmice exhibit impaired microglial cell matura-
tion and that SCFA production by the gut microbiota may
affect microglial cell maturation [45]. Cerebral ischemia-
induced neuronal cell death releases damage-associated
molecular patterns (DAMPs) [46]. The production of proin-
flammatory cytokines such as IFN-γ, IL-6, IL-1, and TNF-α

increases as a result of DAMPs and neurotoxin-mediated acti-
vation of M1 microglia, which is linked to secondary neuronal
injury caused by BBB breakdown [47]. Activation of M2 mac-
rophage subtypes promotes the release of chemokines like
CCL13 and CCL14 or cytokines like TGF-β and IL-10, which
improve the outcome poststroke by enhancing BBB integrity,
angiogenesis, and tissue healing [48]. Gut microbiota dysbiosis
has been linked to increased plasma levels of proinflammatory
cytokines caused by loss of BBB integrity [49]. Therefore, a
critical therapeutic target for treating ischemic brain injury
could be regulating innate immune responses with the aid of
the microbiota and its metabolites.

T and B lymphocytes play a pivotal role in mediating the
activation of the adaptive immune response. Immune
homeostasis is vitally maintained by regulatory T cells
(Tregs). Approximately 10% of peripheral CD4+ T cells are
CD25+Foxp3+ Treg cells, and they play a crucial role in
the induction of immunosuppression by producing cyto-
kines such as IL-10, TGF-β, and IL-35 [50]. IL-10 has anti-
inflammatory properties that help to maintain gut homeo-
stasis. According to studies, GF mice have few T helper 1
(Th1) and Th17 cells and IL-22 and IL-17, which causes a
reduction in lamina propria- (LP-) associated CD4+ lym-
phocytes [51]. The ability of dendritic cells to endocytose
polysaccharides may help naive T cells expand and differen-
tiate into Th17 and Treg cell subsets. Despite their divergent
functional characteristics, the degree of TGF-β expression
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Figure 1: An illustration of the MGBA in the healthy individual. In ENS, the gut microbiota affects how the brain works by releasing various
signal molecules that may go to target areas through systemic circulation. Through the ANS, the CNS physiologically controls the GI tract;
in turn, the gut provides feedback to the brain to establish a bidirectional link.
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determines the development of naive T cells into Th17 cells
and Treg cells. Naive T cells are transformed into Th17 cells
by low levels of TGF-β, IL-23, or IL-6, whereas high levels of
TGF-β produce Treg cells [52]. In mice with a proinflamma-
tory microbiota, the poststroke polarization of Tregs by
naive T cells is inhibited, and the polarization of proinflam-
matory IL-17+ γδ T cells is promoted [20]. More IL-17
secretions could be released by the accumulating T cells,
thereby aggravating brain damage [53]. Singh et al. [21]
transplanted feces from mice with IS into germ-free mice
and discovered that both Th1 and Th17 cells produced sig-
nificantly more IFN-γ or IL-17 after brain damage in mice.
Microbial antigens affect B cell activation and differentiation
via TLRs [54]. The significance of regulatory T and B lym-
phocytes in the neuroprotective pathway following the
development of IS requires more research.

MAMPs like LPS and peptidoglycans are more likely to
enter the bloodstream through a leaky gut, triggering an
immune reaction in the host. Toll-like receptor 4 (TLR4)
localization and subsequent TLR signaling can both be
induced by LPS [55]. Bacterial LPS can bind to TLR4
through a lipid-binding CD14 [56]. Numerous protein
kinases, including myeloid differentiation factor 88
(MyD88), can be activated by this process. A range of che-
mokines, cytokines, and other immune factors can be pro-
duced when MyD88 is activated. Recent studies have found
that activation of the TLR4/MyD88 signaling pathway pro-
motes cellular injury in cerebral ischemic stroke [57]. Here,
we outline the mechanisms driven by the bacteria that
induce IS (Figure 2).

4.3. Neuroactive Pathways. Several neuroactive substances
with host and microbial origins also play a crucial signaling
role in host-microbiota interactions at the intestinal interface.

Catecholamines (CChs) include epinephrine, norepineph-
rine, and dopamine. CChs act as chemical neurotransmitters
in the central and peripheral nervous system regulating vari-
ous physiological processes and functions, including cognitive
performance, intestinal motility, and mood [58]. Escherichia
species, including commensals found in human guts, are
known to produce CChs like norepinephrine. Norepinephrine
exerts neuroprotective effects in the brain by reducing the
transcription of inflammatory genes and boosting the creation
of brain-derived neurotrophic factor (BDNF) by microglia
and astrocytes, which can further enhance neuronal survival
[59]. The gut produces more than 50% of the dopamine in
humans, and gut bacteria can control peripheral dopamine
levels. Also discovered in the biomass of Escherichia coli,
Bacillus mycoides, and Staphylococcus aureus was dopamine
[60]. The generation of cytokines by activated T cells and the
activity of effector immune cells are regulated by dopamine
[61]. Previous crossover experimental studies have shown that
long-term levodopa administration in chronic stroke patients
significantly improves motor performance in chronic stroke
patients [62]. However, a recent study by Ford et al. showed
that co-careldopa does not improve walking after stroke
[63]. Therefore, more research is required to fully compre-
hend CChs dynamics in the gut lumen and its effects on
mucosal immunity.

GABA is the main inhibitory neurotransmitter in the
CNS. It was found that the introduction of a GABA-
producing Bifidobacterium strain was adequate to regulate
GABA levels in the gut [64]. GABA-mTORC1 signaling facil-
itates gut IL-17 expression when GABA levels are elevated in
the jejunum of mice [65]. The study found that GABA
selectively stimulates mucin-1 expression in epithelial cells.
Precisely, GABA exposure to epithelial cells reduced IL-1β-
mediated inflammation, increased tight junctions, and trans-
formed growth factor beta (TGF-β) expression, which had a
protective impact against the breakdown of the intestinal bar-
rier [66]. Within the ENS, GABA, particularly the GABAA
receptor system, plays a role in neuronal excitability. It has
been discovered that GABAA receptors, in particular, mediate
the suppression of T cell responses, which indicates GABA’s
potential role as a natural immunomodulator of T lympho-
cytes [67]. In experimental studies, activation of GABA recep-
tors has been shown to have a neuroprotective effect in animal
models of stroke by reducing infarct size and improving func-
tional outcomes [67]. However, clinical trials did not support
using GABA receptor agonists to treat acute stroke patients
[68]. Further research is necessary to understand glutamate
and GABA’s relevance and functional dynamics as mediators
of host-microbe interaction.

The cellular sources of histamine that have been best
defined are mast cells, basophils, and histaminergic neurons.
Cytokines such as IL-1, IL-12, IL-18, TNF-α, and calcium
ionophores affect histidine decarboxylase (HDC) activity
[69]. It has been demonstrated that histamine from Lactoba-
cillus reuteri suppresses human monocytoid cells’ ability to
produce TNF-α in response to TLRs through signaling
through the histamine H2 receptor and downstream cAMP
and PKA activities [70]. However, a recent study in aged
mice following experimental stroke showed that stroke
resulted in increased intestinal mast cell numbers and intes-
tinal histamine receptor expression levels. In the peripheral
circulation, these gut-centered changes were linked to
increased histamine levels and other proinflammatory cyto-
kines (such as IL-6, TNF-α, and IFN-γ) [71]. It is obvious
that histamine mediates host-microbe crosstalk as a neu-
roimmune system; however, it is still unclear how host hista-
mine may affect microbial activity.

It has been demonstrated that serotonin (5-HT) functions
as a neuroendocrine signal of host-microbe crosstalk, modu-
lating bacterial motility, biofilm formation, exopolysaccharide
production, and inducing the expression of virulence genes in
bacteria via a quorum sensing mechanism [72]. Exogenous
serotonin treatment worsened pathogenic intestinal symp-
toms, increased the formation of biofilm on mouse guts, and
raised the release of proinflammatory cytokines. Serotonin
levels in the blood and colon were lower in GF mice, and the
brain’s serotonin turnover rate was higher [73]. Serotonin pro-
duced by the gut microbiota in mammals can operate locally
in the GI tract or reach the bloodstream, but it cannot cross
the BBB [74]. However, serotonin has been shown to promote
BBB permeability, indirectly affecting brain function [75].

4.4. Hypothalamic–Pituitary–Adrenal Axis Pathways. One of
the primary neuroendocrine systems in the human body is
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the hypothalamic–pituitary–adrenal (HPA) axis, which also
functions as a critical nonneuronal communication link in
the MGBA [76]. The HPA axis and its neurotransmitter
counterpart cause several changes in the neuro-immune sys-
tem that prepare the body for the “fight or flight” reaction to
stress [77]. Interactions between the immunity-HPA axis
have been linked to a number of inflammatory and stress-
related illnesses. The HPA axis is finally activated when
exposure to microbes and antigens outside the epithelial bar-
rier triggers the mucosal immune response [78]. The HPA
axis functions can be regulated by stress response by modu-
lating the expression of BDNF, the 2A subtype of N-methyl-
D-aspartic acid (NMDA) receptors, and the hippocampus. A
key component of the stress response is the cortisol. The
HPA axis controls the release of CChs, mineralocorticoids,
or glucocorticoids in response to stress to modify the intes-
tinal microenvironment [79]. The corticosterone-releasing
factor (CRF) in the hypothalamus can be altered by gut
microbiota. Serum cortisol levels have been linked to
poststroke mortality and severity [80]. The higher stress
response in GF mice was slightly alleviated by fecal microbi-
ota transplantation (FMT) and was entirely reversed over

time by Bifidobacterium treatment [81]. Corticosterone or
cortisol levels were lower in preclinical and clinical investi-
gations following probiotic or prebiotic administration
[82]. As a result, the HPA axis, a crucial regulator of the
stress response, can affect how the MGBA is regulated.

4.5. Role of Gut Microbial Metabolites

4.5.1. Trimethylamine N-Oxide (TMAO). Through the
action of intestinal microbial TMA lyases, trimethylamine
(TMA) is generated from dietary nutrients (choline, L-carni-
tine, and phosphatidylcholine) [83]. The host’s hepatic
flavin-containing monooxygenases (FMOs) convert TMA
to trimethylamine N-oxide (TMAO) [84]. Risk factors for
recurrent IS and cardiovascular events with elevated TMAO
levels were strongly associated with the levels of proinflamma-
tory monocytes (CD14++/CD16+) [85]. When TMAO stimu-
lates platelets, there is a potential for thrombosis due to an
increase in the release of Ca2+ from intracellular reserves
and platelet-dependent hyperreactivity [86]. Another study
showed that after a choline stimulation test, intestinal symbi-
onts transplanted from donors with high or low circulating
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TMAO levels had different effects onmice with arterial damage
in terms of platelet reactivity and thrombosis potential [87].
Zhu et al. [88] discovered by microbial transplantation that
the gut microbe CutC (an enzyme source for the conversion
of choline-to-TMA) boosted host TMAO synthesis, enlarged
the infarct area in the brain and caused functional impairment.
In addition, atherosclerosis is a risk factor for IS. Wang et al.
[89] reported that dietary supplementation with choline or
TMAO increased atherosclerosis in Apoe−/− mice and pro-
moted macrophage cholesterol accumulation and foam cell
formation. Studies using animal models have shown that inhi-
biting FMO3 activity decreases TMAO levels and inhibits ath-
erosclerosis [90]. TMAO increases the inflammatory responses
in the vascular wall, causes the generation of reactive oxygen
species (ROS), and inhibits the reverse transport of cholesterol,
which leads to atherosclerosis [91].

4.5.2. Short-Chain Fatty Acids (SCFAs). Through bacterial
fermentation, resistant starch and dietary fibers are degraded
into SCFAs, such as acetate, propionate, butyrate, and other
related compounds (5 carbons or less) [92]. SCFAs exert their
effects by inhibiting histone deacetylases (HDACs) to
influence gene expression and the ligands of the subset of G-
protein coupled receptors (GPCRs) in the host epigenome
[93]. Peripheral blood monocytes exposed to SCFAs showed
reduced proinflammatory TNF-α production, inhibited
NF-κB activation [94], and decreased leukocyte adherence to
endothelial cells by altering vascular cell adhesion molecules
[95]. It has been demonstrated that SCFA stimulation of EECs
causes the release of hormones such as glucagon-like peptide 1
(GLP-1) and peptide YY (PYY) [96]. This activity may initiate
a signaling cascade that affects brain circuits that regulate
appetite and inhibit gastric motility through the systemic cir-
culation or vagal afferents. A prime illustration of a specialized
intestinal cell that can act as a sensor for neurochemical signals
derived from the microbiota and the CNS is the modulation of
GLP-1 signaling by EECs. It enables regulating GI secretory
activity, systemic immunity, obesity, diabetes, and other stroke
risk factors. PYY affects brain activity and appetite by mecha-
nisms that cross the BBB. Fermentable polysaccharides were
added to human diets to raise plasma levels of PYY and
GLP-1 [97]. Significantly fewer SCFA-producing bacteria,
such as Anaerostipes, Butyriciocus, Faecalibacterium, and
Lachnoclostridium, were present in patients with IS [98]. The
decrease in SCFA levels may be partly due to poor prognosis
in agedmice after stroke. Agedmice received a mixture of pro-
biotics that produce SCFAs, including Lactobacillus fermen-
tum, Bifidobacterium longum, Clostridium symbiosum,
Faecalibacterium prausnitzii, and inulin, which resulted in
an increased production of SCFAs and attenuated stroke-
related neurological deficits and inflammation [99]. Dysbiosis
of the intestinal flora linked to atherosclerosis revealed a
decrease in butyrate producers such as Eubacterium and Rose-
buria in the intestine [100]. Experimental investigations have
demonstrated that intestinal injection of butyrate lowers
inflammation and atherosclerosis [101].

4.5.3. Bile Acids (BA). The chemical diversification of bile
acids (BA) is the result of a cooperative effort between the

host (synthesis of primary bile acids) and the gut microbiota
(synthesis of secondary bile acids) [102]. BAs have been
demonstrated to modulate systemic lipid metabolism, glu-
cose metabolism, and cholesterol as well as immune homeo-
stasis through the interaction of these amphiphilic molecules
with membrane and nuclear receptors, including farnesoid X
receptors (FXRs) and Takeda G-protein-coupled receptor 5
(TGR5) [103]. The main bacterial species in the gut, such
as Lactobacillus and Bifidobacterium taxa, express the
enzyme bile salt hydrolase (BSH), which deconjugates BAs
from glycine and taurine [104]. According to research, intes-
tinal inflammation [105], metabolic disorders such as diabe-
tes [106], and cardiovascular disease [107] are pathologically
determined by gut microorganisms and abundant BSH
genes. Metabolite analysis of young stroke patients showed
that their serum glycochenodeoxycholic acid (GCDCA)
concentration was significantly higher than that of healthy
controls [108]. Furthermore, it has been demonstrated that
elevated taurocholic acid (TCA) and GCDCA concentra-
tions following liver injury activate the glucocorticoid
receptor (GR), which disrupts the hypothalamic–pituitary–
adrenal (HPA) axis [109].

As a protective BA in brain diseases, tauroursodeoxy-
cholic acid (TUDCA) has been thoroughly investigated for
its anti-inflammatory and antioxidant properties [110].
TUDCA induces anti-inflammatory markers by binding to
TGR5 [111]. Moreover, Cheng and colleagues discovered
that TUDCA might be linked to suppressing oxidative stress
in the brain [112]. Oxidative stress is a pathophysiological
process after stroke and is closely associated with neuroin-
flammation, excitotoxicity, and apoptosis [113]. Compared
to the untreated group, IS rats receiving a mixture of hyo-
deoxycholic acid (HDCA) and cholic acid (CA) had smaller
infarcts and considerably lower TNF-α and IL-1 concentra-
tions [114]. It has been noted that specific BAs metabolized
by cytotoxic and hydrophobic gut bacteria, such as
deoxycholic acid (DCA) and lithocholic acid (LCA), can
worsen brain damage [115]. Another study discovered that
decreased BA excretion may be an independent risk factor
for IS and that greater DCA and LCA concentrations in fecal
samples were related to higher poststroke survival [116].

4.5.4. Tryptophan. In the digestive tract, there are three main
pathways for tryptophan metabolism: (1) the gut microbio-
ta’s direct conversion of tryptophan into several compounds,
including aryl hydrocarbon receptor (AHR) ligands [117];
(2) the indoleamine 2,3-dioxygenase (IDO) 1-mediated
kynurenine pathway in both immunological and epithelial
cells [118]; and (3) the Trp hydroxylase 1- (TpH1-) medi-
ated serotonin (5-HT) synthesis pathway in enterochromaf-
fin cells [117]. Intestinal microorganisms can metabolize
tryptophan to produce molecules. For instance, tryptophan
is used by Escherichia coli (E. coli) to produce indoles, which
have beneficial effects on the intestinal flora and can lessen
the biofilm and virulence development of E. coli and other
bacteria [119]. In the intestinal microbial environment,
indole is a significant intercellular signal that interacts with
the intestinal epithelium by enhancing tight-junction resis-
tance and the expression of anti-inflammatory cytokines
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[120]. The activation of astrocytes and microglia is regulated
by tryptophan metabolites, which also govern neuroinflam-
mation via AHR signaling [121]. Patients with acute
ischemic stroke (AIS) and carotid stenosis reported lower
concentrations of tryptophan and 3-hydroxyanthranilic acid
(3-HAA) and higher levels of circulating arachidonic acid
(AA) and 3-hydroxykynurenine (3-HK) in their blood than
those of controls [122]. The ratio of kynurenine to trypto-
phan and stroke severity were positively correlated in a study
of IS patients [123]. More research is required to fully under-
stand how microorganism-derived tryptophan metabolites
are linked to inflammation in brain illness.

5. Gut Dysbiosis and IS Risk Factors

In addition to being closely linked to gastrointestinal disor-
ders such as irritable bowel syndrome and ulcerative colitis,
an imbalance in the gut microbiota is also linked to the
occurrence and progression of aging, hypertension, diabetes,
obesity, and atherosclerosis, all of which are risk factors for
IS [124].

5.1. Gut Microbiota and Aging. The incidence of stroke
increases with age, with persons over 65 accounting for
70–80% of all IS [125]. Scientists can now examine alter-
ations in the gut microbiota of elderly individuals because
of recent developments in next-generation sequencing
(NGS) and metagenomic technologies [126]. IS is mostly
an aging-related disease, and aged mice do worse than youn-
ger mice when they experience an experimental stroke [127].

Recent research using experimental animal models has
revealed that older mice tend to be more susceptible to infec-
tion after IS, which is at least partially caused by decreased
intestinal barrier integrity and intestinal inflammation, as
well as reduced expression of mucin and tight-junction pro-
teins, which facilitates bacterial translocation [71]. Aged
mice had a worse prognosis after IS than young mice. Crap-
ser and colleagues demonstrated that IS causes intestinal
permeability and bacterial translocation in young and aged
mice. Young mice are able to resolve these issues, whereas
aged mice experience prolonged sepsis and worse functional
recovery following IS [128]. The unavoidable biological
aging process significantly increases the risk of stroke and
is linked to significant alterations in the gut microbiota com-
position. Specifically, aging is associated with significant
decreases in Firmicutes and Bifidobacterium and increases
in Bacteroidetes and Proteobacteria, particularly Gammapro-
teobacteria [129]. Another study showed that elderly mice
had a Bacteroidetes/Firmicutes ratio that was nine times
higher than that of younger mice. Young mice that received
FMT from an elderly donor had higher levels of systemic
proinflammatory cytokines and higher mortality after mid-
dle cerebral artery occlusion (MCAO). In contrast, FMT
from young to elderly mice increased survival, enhanced
motor strength after recovery from proximal MCAO, and
improved motor function and anxiety [130].

These findings indicate that aging affects poststroke
functional outcomes and survival by increasing gut dysbio-
sis. To potentially enhance stroke outcomes and recovery,

it may be possible to alter the age of the gut microbiota,
especially in elderly individuals.

5.2. Hypertension. The development of IS by hypertensive
diseases is influenced by endothelial dysfunction, increased
shear stress, and stiffness of the large arteries that transport
pulsatile flow to the cerebral microcirculation [131]. Experi-
mental studies have validated the role of the intestinal
microbiota in the emergence of hypertension. First, giving
germ-free recipient mice the gut microbiomes of hyperten-
sion patients raises their blood pressure [132]. Furthermore,
germ-free mice exhibit decreased renal and vascular immune
cell infiltration after receiving angiotensin II injections. They
are also resistant to hypertension and vascular dysfunction
[133]. Yang et al. [134] discovered an imbalance in the hyper-
tensive rat microbe populations, which decreased overall,
while Bacteroides numbers were elevated. Human research
suggests that intestinal mucosa shape, gut-derivedmetabolites,
and microbial taxa are all linked to hypertension. Compared
to normotensive people, hypertensive people exhibit a micro-
bial shift with an increased abundance of pathogenic taxa and
lower microbial richness and diversity [135].

It has recently been found that excess Na+ can even be
detected in intestinal microbiota and immune cells, which
can promote inflammation and hypertension; an excessive
amount of salt causes organ damage to the kidneys, vascula-
ture, and CNS [135]. Low-sodium dietetic control is advised
in poststroke therapy to promote healing and lower the
chance of stroke recurrence. A high-sodium diet in mice
reduces the Firmicutes to Bacteroidetes ratio, fosters gut bar-
rier dysfunction, and damages inflammatory reactions [135].
Inflammatory pathways are controlled by the gut microbi-
ota, which also plays a role in the etiology of hypertension.
By raising the number of proinflammatory Th17 cells in
the spleen, high salt intake also decreases the population of
Lactobacillus murinus. In treated rats, daily injection of
Lactobacillus murinus reduces Th17 cells and lowers blood
pressure [136].

Gut microbiota-producing metabolites such as TMAO
and SCFAs are crucial in developing hypertension. In animal
models of hypertension, SCFAs reduce blood pressure and
gut dysbiosis and restore the balance between Th17 and Treg
cells [137]. SCFAs may modulate the SCFA receptor G-
protein coupled receptor 43 (Gpr43) to promote Th1 but
restrict Th17 cell differentiation to control blood pressure
[138]. An accurate study of individual species and their met-
abolic products is needed to further our understanding of
the gut microbiota and blood pressure management after
stroke since the impacts of various metabolites may cause
the disease to proceed in different directions.

5.3. Diabetes Mellitus/Obesity. The risk, prognosis, and out-
come of IS are often worse for diabetic individuals than for
nondiabetic individuals. Many stroke patients also have
hyperglycemia even if they have no history of diabetes
[139]. Two large-scale metagenome analyses in China and
Europe examined the gut microbiota of type 2 diabetes
(T2D) patients and healthy individuals. These two studies
showed an increase in Clostridium hathewayi and a decrease

8 Mediators of Inflammation



in Roseburia in patients with T2D [140, 141]. It has been
proposed that diabetes may decrease SCFA production or
uptake, particularly the anti-inflammatory butyrate [141].
A recent study uncovered a causal link between the insulin
response and a genetically driven rise in butyrate synthesis
in the host. Conversely, propionate production or absorp-
tion irregularities have been linked to a higher incidence of
diabetes [142].

GLP-1 produced by EECs in the gut microbiota regulates
satiety and hunger. It is possible to distinguish between people
with and without diabetes using the transcriptome signature
of EECs in obese subjects. Notably, obese diabetic individuals
exhibited decreased plasma GLP-1 as well as proglucagon
maturation and GLP-1 cell differentiation [143]. An excellent
illustration of a specialized intestinal cell that can act as a sen-
sor for neurochemical signals derived from the microbiota and
the CNS is the modulation of GLP-1 signaling by EECs. This
allows for the reconciliation of known risk factors for IS, such
as gastrointestinal secretion function, obesity, and diabetes
[124]. Obesity is a significant risk factor for T2D. Experiments
with fecal microbiota transplantation have shown that the gut
microbiota is crucial for insulin resistance, adipose tissue accu-
mulation, and energy absorption [144]. Several studies have
also revealed considerably lower Firmicutes/Bacteroides ratios
in the intestines of obese people and rats [145].

5.4. Atherosclerosis. Atherosclerosis is intimately associated
with arterial stiffness, which results from the loss of elastic
fibers and the thickening of arteriole walls. The accumula-
tion of cholesterol in the arterial wall causes macrophages
to phagocytose lipoproteins, forming foam cells characteris-
tic of atherosclerosis [146]. Compared to asymptomatic con-
trols, patients with atherosclerotic stroke had a different gut
microbial composition, specifically an increased abundance
of opportunistic pathogens (e.g., Enterobacter and Desulfovi-
brio) and a decreased abundance of commensal or beneficial
genera (e.g., Prevotella and Faecalibacterium) [27]. Karlsson
and colleagues discovered an increased abundance of the
genus Collinsella in stool samples from individuals with symp-
tomatic atherosclerosis (cerebrovascular events), whereas
Eubacterium and Roseburia were enriched in controls, imply-
ing the existence of dysbiosis in atherosclerosis [147]. Patients
with vascular disease frequently have oral Streptococcus
mutans in their atherosclerotic plaques [148]. Additionally, it
has been discovered that the oral bacterium Porphyromonas
gingivalis is linked to the onset of IS [149].

One of the metabolites produced by the gut microbiota,
namely, TMAO, has undergone extensive research and has
been positively linked to the development of early athero-
sclerosis [88]. The current study suggests that TMAO can
exacerbate brain damage following IS through many patho-
physiological mechanisms. It can also induce vascular
inflammation and endothelial dysfunction, increasing ath-
erosclerosis and thrombogenesis [150].

Few studies have focused on the connection between
atherosclerosis, bacteria in plaque, and the gut microbiota
in individuals with IS. There is still much to study about
how the gut microbiota influences the pathophysiology of
atherosclerosis.

6. Intervention and Management Strategies for
Ischemic Stroke That Target the
Gut Microbiota

The findings of investigations on both humans and animals
point to the possibility that gut dysbiosis may be a risk factor
for the occurrence, severity, and prognosis of IS in patients.
Emerging treatment approaches aim to reestablish a healthy
gut flora to prevent and treat IS. Nutritional therapies that
modify the gut microbiota to a healthy condition by diet,
probiotics, prebiotics, and FMT through normal donors
may aid in preventing the pathogenesis of IS (Figure 3).

6.1. Diet. It is evident that diet is one of the significant indi-
cators of the intestinal microbiota and that changes in die-
tary habits can directly impact its composition, variety, and
metabolic capacity through the availability of macro- and
micronutrients in the intestine [151]. Animal-based protein
increases the number of potentially harmful gut microbes in
mice, such as Escherichia, Ruminococcaceae, and Streptococ-
cus. In contrast, plant-based proteins increase the abundance
of Lactobacillus and Bifidobacterium and decrease the number
of pathogens, such as Bacteroides fragilis [152]. In addition,
glycated pea protein ingestion increased microbial SCFA
synthesis, which is known to have anti-inflammatory and
intestinal barrier-protecting properties [153]. More precisely,
there were noticeable differences in the relative abundance of
specific bacteria related to different protein sources.

It is widely acknowledged that eating a high-fiber diet
fosters bacterial diversity, increasing beneficial bacteria,
including Roseburia, Prevotella, Faecalibacterium, and
Ackermannia, while reducing possibly pathogenic bacteria
(such as Enterobacteriaceae) [154]. In their study of 178
older persons, Claesson and colleagues discovered that those
who consumed a high-fiber diet produced more butyrate
and acetate from SCFAs than those fed a low-fiber diet
[155]. Consequently, a high-fiber diet may stimulate the pro-
duction of anti-inflammatory cytokines in the intestines and
reduce brain damage following a stroke [156].

Caesar and colleagues compared the intestinal microor-
ganisms in GF mice fed lard (saturated fatty acids) or fish
oil (polyunsaturated fatty acids). They discovered that the
fish oil consumption group had higher diversity and abun-
dance of Akkermansia muciniphila and Lactobacillus. In
contrast, the lard-fed group had a significant amount of Bilo-
phila wadsworthia and showed evidence of Toll-like receptor
4 (TLR-4) activation [157]. This finding is consistent with
earlier studies using saturated fats in clinical and experimen-
tal settings [158].

The gut microbiota releases small-molecule metabolites
from food derivatives and microbial fermentation into the
circulation, where they interact with the host and cause var-
ious illnesses, including IS. It is critical to comprehend how
certain macronutrients, particularly dietary lipids, carbohy-
drates, and proteins, affect the gut flora.

6.2. Probiotics and Prebiotics. Live microorganisms known as
probiotics, which are beneficial to the host’s health, are
primarily made up of Bifidobacterium and lactic acid-
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producing bacteria such as Lactobacillus. Bacteriocins, which
are synthesized and secreted by probiotics, prevent bacterial
invasion and block pathogens from adhering to epithelial
cells [159]. Additionally, they exert a trophic impact on the
intestinal mucosa and affect the secretion of cytokines from
epithelial cells, which increases barrier integrity and mucus
formation [160]. Furthermore, probiotics enhance GLP-1R
expression in the brain and GLP-1 and 5-HT secretion in
the intestine by maintaining the barrier’s integrity [161].
Prestroke treatment of probiotics in mice inhibited TNF-α
production, decreased neuronal damage to the hippocam-
pus, and enhanced antioxidant enzyme activity [162]. Pro-
biotics may have an effect by interacting with Toll-like
receptors in intestinal epithelial cells to inhibit TNF-α and
free radical production [163]. According to a meta-analysis,
probiotic supplementation for stroke patients was linked to
reduced serum TNF-α, IL-6, and IL-10 levels and positively
affected poststroke recovery [164].

Prebiotics are a group of carbohydrates, such as resistant
starch, oligosaccharides, especially fructose (such as inulin
and fructooligosaccharides (FOS)), and galactose (such as
galactooligosaccharides (GOS)), that are not digested by
the host but can selectively alter the microbiome’s activities
and composition [165]. Rats treated with probiotics
(B-GOS) exhibited improved cognitive performance, inhibi-
tion of microglial activation, and decreased expression of
proinflammatory cytokines [166]. Similarly, the elderly pop-
ulation who consumed probiotics had significantly higher
amounts of Bacteroides and Bifidobacterium, elevated lactate
levels in their feces, a significant decrease in proinflammatory
cytokines, and an increase in anti-inflammatory cytokines
(IL-10 and IL-8) [167]. Studies have demonstrated that inulin
boosts butyrate synthesis while promoting the production of
Bifidobacterium and Faecalibacterium [168].

Therefore, it appears that probiotics and prebiotics are
positive therapeutic alternatives for neurological illnesses,
as suggested by these studies.

6.3. Fecal Microbiota Transplantation. Fecal microbiota
transplantation (FMT) transfers intestinal microbiota from
one healthy donor to another by oral intake of fecal matter
in rodents or colonoscopy in humans. The FMT method
has gained much attention for its significant percentage of
success in the treatment of recurrent Clostridium difficile
infection [169]. In a recent study, the effectiveness of FMT
was compared using three different pretreatment strategies:
antibiotics, bowel cleansing solution, and no pretreatment.
The study indicated that antibiotic pretreatment increased
the efficacy of FMT [170]. Recolonization by FMT in mice
with MCAO with either healthy sham control gut microbi-
ota or gut microbiota treated with antibiotics lessened brain
injuries following an experimental stroke [20]. Germ-free
mice developed larger infarcts after a stroke, but when their
guts were colonized with normal gut microbiota, this condi-
tion began to improve [171].

Previous research has demonstrated that leaner donor
FMT improves microbial diversity, insulin sensitivity, and
butyric acid-producing bacteria in obese patients [172].
Diabetes is one of the major risk factors for IS. FMT of
T2D-related gut microbiota in GF mice showed that dysbio-
sis of the gut flora increased brain damage aggregation and
poststroke infarct size. It also caused intestinal barrier dys-
function in GF mice, including increased serum LPS and
impaired tight-junction protein distribution [173].

FMT has the advantage of being coupled with other
techniques for gut microbiota remodeling. However, FMT
also has drawbacks, such as the fact that most studies use
only animal models and that study designs vary widely,
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Figure 3: There are several ways to control IS by restoring the dysbiotic gut. A few strategies to treat gut dysbiosis include dietary
modification by adding nutritious ingredients boosting the colonization of good bacteria in the gut using probiotics or prebiotics and FMT.
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using various techniques, donors, and antibiotics. The FMT
investigations did not identify any solid mechanisms underly-
ing these advancements, so further research is needed to deter-
mine the mechanisms underlying this advantageous effect.

7. Conclusion and Future Perspectives

The importance of MGBA in a person’s health status has
been highlighted by numerous studies that found imbalances
in the GI microflora composition to be related to particular
abnormal physiological situations. The biological relation-
ship between the gut microbiota, the CNS, and immune sig-
naling suggests that systemic microbial signaling or
microbial-derived metabolites may indirectly or directly
impact immunological and neurological activity in IS. More
research is necessary on the potential function and precise
mechanism of MGBA in IS. It will be essential to enhance
preclinical studies of novel therapeutics for the prevention
and treatment of IS and to help understand the high risk
of IS and its tendency for recurrence. Overall, it must be
appreciated that the GI microflora could be viewed as a
new organ and denoted the “second brain,” and that it plays
a significant part in the pathogenesis of IS. Future research
in neurotherapeutics will provide crucial information about
the gut microbiota as a new dividing line between human
health and disorders.

On the one hand, fundamental science research should
employ randomization, blinding, and data analysis tech-
niques similar to clinical trials to more accurately replicate
the complexity of human trials. On the other hand, clinical
studies should be sufficiently powered to evaluate efficacy
in stroke subtypes, establish salvageable tissue and target
engagement, and be mindful of the therapeutic window.
Proteomics, metabolomics, and 16S microbiome sequencing
should be used in future gut microbiome studies and IS to
thoroughly understand the pathways, microbes, and metab-
olites involved and to clarify the effect of their interactions
on IS. To conclude, the translatability of the results will
increase if recent guidelines for bettering the quality of the
design, collection, and analysis of microbiological datasets
are followed, which is vital to advance the field and shift
from association to causation.
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