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Alzheimer’s disease (AD) is a progressive neurodegenerative disease that primarily manifests as memory deficits and cognitive
impairment and has created health challenges for patients and society. In AD, amyloid β-protein (Aβ) induces Toll-like
receptor 4 (TLR4) activation in microglia. Activation of TLR4 induces downstream signaling pathways and promotes the
generation of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β
(IL-1β), which also trigger the activation of astrocytes and influence amyloid-dependent neuronal death. Therefore, TLR4 may
be an important molecular target for treating AD by regulating neuroinflammation. Moreover, TLR4 regulates apoptosis,
autophagy, and gut microbiota and is closely related to AD. This article reviews the role of TLR4 in the pathogenesis of AD
and a range of potential therapies targeting TLR4 for AD. Elucidating the regulatory mechanism of TLR4 in AD may provide
valuable clues for developing new therapeutic strategies for AD.

1. Introduction

Dementia is the major cause of disability and death in people
over 65 worldwide [1]. Approximately 50 million people
worldwide have dementia, and this number will surpass
131 million by 2050 [2]. Alzheimer’s disease (AD) is a com-
plex age-related neurodegenerative disease and a major
cause of dementia [3]. AD is characterized by progressive
memory loss and learning deficits and is usually accompa-
nied by language dysfunction, personality and behavioral
changes, such as emotional apathetic state, depression and
anxiety [4–7]. The AD incidence rate will markedly increase
in the elderly with population ageing. Epidemiological stud-
ies have shown that the incidence of AD is about 10% in
people over 65, rising to almost one-half in people over 85
[8]. This trend poses enormous challenges to AD patients
and creates a heavy social burden [9].

AD is classified into two main forms: sporadic form and
familial form. Nearly 90% of AD patients are sporadic. The
condition impacts people at any age, but most individuals
are over 65 years, often categorized as late-onset AD
(LOAD) [10]. However, the cause of sporadic AD is still
unclear. Familial AD usually occurs early and has a heredi-
tary character. Genes encoding Aβ precursor protein
(APP), presenilin 1 (PSEN1), and PSEN2 are causative genes
[11]. The exact pathogenesis of AD is still unclear. Risk fac-
tors are aging, family history, unhealthy lifestyle, nutrition
deficiency, and diabetes [12–14]. Among them, aging is the
most well-known hazardous factor for AD [15]. Aging-
associated cognitive dysfunction has become a predictable
health threat in the elderly population. With society aging,
AD could result in serious public health issues in the future.

The main pathological features of AD consist of amyloid
plaques formed by abnormal aggregation of Aβ in the brain

Hindawi
Mediators of Inflammation
Volume 2022, Article ID 7924199, 20 pages
https://doi.org/10.1155/2022/7924199

https://orcid.org/0000-0002-7464-9991
https://orcid.org/0000-0002-0786-3373
https://orcid.org/0000-0002-1910-5764
https://orcid.org/0000-0002-9503-1293
https://orcid.org/0000-0002-4006-7299
https://orcid.org/0000-0002-2176-8532
https://orcid.org/0000-0002-7845-7970
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7924199


and neurofibrillary tangles (NFTs) composed of hyperphos-
phorylated tau protein in neuronal cells [16, 17], which is asso-
ciated with a range of neurodegenerative events involving
microglia cell activation, neurite dystrophy, neuroinflamma-
tion, oxidative injury, and mitochondrial disorder [17–19].
Although several studies have focused on AD therapy, clinical
researches on treatments targeting Aβ or tau aggregation have
produced unsatisfactory results [20]. The approved agents for
AD treatment generally alleviate symptoms rather than
address the underlying cause or pathogenesis [21]. Thus, it is
urgent to investigate the molecular mechanisms and discover
prevention and treatment strategies.

Toll-like receptors (TLRs) are transmembrane pattern-
recognition receptors (PRRs) of the innate immune system
that identify pathogen-associated molecular patterns
(PAMPs), such as lipopolysaccharides (LPS), and damage-
associated molecular patterns (DAMPs), such as high-
mobility family protein box 1 (HMGB1) and Aβ [3, 22].
Stimulation of TLRs by injury factors results in severe
inflammation via the release of proinflammatory cytokines,
including IL-1β and interleukin-18 (IL-18) [23]. So far, stud-
ies have confirmed 10 functional TLRs (TLR1-10) in
humans and 12 in mice (TLR1–9, 11–13) [24]. TLRs 1-9
can be expressed in human microglia [25]. Besides, TLRs
are produced in various immune-associated cells, including
monocytes, macrophages, microglia, and astrocytes, and
nonimmune cells, such as endothelial and epithelial cells,
in the brain parenchyma [26, 27]. TLR activation by patho-
gens and damaged cells triggers the phagocytic property of
phagocytes/microglia to remove pathogens, injured tissues,
and accumulated wastes [28–31]. TLR4 is the first TLR dis-
covered in humans and the most studied member of the TLR
family [32, 33]. As a neuroinflammatory receptor, TLR4 is
expressed on astrocytes, microglia, and neurons in the brain
and plays a key role in neuroinflammation in AD progres-
sion by recognizing exogenous and endogenous ligands
[34, 35]. Aβ, a well-known exogenous ligand of TLR4, is
reported to bind to TLR4 on the surface of microglia and
astrocytes to trigger the release of proinflammatory factors
[36, 37]. In AD mouse models, activation of TLR4 can
enhance the clearance of amyloid plaques through phagocy-
tosis of glial cells, thereby decreasing amyloid plaque load
[38, 39]. In summary, the TLR4 signaling pathway plays an
important role in the pathological mechanisms of AD. This
review summarizes the relationship between TLR4 and AD
to provide effective therapeutic targets for future research
of AD.

2. Toll-Like Receptor 4 Signaling Pathway

As is shown in Figure 1, TLR4 is activated mainly through two
pathways. One is dependent on the myeloid differentiation
factor 88 (MyD88) signaling pathway, and the other is depen-
dent on the Toll/interleukin-1 receptor- (TIR-) domain-
containing adaptor inducing interferon-β (TRIF) signaling
pathway. MyD88 is a common connector molecule that acti-
vates the inflammatory response. The MyD88-dependent
signaling pathway is an essential stimulator of NF-κB, which
affects the subsequent expression of NF-κB [40]. Before

ligand-induced signaling occurs, TLR4 first needs to associate
with its extracellular binding partner, myeloid differentiation
factor 2 (MD-2) [41, 42]. The TLR4-MD-2 complex, on bind-
ing to the ligand, may recruit another TLR4-MD-2 pair and
create a homodimeric state [40]. Then, the receptor multimer
transmits intracellular signals by the TIR structural domain
of TLR4 [43, 44]. TLR4-MD2 dimerization recruits TIR
domain-containing adaptor protein (TIRAP) and MyD88.
Signals from MyD88 are transmitted to the interleukin-1
receptor-associated kinase (IRAK) family of protein kinases
via the interaction between MyD88 and the IRAK4 death
domain [45] to recruit the tumor necrosis factor receptor-
associated factor 6 (TRAF-6)[46–48]. Together with
ubiquitin-conjugating enzyme 13 (Ubc13) and ubiquitin-
conjugating enzyme E2 variant 1 (Uev1A), TRAF6 triggers
the activation of a complex composed of transforming growth
factor-β-activated kinase (TAK1), TAK1-binding protein 1
(TAB1), and TAB2, causing the phosphorylation of TAK1
and TAB2/3 [49, 50]. One part of the TAK1 pathway is the
activation of the IκB kinase (IKK) complex, which is an inhib-
itor of NF-κB, including IKK-α, IKK-β, and IKK-γ. NF-κB is
composed of p65 and p50 dimers and is inactive if present in
the cytoplasm with IκB [51]. NF-κB is activated, and proin-
flammatory factors (TNF-α and IL-1β) are released. The other
part of the TAK1 pathway is the activation of mitogen-
activated protein kinases (MAPKs), which involves p38,
ERK, and JNK. MAPKs induce nuclear translocation of tran-
scription factor complex AP-1, leading to the expression of
cytokine genes [23, 52–54]. Moreover, the suppressor of cyto-
kine signaling (SOCS1) is a cytokine-induced protein that neg-
atively modulates cytokine signaling and directly
downregulates TLRs signaling [55, 56]. SOCS1 can suppress
TLR signaling by affecting NF-κB, MAPK activity, and p65
phosphorylation. The TLR4 pathway through MyD88 is ‘early
stage’ NF-κB activation, while TRIF-dependent activation is
designated as ‘late stage’ NF-κB activation. The coordination
of ‘early’ and ‘late’ signaling is specific to TLR4. The complex
composed of TLR4-LPS causes the formation of the endo-
some, which leads to the translocation of TRAM into the
cytoplasm and activation of TRIF-dependent signaling path-
ways [23]. The N terminus of TRIF activates the TNF-
receptor-related factor 3 (TRAF3) and TANK-binding
kinase/IκB kinase (TBK1/IKKi) complex, resulting in phos-
phorylation of interferon regulatory factor 3 (IRF3) and
IRF7, which triggers type I IFN gene expression, such as IFNβ.
There is crosstalk between TRIF-dependent and MyD88-
dependent pathways [57]. TRAF6 is another downstream acti-
vation target of TRIF. The C-terminus of TRIF interacts with
receptor-interacting serine/threonine-protein kinase 1
(RIP1). TRAF6 is activated by RIP1, which activates the
TAK1 complex and NF-κB [50, 57, 58]. In conclusion, TLR4
can cooperatively activate NF-κB through TRIF-dependent
and MyD88-dependent pathways, but type I IFN can only be
generated by activating TRIF-dependent pathways [59, 60].

3. Evidence for the Involvement of TLR4 in AD

Emerging studies have reported that TLR4 plays a crucial
role in the pathogenesis of AD. Genetic profiling of the
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human brain after death showed the upregulated TLR4
expression in the frontal cortex of AD compared with age-
matched controls [61]. Moreover, TLR4 agonist, LPS, was
identified in hippocampal lysates and neocortex of AD
patients. The levels were two to three times higher than in
age-matched control groups. In particular, LPS control levels
were even 26 times higher in some cases of advanced AD
[22]. These findings indicate that LPS from the microbiome
or bacterial infections may accumulate in the brain, leading
to AD. APP/PS1 double transgenic mice mimic progressive
cognitive deficits and neuropathological changes in humans,
which are dependable, easy to operate, and commonly used
in AD studies. Higher p-Tau levels and Aβ aggregation in
APP/PS1 mouse brains were related to increased IL-1β, IL-
6, TNF-α, NF-κB, and TLR4[62]. Likewise, TLR4 levels
and IL-1β gene expression were significantly increased in
hippocampal differentiated mice models without amyloid-
osis (i.e., entorhinal cortex damaged mice) compared with
pseudodamaged mice [61]. The Aβ1-42 injection model is
useful specifically in AD to explore the effect of inflamma-
tion [63]. Lateral ventricular injection of Aβ triggered
inflammation, resulting in neuronal death, synaptic loss
and cognitive dysfunction in WT mice but not in TLR4

knockout mice. Moreover, a selective TLR4 receptor antago-
nist inhibited Aβ-oligomer-induced microglial activation
and memory dysfunction, which was not present in TLR4-
deficient mice [64]. Therefore, the role of TLR4 in AD has
attracted extensive attention.

TLR4 is closely associated with the occurrence of AD.
Genetic association researches of TLR4 suggested that single
nucleotide polymorphisms (SNPs) of TLR4 were associated
with susceptibility to AD [65]. Asp299Gly polymorphism
in the TLR4 gene could reduce inflammatory responses
and prevent the development of sporadic AD. In the Italian
cohort, a coding variant of TLR4 (rs4986790) was demon-
strated to extend lifespan and reduce the risk of AD.
Preclinical-stage familial AD (FAD) cases showed that the
TLR4 variant was associated with a reduced risk of AD, bet-
ter visuospatial and structural skills, and stable levels of IL-
1β in cerebrospinal fluid over time [66–68]. Some TLR4
SNPs, such as rs10759930, rs12377632, rs7037117, and
rs7045953, had neuroprotective effects in the Chinese Han
population. rs11367 and rs1927907 were associated with an
increased risk of AD [3]. Nevertheless, the exact function
in AD of most of these gene variants has not been deter-
mined and still requires further research.
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Figure 1: TLR4 binds to ligands and activates downstream pathways in both MyD88-dependent and MyD88-independent pathways. TLR4-
MD2 recruits TIRAP and MyD88 and then signals to IRAKs. Then recruit TRAF-6, which with Ubc13 and Uev1A initiate the complex
consisting of TAK1, TAB1, and TAB2/3 activation. The complexes of IKK-α, IKK-β, and IKK-γ are activated, promoting NF-κB entry
into the nucleus and leading to the release of proinflammatory factors, such as TNF-α, IL-1β, and IL-6. In addition, MAPKs are
activated, and MAPKs-induced p38, ERK and JNK lead to AP-1 nuclear translocation. SOCS1 inhibits the TLR4 signaling pathway by
affecting NF-κB, MAPK activity, and p65 phosphorylation. TLR4-MD2 leads to endosome formation, resulting in TRAM translocation
into the cytoplasm and activation of the TRIF-dependent signaling pathway. TRIF activates TRAF3 and the TBK1/IKKi complex, leading
to phosphorylation of the interferon regulatory factors IRF3 and IRF7, which induce type I IFN gene expressions, such as IFNα and
IFNβ. Besides, TRIF interacts with RIP1, which activates the TAK1 complex and NF-κB (this figure is made using the Figdraw).
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4. The Regulatory Mechanisms of TLR4 in AD

As is shown in Figure 2, TLR4 regulates AD progression by
modulating inflammation, apoptosis, autophagy, and gut
microbiota homeostasis.

4.1. TLR4 Activation Contributes to Inflammation. From a
physiological point of view, inflammatory reactions exert a
protective effect on the brain, but excessive inflammation is
detrimental. Neuroinflammation is closely related to the path-
ogenesis of AD [69]. The characteristic of neuroinflammation
observed in AD is activated microglial cells around Aβ
deposits [70]. Currently, microglia perform a double-edged
role in the pathogenesis of AD. On the one hand, microglia
may exert beneficial effects by removing Aβ plaques. They
consume harmful extracellular proteins by TLRs and TREM2
and decompose them further by lysosomal-dependent means,
including autophagy. Microglia promote the transformation
of the ‘resting’ type into an anti-inflammatory phenotype,
including homeostasis, regeneration, and neuroprotection
[71]. On the other hand, following the disruption of microglial
phagocytosis and degradation, the persistence of Aβ plaques
and the release of inflammatory factors convert microglia
from an anti-inflammatory phenotype to a proinflammatory
phenotype related to inflammation, neuronal injury, and
death [72, 73]. Abnormal activation of microglia can liberate
various proinflammatory or cytotoxic cytokines, such as
TNF-α, IL-1β, IL-6, nitric oxide (NO), reactive oxygen species
(ROS), cyclooxygenase-2 (COX-2), and prostaglandin E2
(PGE2), which can significantly accelerate neuroinflammatory
and neurotoxic reactions. Neuroinflammation ultimately
results in neuronal cell death, synaptic degeneration, and cog-
nitive impairment [74–78]. Currently, targeting neuroinflam-
mation has become one of the essential therapeutic goals for
AD, and understanding the mechanism underlying neuroin-
flammation in AD is a crucial breakthrough point for explor-
ing the pathogenesis of AD. Researches have shown that TLR4
plays a key role in the pathogenesis of inflammation. The reg-
ulation mechanism of TLR4 on inflammation in AD is
described below.

4.1.1. The Relationship Between Aβ and TLR4 in AD. In AD,
insoluble Aβ macrofibrils and oligomers can be recognized
by the innate immune system in the brain as a dangerous
signal, resulting in activation of the innate immune response
[79]. Aβ, the main toxic protein in AD patients, can trigger
microglial activation and release of inflammatory cytokines
in the brain, finally leading to AD-related neuroinflamma-
tion [80]. Studies have shown that Aβ combines with
TLR4 on the surface of microglia and astrocytes and then
activates the NF-κB and MAPK signaling pathways and trig-
gers the release of proinflammatory factors, such as TNF-α,
IL-1β, and IL-6 [81–83]. Overexpression of TLR4 was trig-
gered by stimulation of aging rat neurons with Aβ oligomer,
which made cells sensitive to subsequent TLR4 stimulation.
In vitro, supernatant from Aβ-stimulated microglial cells
was added to primary murine neurons, and TLR4 was found
to be involved in Aβ-regulated microglia neurotoxicity and
upregulating TNF-α, IL-1β, IL-10, and interleukin-17 (IL-

17)[84]. In addition, LPS-cultured microglia incubated with
Aβ42 for 24h reduced Aβ42 in the culture medium by 50%,
suggesting that TLR4 increased Aβ clearance [38]. This find-
ing also implies that microglia can be activated through the
TLR4 pathway to suppress Aβ deposition in the early stages
of β-amyloidosis, thus protecting neurons against Aβ-medi-
ated neurotoxicity [85]. Following the disease progression
continued exposure of microglia to Aβ mitigates TLR4
response and activated microglia cannot clear Aβ deposition
[86]. In cocultured neuron-glia cells, Aβ oligomers- (Aβo-)
driven neuronal cell death was primarily attributed to the
Aβ-sensitized TLR4 pathway of astrocytes and microglia
through autocrine/paracrine mechanisms, suggesting another
mechanism through TLR4-mediated Aβ toxicity. Studies
showed that TLR4 was involved in Aβo-mediated memory
loss in AD. A single lateral ventricle injection of Aβo in
C57BL/6J mice activated glial cells, resulting in increased
expression of pro-inflammatory factors and significantly
impaired recognition andmemory. TLR4 receptor antagonists
eliminated the harmful effects of Aβo on memory, and Aβo
had no effect on glial cell activation or memory in TLR4-
knockout mice [64]. In summary, Aβ is involved in the pro-
gression of inflammation in AD through the TLR4 signaling
pathway and may impact memory.

4.1.2. The Relationship Between HMGB1 and TLR4 in AD.
High-mobility family protein box 1 (HMGB1) is a typical
DAMP released by necrotic or excitatory neurons. HMGB1
protein is involved in initiating and activating neuroinflam-
mation under pathologic conditions and the pathogenesis of
neurodegenerative disorders, such as AD. Research sug-
gested that the expression of HMGB1, RAGE, TLR4-NF-
κB, and inflammatory cytokines increased in the nucleus
and cytoplasm of hippocampal neurons in Aβ25-35-induced
AD-associated neuroinflammation models [87]. HMGB1
exerted its biological property by directly combining with
receptors for advanced glycation end products (RAGE) and
TLR4, acting as a chemoattractant or proinflammatory fac-
tor [88]. HMGB1 gene silencing alleviated inflammation
induced by Aβ in hippocampal neuron cultures [87]. Extra-
cellular HMGB1 acted as a chaperone of Aβ, decreased
microglial Aβ clearance, and interacted with RAGE and
TLR4, which participated in microglial Aβ phagocytosis,
leading to AD progression [38, 89, 90]. Notably, subcutane-
ous injections of anti-HMGB1 antibodies prevented neuro-
degeneration and reversed cognitive deficits, even in the
presence of Aβ plaques [91].

Disruption of learning and memory are important fea-
tures of AD. In the new object recognition test (NORT), a
decrease in the new object preference index demonstrated
the effect of HMGB1 injection on memory encoding. When
HMGB1 was injected into control mice and TLR4 and
RAGE knockout mice, the damage to memory coding was
similar [92]. In addition, TLR4 antagonists blocked the
amnesic role of HMGB1 in RAGE knockout mice [92].
These studies suggest that HMGB1-induced memory dys-
function is regulated by RAGE and TLR4, but the exact
mechanisms are still unclear. Myristoylated alanine-rich C-
kinase substrate (MARCKS), a submembrane protein, helps
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stabilize the actin network. Studies have shown that HMGB1
released by necrotic or overexcited neurons binds to TLR4
and activates MAPKs, inducing MARCKS phosphorylation
to initiate neurite degeneration, resulting in impaired mem-
ory function [91]. Thus, these results suggest that HMGB1 is
involved in AD progression through the TLR4 pathway.

4.1.3. The Relationship Between TREM2 and TLR4 in AD.
TREM2 is a transmembrane receptor (one of the members
of the TREM family) expressed on the surface of several
myeloid cells, including microglia, monocytes, and macro-
phages. It is an important innate immune receptor in the
brain, which regulates microglia survival, proliferation, bio-
synthesis, and factor release; moreover, it has a protective
effect on Aβ pathology [93, 94]. Reports indicated that
TREM2 was expressed at higher levels in the brains of AD
patients than in normal controls [95]. Polymorphisms in
TREM2 genes were associated with a higher risk of LOAD
[96]. Recent epidemiological surveys suggested that serum
levels of TREM2 might serve as a prospective new predictive
biomarker for the incidence of dementia [97, 98]. Studies
have shown that TREM2 plays an important role in the pro-
tective mechanisms of AD, in which TLRs play a key role.
Reports showed that TREM2 negatively regulated TLR4-
mediated inflammation [99, 100]. The APP/PS1 mice had
higher levels of TLR4 and TREM2 in their brains; TLR4
showed continuous upregulation, and TREM2 levels signifi-
cantly decreased in APP/PS1 mice after LPS treatment, sug-
gesting that LPS-induced TLR4 hyperactivity inhibited the

negative regulation of inflammation in TREM2[100]. More-
over, overexpression of TREM2 in microglia inhibited TLR4
levels, leading to altered expression of downstream effectors
of TLR4 (ERK, p38, and p65) and proinflammatory factors
(IL-6, IL-1β, and TNF-α), whereas silenced TREM2 gene
elevated TLR4 levels [101]. These results suggest that
TREM2 inhibits neuroinflammatory responses by downreg-
ulating the TLR4 pathway.

Phospholipase Cγ2 (PLCγ2) is an intracellular enzyme
that can cleave membrane phosphatidylinositol-4,5-diphos-
phate (PIP2). The variation of the PLCγ2 gene is associated
with AD [102]. Recent studies have shown that PLCγ2 reg-
ulates various microglial functions via numerous upstream
molecules, such as TREM2 and TLR ligands. TREM2 allevi-
ated PLCγ2-mediated inflammation, and TLR4/PLCγ2-reli-
ant inflammatory signals were amplified without TREM2
[2]. The exact relationship between TREM2 and TLR4 in
AD needs further study.

4.1.4. The Relationship Between NLRP3 and TLR4 in AD.
The activation of nod-like receptor protein 3 (NLRP3)
inflammasome is an early pathogenic AD event. Extracellular
fiber Aβ activated the typical inflammasome pathway by trig-
gering the TLR4/MyD88/NF-κB signal pathway. Besides,
oligomers and fiber Aβ could interact directly with NLRP3
and ASC, leading to activation of NLRP3 inflammasome
[103]. Microglia activation was induced by injections of
fibrin Aβ into the striatum of mice, whereas microglia activa-
tion was inhibited in MyD88-deficient or ASC-deficient
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mice, indicating that aggregated Aβ produced a signaling
cascade, including MyD88 and NLRP3 inflammasome
[104]. Furthermore, MyD88 deletion reduced microglial acti-
vation and brain Aβ load and improved behavioral dysfunc-
tion in APP/PS1 mice [105, 106]. These findings indicate that
the TLR4/MyD88 pathway participates in the initiation of
NLRP3 activation in AD mouse models.

4.2. TLR4 Activation Contributes to Neuronal Apoptosis in
AD. Aβo facilitates Ca2+ entry and mitochondrial Ca2+
overload, resulting in neuronal cell death. As a TLR4 recep-
tor agonist, LPS enhanced the concentration of cytoplasmic
Ca2+, resulting in apoptosis. Studies have found that LPS
or Aβo exposure for 48 h could not lead to apoptosis of
young cultured cells. The combination of Aβo and LPS
enhanced Ca2+ response and neuronal death in cultured
young rat neurons, and this effect significantly increased in
aged neurons [107]. These data suggested that Ca2+ signals
activated by TLR4 and induced by Aβo might crosstalk with
each other, thereby boosting cell death in the neurons, espe-
cially in senescence. This finding may be related to Aβo-
induced changes in TLR4 expression. In conclusion, the
TLR4 signaling pathway is closely associated with AD by
triggering apoptosis.

4.3. TLR4 Activation Contributes to Neuronal Autophagy in
AD. Autophagy is a mechanism that promotes the clearance
of damaged organelles or abnormal intracellular protein
aggregation related to multiple CNS diseases involving tau
and Aβ in AD. Transcription of autophagy-associated
genes, such as Beclin1, ATG5 and ATG7, was downregu-
lated in the elderly brain [108]. Studies demonstrated that
promoting autophagy could prolong the longevity of
numerous organisms, from yeast to mice, and attenuate
the progression of age-related disorders. Therefore, autoph-
agy may provide protective roles, especially on aging neu-
rons. There is increasing evidence of impaired autophagy
in AD [109–111]. Histological analysis revealed the accu-
mulation of autophagosomes and autolysosomes in AD
brain neurons [112]. Studies showed that TLR4 ligand pro-
moted or suppressed autophagy, which might had opposite
roles on protein and organelle turnover. Qin et al. found
that chronic mild TLR4 stimulation might boost neuronal
autophagy, reduce brain p-tau protein levels, and ameliorate
cognitive dysfunction in transgenic AD mice [39]. Con-
trarily, reports showed that chronic TLR4 activation acti-
vated premature organelle autophagy, leading to impaired
neuronal signal and cell death [113]. Moreover, sustained
IL-4-induced activation of TREM2 led to increased lyso-
somal and LC3II/I expression, increased microglial autoph-
agy, and impaired CARD9-TLR4 pathway, contributing to
improved cognitive function in AD mice. Thus, the TLR4
signaling pathway is closely related to AD by regulating
autophagy.

4.4. TLR4 Activation Regulates Gut microbiota in AD. About
37 trillion microbes reside in the human body; 70% of these
microbes are found in the gut [114]. These microorganisms
can protect the host from pathogen invasion, facilitate diges-

tion and absorption of the host, and modulate drug metabo-
lism [115]. Recent research has shown that histological and
behavioural presentations of AD are associated with dysbio-
sis of the gut microbiome. In an AD mouse model,
antibiotic-induced perturbations of gut microbial diversity
affected neuroinflammation and amyloidosis. Changes in
gut microbiome composition due to aging may result in
chronic low-grade inflammation, a hazardous factor associ-
ated with cognitive decline in older adults. Brain amyloidosis
in cognitively impaired older adults was associated with pro-
inflammatory intestinal flora and markers of peripheral
inflammation. AD was associated with damage to the intesti-
nal barrier, through which LPS and proinflammatory factors
produced by pathogens entered the body, disrupted the
integrity of the blood-brain barrier (BBB), enhanced the
uptake of Aβ and α-syn in the brain, and activated
microglia-induced immune reactions through the LPS/
TLR4/NF-κB pathway, resulting in neuronal loss [116, 117].
Studies have suggested that the effects of aging gut micro-
biome dysregulation on cognitive functioning may be related
to the LPS-activated TLR4/NF-κB signaling and neuroin-
flammation in the brain. These findings suggest that inflam-
mation, apoptosis, autophagy, and gut microbiota are closely
related to AD via triggering TLR4 signaling. Therefore, a bet-
ter understanding of the regulatory mechanism of TLR4 in
AD may help identify potential therapeutic approaches to
prevent AD.

5. Application of Therapies Targeting
TLR4 in AD

As represented in Table 1, studies showed that multiple AD
therapies targeting TLR4 exerted protective effects primarily
by inhibiting the expression of TLR4 signaling pathway mol-
ecules, suppressing microglia activation, reducing neuronal
death, and improving learning and memory function.

5.1. Flavonoids. Flavonoids are most helpful for treating
neurodegenerative diseases due to their anti-inflammatory,
antioxidant, and antiapoptotic properties [118, 119]. Sinen-
setin (SIN), a polymethoxyflavonoid, is a significant active
compound predominant in citrus plants and indicated to
have antitumor, antioxidant, and anti-inflammatory phar-
macological activities [120–123]. Zhi et al. found that SIN
preconditioning inhibited Aβ25-35-regulated upregulation
of TLR4 and nuclear translocation of NF-κB p65. SIN pro-
tected SH-SY5Y cells from Aβ25-35-regulated neurotoxicity
by inhibiting oxidative stress, inflammation, and apoptosis
via suppressing the TLR4/NF-κB pathway [124]. Moreover,
overexpression of TLR4 eliminated the protective role of
SIN. Hesperidin is a bioactive flavonoid produced by hes-
peridin and found in citrus fruits [125]. Reports showed
that hesperidin exerted neuroprotective effects in diverse
models [126, 127]. Hesperidin is a powerful free-radical
scavenger that facilitates cellular anti-inflammatory proper-
ties [128]. Muhammad et al. found that hesperidin signifi-
cantly inhibited the expression of TLR4, P-NF-κB, TNF-α,
and IL-1β induced by Aβ1-42, showing that hesperidin
had the same effect as specific inhibitors [129]. This finding
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Table 1: Summary of AD therapeutic approaches targeting TLR4.

Intervention Animal model Treatment Mechanism Reference

Hesperetin
Aβ1-42-induced AD
model in C57BL/6N

mice

50mg/kg treatment for 6
weeks

(a) Inhibiting oxidative stress by reducing LPO and
ROS and increasing Nrf2 and HO-1
(b) Inhibiting neuroinflammation by reducing
TLR4, p-NF-κB, TNF-α, and IL-1β
(c) Inhibiting apoptosis by reducing Bax, caspase-
3, and PARP-1
(d) Reducing memory dysfunction by increasing
the levels of syntaxin, SNAP-25, PSD-95, Syp, and
SNAP-23

[129]

Soybean
isoflavone (SIF)

Aβ1-42-induced AD
model in Wistar rats

80mg/kg treatment for 14
days

(a) Improving learning and memory skills
(b) Inhibiting levels of proinflammatory factors
TNF-α and IL-1β
(c) Inhibiting Aβ-induced elevation of TLR4 levels
and NF-κB expression in the nucleus

[131]

GX-50
APP transgenic AD

model
1mg/kg/day for 2 months

at 5 months of age

(a) Inhibiting the expression of TNF-α, IL-1β, NO,
PGE2, and iNOS and COX-2 in microglia of Aβ-
treated rats
(b) Inhibiting microglia activation and the
expression of IL-1β, iNOS, and COX-2 in APP
transgenic mice
(c) Inhibiting the activation of NF-κB and MAPK
cascades
(d) Reducing TLR4, MyD88, and TRAF6
expressions in vitro and in vivo

[73]

ProBiotic-4

9-month-old
senescence-accelerated
mouse prone 8 (SAMP8)

mice

2 × 109 CFU once daily for
12 weeks

(a) Reducing IL-6 and TNF-α levels, plasma, and
brain LPS concentrations, TLR4 expression and
NF-kB nuclear translocation in the brain, resulting
in improved cognitive dysfunction in aged mice

[153]

MG136-pMG36e-
Glucagon-like
peptide-1 (GLP-1)

LPS (0.25mg/kg) for 7
days in male C57BL/6

mice

Administered in drinking
water for 14 days

(a) Attenuating neuroinflammation and improving
LPS-induced memory impairment by
downregulating the TLR4/NF-κB pathway

[159]

TAK-242
Male APP/PS1
transgenic mice

2mg/kg/day for 28
successive days

(a) Inhibiting TLR4 and Bax levels, significantly
improves neurological function
(b) Promoting the conversion of microglia from
the M1 to the M2 phenotype
(c) Inhibiting MyD88/NF-κB and NLRP3 signaling
pathways

[33]

Cattle encephalon
glycoside and
ignotin (CEGI)

Male APP/PS1
transgenic mice; C57BL/

6J mice

6.6ml/kg/day CEGI for 30
days

(a) Inhibiting TLR4 expression and NF-κB p65
phosphorylation to exert antineuroinflammatory
effects

[173]

Fasudil
Male APP/PS1
transgenic mice

25mg/kg/day for 2 months

(a) Inhibiting microglia activation and promoting
their conversion to an anti-inflammatory
phenotype by suppressing TLR4, MyD88, and NF-
κB expression, and promoting astrocyte conversion
from A1 to A2 phenotype

[179]

Atorvastatin
Aβ1-42-induced AD
model in Sprague-
Dawley male rats

5 and 10mg/kg from 3
weeks before to 6 days
after Aβ1–42 injections

(a) Reducing TLR4, TRAF6, and NF-κB levels,
inhibiting microglia and astrocyte activation, and
improving spatial learning ability and memory
impairment

[37]
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demonstrated that hesperidin effectively mitigated Aβ-
induced pathological changes in mice and cells by modulat-
ing TLR4/NF-κB to inhibit neuroinflammation and was a
promising and reasonable neuroprotective agent. Soybean
isoflavone (SIF) is a type of soybean phytochemical with
anti-inflammatory, antioxidant, and antiosteoporosis prop-
erties. Youn et al. demonstrated that plant polyphenols could
suppress LPS-induced TLR4 dimerization and thus regulate
TLR-regulated inflammation [130]. As a polyphenol, SIF
may also act on TLR4 and suppress the toxicity of Aβ, further
attenuating downstream inflammatory pathways. Ding et al.
demonstrated that SIF treatment significantly reversed Aβ1-
42-induced elevated expression of TLR4 and NF-κB p65 sub-
unit, decreased expression of TNF-α and IL-1β, improved
Aβ-induced brain injury, and ameliorated learning and
memory in rats [131]. These results suggested that SIF could
play a neuroprotective effect in AD through the TLR4/NF-κB
signaling pathway, which was beneficial to AD treatment. In

summary, these flavonoids can inhibit the expression of
TLR4 and play a significant role in AD.

5.2. Medications

5.2.1. Circumdatin D. Acetylcholine (ACh) is a crucial neu-
rotransmitter in memory and learning processes. The func-
tional decline of cognition in AD patients is related to a
lack of the neurotransmitter Ach in the brain. Acetylcholin-
esterase (AChE) is a hydrolytic enzyme that hydrolyses ace-
tylcholine to choline and acetic acid [132, 133]. The study
found a 20% increase in plasma levels of AChE in AD
patients compared to age- and sex-matched controls [134].
Suppression of AChE averted the breakdown of ACh and
subsequently added its concentration and duration of action,
thought to be of clinical benefit for patients with AD. AChE
inhibitors currently account for four of the five treatments
prescribed for AD. These cholinergic drugs are less effective

Table 1: Continued.

Intervention Animal model Treatment Mechanism Reference

Tetrandrine
APP/PS1 transgenic

5XFAD mice; Aβ1-42-
induced BV2 cells

10, 20, and 40mg/kg every
2 days from the age of 5
months to 7 months

(a) Dose-dependently improving cognitive
performance in mice
(b) Promoting reduced amyloid plaque deposition
and hippocampal apoptosis in the brain
(c) Inhibiting the expression of inflammation-
related genes (TNFα, IL-1β, and IL-6) and TLR4,
p65, iNOS, and COX-2

[193]

Pinoresinol
diglucoside (PDG)

Aβ1-42-induced AD
model in BALB/c mice

5 and 10mg/kg every day
for 3 weeks

(a) Reversing Aβ1-42-induced memory
impairment in mice
(b) Inhibiting the release of proinflammatory
cytokines (TNF-α and IL-1β), ROS, and MDA and
promotes the activity of antioxidant enzymes (SOD
and CAT)
(c) Upregulating the ratio of Bcl-2/Bax and
downregulates the expression of Cyt C and cleaved
caspase-3, thereby inhibiting neuronal apoptosis
(d) Reducing TLR4 expression and NF-κB p65
activation and promotes Nrf2 and HO-1
expression

[203]

Geniposidic acid
(GPA)

APP/PS1 transgenic
C57BL/6J mice

25, 50, and 75mg/kg every
day for 90 days

(a) Improving spatial learning and memory
abilities and reducing brain Aβ deposition in mice
(b) Inhibiting the activation of astrocytes and
microglia, downregulating the expression of
proinflammatory cytokines and iNOS, and
upregulating the expression of anti-inflammatory
cytokines and Arg-1
(c) Downregulating the expression of TLR2, TLR4,
RAGE, MyD88, and NF-κB p65

[204]

Chotosan (CTS)
Aβ1-42-induced AD

model in ICR male mice
375, 750mg/kg/day for 3

weeks

(a) Improving memory impairment in mice
(b) Decreasing TLR-4 and NF-κB p65 expression
and reducing the release of proinflammatory
cytokines (including TNF-α and IL-1β) in the
hippocampus
(c) Increasing the Bcl-2/Bax ratio and decreasing
caspase-3 activity, thereby inhibiting neuronal
apoptosis

[213]
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in curing the disease and can only relieve some AD symp-
toms by facilitating cholinergic signaling [135, 136]. There-
fore, it is essential to develop novel acetylcholinesterase
inhibitors for therapeutic intervention in AD. Natural prod-
ucts (particularly alkaloids) are potential sources for novel
AChE inhibitors [137]. Circumdatins are a group of alka-
loids of marine origin with dual inhibitory activities of AChE
and proinflammatory reactions. Among them, circumdatin
D showed a promising neuroprotective effect through the
multitarget strategy. Zhang et al. found that cyclostatin D
regulated TLR4-mediated NF-κB, MAPKs, and JAK/STAT
signaling pathways associated with inflammation in LPS-
stimulated BV-2 cells and protected primary neurons against
LPS-regulated neurotoxicity [138]. Therefore, circumdatin
D may be a potential drug to exert the neuroprotective effect
of AD via TLR4.

5.2.2. GX-50. Sichuan pepper is one of the main spices used
in Chinese food and has anti-inflammatory, antifungal, and
analgesic activities [139]. GX-50, a natural ingredient
extracted from Sichuan pepper, is a promising agent for
AD therapy [140–142]. The overactivated microglial cells,
proinflammatory factors, and continued deposition of Aβ
plaques led to a positive feedback loop of persistent and irre-
versible inflammation, ultimately leading to the progression
of AD. Studies have suggested that GX-50 may be involved
in this inflammatory circuit. Studies showed that GX-50
could directly decrease the aggregation of Aβ oligomer,
reduce neuroinflammation, and improve the cognitive func-
tion of APP transgenic mice. Shi et al. found that GX-50
exerted an anti-inflammatory role on Aβ-induced microglial
overactivation through a mechanism involving the TLR4-
mediated NF-κB/MAPK signaling pathway. GX-50 inhibited
Aβ-stimulated activation of TLR4, subsequently inhibited
MyD88 and TRAF6 recruitment, resulting in inhibition of
NF-κB and MAPK, and inhibited Aβ-induced inflammatory
reaction [73]. These results suggest that TLR4/NF-κB/
MAPK may be an important pathway in GX-50 treatment
of AD.

5.2.3. Resveratrol. Several epidemiological data suggest that
red wine consumption in moderation is related to a lower
incidence of dementia and AD [143–145]. Studies in mouse
AD models have shown that red wine consumption reduced
brain amyloid deposition and Aβ-related cognitive impair-
ment [146, 147]. Resveratrol is a natural polyphenol found
in red wine. Recent studies have shown that this polyphenol
is related to antiamyloidosis and neuroprotective activities of
cell lines in vitro and mice in vivo. The relative abundance of
resveratrol found in red wine is related to possible neuropro-
tective effects, thus interpreting the advantageous roles of
wine consumption on AD. Resveratrol may have anti-
inflammatory activities in multiple systems, involving acti-
vated microglia [148]. Evidence showed that resveratrol sig-
nificantly reduced Aβ-induced microglial inflammation
in vitro and in vivo. Resveratrol effectively inhibited LPS-
regulated inflammation in microglia BV-2 cells and RAW
264.7 macrophages. Resveratrol preferentially antagonized
the IKK/IκBα/NF-κB signaling pathway under LPS stimula-

tion, repressed NF-κB transcription and the expression of
multiple NF-κB target genes, such as TNF-α and IL-6. More-
over, oral resveratrol reduced the number of activated
microglia related to cortical amyloid plaque formation in
an in vivo study of a mouse model of amyloid deposition
in the brain [149]. In conclusion, resveratrol negatively
controls Aβ-induced microglial inflammation in vitro and
in vivo, which may be associated with TLR4-related signal-
ing pathways and is a potential treatment for AD.

5.3. Bacteria Associated with the Gut. Probiotics offer a
potential preventive effect on AD progression [150, 151].
Multiple probiotics reduce the Mini-Mental State Examina-
tion (MMSE) score and some metabolic characteristics in
patients with AD. A probiotic mixture was identified to reg-
ulate the gut microbiome and ameliorate memory dysfunc-
tion and oxidative stress in rats injected with β-amyloid
protein (1e42)[152]. Probiotic-4 is a probiotic preparation
made of Lactobacillus casei, Bifidobacterium lactate, Lacto-
bacillus acidophilus, and Bifidobacterium bifidum. Studies
have shown that probiotic-4 regulates age-related gut micro-
biome dysregulation improving microbiome axis defects and
cognitive dysfunction. The mechanism of probiotic-4 neuro-
protective effects was related to inhibition of TLR4 and RIG-
I mediated NF-κB pathway and inflammatory reactions
[153]. Glucagon-like peptide-1 (GLP-1) is a type of endoge-
nous hormone secreted by endocrine cells in the ileum that
facilitates insulin secretion and suppresses glucagon secre-
tion, lowering blood glucose in a glucose-dependent manner
[154]. Studies have shown that GLP-1 plays a neuroprotec-
tive role in affecting the proliferation and apoptosis of neural
cells; ameliorating learning, memory, and motor deficits;
reducing the deposition of Aβ plaques in the brain; reducing
the loss of dopaminergic neurons; and promoting neural
regeneration [155]. GLP-1 also reduced hyperphosphory-
lated tau and neurofilament proteins in rodents to improve
AD-like neurodegeneration, which was related to memory
amelioration and learning dysfunction [156]. GLP-1 has
demonstrated efficacy in clinical trials in patients with AD
[157, 158]; however, GLP-1 undergoes easy degradation,
and therefore, continuous intravenous infusions or continu-
ous subcutaneous injections are necessary to perform thera-
peutic roles, thus limiting its clinical application [154]. The
engineered strain may be a novel intervention for treating
AD through alleviating neuroinflammation. Fang et al. con-
structed an engineered Lactococcus lactis strain MG1363-
PMG36E-GLP-1 capable of continuously expressing GLP-1.
They found that MG1363-PMG36E -GLP-1 reduced neuro-
inflammation by downregulating the TLR4/NF-κB signaling,
upregulated the AKT/GSK3β pathway, and restored the
disturbed microbiome to normality, remarkably alleviating
spatial learning and memory impairment in AD mice [159].
These results provide theoretical support for applying GLP-
1 engineered strain in treating AD through TLR4.

5.4. Molecular Inhibitors and Agonists

5.4.1. TAK-242. TAK-242 is a selective inhibitor of TLR4
with a low molecular weight that destroys the interaction
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of TLR4 with the cohesive molecules and suppresses its
downstream pathway. Due to its high lipid solubility and
low molecular weight, TAK-242 has the ability to cross the
BBB [160]. Cui et al. found that TAK-242 could protect
APP/PS1 transgenic AD mice from injury. They proved that
TLR4 expression increased in mice with AD, and inhibition
of TLR4 triggered microglia from an inflammatory M1 phe-
notype to a protective M2 phenotype and protected neurons
from cytotoxicity of activated BV2 microglia by downregu-
lating MyD88/NF-κB and NLRP3 signaling pathways in
AD [33].

5.4.2. Monophosphoryl Lipid A (MPL). Monophosphoryl
lipid A (MPL), a chemically detoxified part of the lipid A, is
an LPS-derived TLR4 agonist that displays distinct immuno-
regulatory activities at nonpyrogenic doses [161, 162]. More-
over, MPL is secure in humans, and millions of patients have
received it as part of several vaccine formulations, including
Cervarix [163]. Studies have shown that chronic systemic
administration of MPL can stimulate the phagocytosis of
innate immune cells, induce a moderate inflammatory
response, reduce the brain Aβ load, and improve the cogni-
tive function of AD mice. These results have shown that
MPL stimulates p38 and facilitates Aβ uptake selectively
while preventing the production of potentially harmful pro-
inflammatory factors triggered by other pathways [162].
Studies showed that p38, ERK, JNK, and NF-κB induced
TLR-mediated factor production, but p38 could upregulate
scavenger receptor expression and induce phagocytic activity
[164, 165]. Although MPL did not stimulate ERK or JNK and
induced NF-κB to a lower extent than LPS, it strongly acti-
vated p38 and drove SR-A expression in microglia. These
findings showed that MPL stimulated p38, facilitated Aβ
uptake selectively, and avoided the production of potentially
harmful proinflammatory factors triggered by other signal
pathways. TLR4 stimulates the detoxification ligand MPL to
significantly mitigate AD-related pathology, and its applica-
tion in treating AD remains to be explored. Taken together,
molecular inhibitors and agonists focusing on the regulation
of the TLR4 may be potential treatment strategies for AD.

5.5. Clinical Drugs

5.5.1. Alogliptin. Type 2 diabetes mellitus (T2DM) is the
main risk factor for progression to AD. Therefore, antidia-
betic agents may be effective treatments for AD. Dipeptidyl
peptidase-4 (DPP-4) suppressors are widely known antidia-
betic agents for managing T2DM via attenuating endogenous
GLP-1 degradation, which leads to inhibition of glucagon
release and glucose-dependent rise in insulin secretion
[166]. In addition to the glycemic effect, DPP-4 suppressors
have neuroprotective effects. Among them, sitagliptin, vilda-
gliptin, and saxagliptin inhibited the accumulation of Aβ and
abnormal phosphorylation of tau to alleviate inflammation
and reverse behavioral defects in AD rats [167, 168]. Studies
showed that alolliptin, a highly selective and effectual DPP-4
suppressor, could ameliorate cognitive dysfunction and
depressive symptoms in obese ApoE-/- mice. Ayman et al.
found that alolliptin reversed the LPS-activated TLR4/

MyD88/NF-κB signaling pathway and reduced TNF-α and
IL-6 levels, thus playing a neuroprotective role [169]. This
finding suggests that alolliptin may improve amyloidation-
related cognitive decline by inhibiting TLR4 activation-
related neuroinflammation and may be a potential treatment
for AD.

5.5.2. Cattle Encephalon Glycoside and Ignotin (CEGI). Cattle
encephalon glycoside and ignotin (CEGI) involves mono-
sialotetrahexosyl ganglioside (GM1), hypoxanthine, free
amino acids, and polypeptides [170]. In China, CEGI injec-
tions are commonly used for treating central and peripheral
nerve injury disorders, such as acute ischemic stroke and
diabetic peripheral neuropathy [171, 172]. Gao et al. found
that CEGI inhibited activated microglia in APP/PS1 mice,
suggesting that CEGI may be a prospective agent for treat-
ing AD. In addition, they showed that CEGI inhibited ele-
vated TLR4 levels in APP/PS1 mice and Aβ-induced BV2
cells and inhibited NF-κB p65 phosphorylation in vitro
and in vivo [173]. Based on these results, the authors indi-
cated the role of CEGI in antineuroinflammation by inhi-
biting the TLR4/NF-κB signaling pathway. This result
provides new theoretical support for applying CEGI in
managing AD.

5.5.3. Fasudil. Several studies have shown that the Rho/Rho
kinase (ROCK) signaling pathway participates in many
pathological processes, such as oxidative stress, inflamma-
tory cell migration, and immune cell activation, which
may influence the occurrence and progression of various
neurodegenerative diseases, such as AD. Studies showed
that ROCK inhibitors could prevent neuronal injury, neuro-
inflammation, and demyelination. Thus, ROCK has become
a possible target for new therapies for AD [174, 175]. Fasu-
dil is an effective ROCK inhibitor shown to have several
neuroprotective effects in the CNS: promoting axonal
regeneration, inhibiting inflammatory responses, and pro-
tecting against Aβ-induced neurodegeneration [176–178].
Guo et al. found that microglia-astrocyte crosstalk through
the TLR4/MyD88/NF-κB signaling pathway played an
important role in the neuroinflammation of AD. They
observed that fasudil inhibited the expression of TLR4,
MyD88, and NF-κB in APP/PS1 Tg mice, thus suppressing
microglia activation and inducing their transformation to
an anti-inflammatory phenotype and further transforming
astrocytes from an A1 phenotype to an A2 phenotype; the
cognitive defects of APP/PS1 Tg mice showed improvement
[179]. These results suggest that fasudil may play a thera-
peutic role in AD through the TLR4 signaling pathway.

5.5.4. Atorvastatin. Statins are 3-hydroxy-3-methylglutaryl-
coA (HMGCoA) reductase suppressors and the most effi-
cacious cholesterol-lowering drugs of all lipid-lowering
medicines [180]. Clinical data showed a decrease in the
incidence of AD among statin users compared to nonusers
[181]. Studies have shown that the main effect of statins on
AD patients is to reduce the inflammatory reaction caused
by microglial activation rather than the accumulation of Aβ
[182]. Atorvastatin, a lipophilic member of the statin family,
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has shown a promising therapeutic anti-inflammatory role
[183]. Research showed that after 3 weeks of atorvastatin pre-
treatment, the levels of the anti-inflammatory factor IL-4
enhanced in the hippocampus and the intracellular expres-
sion of Aβ-induced proinflammatory factors TNF-α, IL-6,
and IL-1β decreased [184, 185]. We found that chronic treat-
ment with high-dose atorvastatin significantly reduced the
levels of TLR4, TRAF6, and NF-κB, inhibited the activation
of microglia and astrocytes, alleviated hippocampal patho-
logic alterations and neuronal apoptosis, and improved spa-
tial learning ability and memory impairment in AD rats.
They also found a tendency for continuous low-dose atorva-
statin administration to ameliorate Aβ-induced cognitive
dysfunction; however, the difference was not prominent, sug-
gesting that the neuroprotective role of atorvastatin in AD
appears to depend on the dose and treatment regimen used
[37]. In conclusion, appropriate modification of the TLR4-
mediated signal pathway may be one of the potent targets
for atorvastatin treatment of Aβ-regulated neurotoxicity in
AD.

5.6. Traditional Chinese Therapy

5.6.1. Chinese Herbal Medicine

(1) Tetrandrine. Tetrandrine is a natural product isolated
from the Chinese herbal medicine Stephania tetrandra,
which has many biological activities [186]. Previous studies
have demonstrated that tetrandrine has anti-inflammatory
properties in various cell types, such as astrocytes, T cells,
and monocytes.[187–190]. Yang et al. reported that tetran-
drine inhibited inflammatory activation of LPS-induced
microglia in culture [191]. He et al. demonstrated that tet-
randrine ameliorates cognitive disorder by suppressing NF-
κB activity and inflammation in a rat model of AD induced
by Aβ1-42 [192]. They found that in 5XFAD mice, tetran-
drine administration dose-dependently reduced amyloid
plaque deposition in the brain, diminished apoptosis in the
hippocampus, and reduced cognitive performance. Tetran-
drine repressed the expression of TLR4 and p65 in BV2 cells
induced by Aβ 1-42 and effectively suppressed the inflam-
matory activation of BV2 cells [193]. These results suggests
that tetrandrine may promote the clearance of amyloid pla-
ques by regulating the functional transformation of microg-
lia. Together, these findings indicate that tetrandrine may be
a promising agent for treating AD through TLR4-mediated
neuroinflammation.

(2) Pinoresinol diglucoside (PDG). Eucommia ulmoides, a
traditional Chinese herbal medicine, is widely used in
China. Pinoresinol diglucoside (PDG), extracted form of
Eucommia ulmoides, is one of the primary lignans with
anti-inflammatory, antioxidant, antivascular injury, antican-
cer, antihypertensive actions, and prevention of osteoporo-
sis [194–200]. Studies have reported that PDG inhibits
NF-κB and induces Nrf2-dependent HO-1 activation by
regulating the MAPK, PI3K/Akt, and GSK-3β pathways to
suppress the proinflammatory reaction of BV-2 microglia
[201]. Water extract of Eumoides ulmoides bark ameliorates

Aβ25-35-induced learning and memory dysfunction in
mice and plays a neuroprotective role mediated by choliner-
gic protection and enhancement [202]. Lei et al. demon-
strated an improved influence of PDG on Aβ1-42
neurotoxicity in mice. They found that PDG treatment
remarkably inhibited the expression of TLR4 and NF-κB
upregulated by Aβ1-42, thereby suppressing the expression
of TNF-α and IL-1β, and relieving inflammatory reactions,
suggesting that PDG is involved in the regulation of the
TLR4/NF-κB pathway [203]. This finding highlights the
neuroprotective activity of PDG, which decreases neuroin-
flammation by modulating the TLR4/NF-κB pathway, thus
reducing cognitive dysfunction in AD mice, suggesting that
PDG is a potential drug for AD treatment.

(3) Geniposidic acid (GPA). Geniposidic acid (GPA) is an iri-
doid glycoside isolated from Eucommia ulmoides. Several
studies have shown that GPA exhibits anti-inflammatory,
antioxidant, antiaging, and neurotrophic roles. Zhou et al.
found that the distinct contribution of GPA to the APP/
PS1 transgenic AD mouse model was partly regulated by
its anti-inflammatory effect. They confirmed that GPA could
ameliorate Aβ plaque load and learning and memory func-
tion in APP/PS1 mice by blocking the TLR4/2–MyD88 sig-
naling pathway in reactive microglia when HMGB-1
protein expression was reduced [204]. This finding provides
theoretical support for the application of GPA in the treat-
ment of AD.

(4) Curcumin. Curcumin is the yellow component of the
spice turmeric isolated from the root of turmeric. Studies
have shown that curcumin has powerful anti-inflammatory,
antioxidant, and antiamyloidosis activities and may play
neuroprotective roles in AD [205–208]. Curcumin could
reduce the expression levels of HMGB1, TLR4, or TLR2 in
lipopolysaccharide-treated human endothelial cells [209].
He et al. found that curcumin pretreatment significantly
inhibited the expression of TLR4 and RAGE in Aβ25-35-
induced microglia. Curcumin also significantly reduced the
expression of TNF-α and IL1β. These results suggest that
curcumin may inhibit HMGB1-mediated inflammation in
microglia stimulated by Aβ25-35, partly by suppressing the
expression of TLR4 and RAGE [210]. In conclusion, TLR4
suppression is a critical target of curcumin in treating AD.

(5) Chotosan (CTS). Chotosan (CTS) is a traditional com-
pound herbal formula consisting of 11 raw herbs often used
to improve chronic headaches and high blood pressure
symptoms and treat related neurological diseases [211]. Var-
ious animal models showed that CTS could effectively allevi-
ate cognitive dysfunction and memory deficits associated
with disorders that involve more or less abnormal microglial
activation and inflammation of the CNS, such as chronic
cerebral hypoperfusion, ischaemic stroke, diabetes, and
aging. Rhynchophylline and isorhynchophylline, derived
from Uncaria sinensis, are representative herbal components
of CTS. They had preservative effects against Aβ25–35-
induced cellular neurotoxicity; moreover, they inhibited
LPS-induced proinflammatory factors, such as TNF-α and
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IL-1β and NO produced by mouse N9 microglia [212].
Although clinical practice showed that CTS could treat cog-
nitive impairment and behavioral and psychological symp-
toms in patients with AD, the specific pharmacological
mechanisms needed to be clarified. Chen et al. found that
CTS administration decreased the level of TLR4 induced
by Aβ1–42 and inhibited TLR-4-mediated inflammatory
reaction. The production of NF-κB p65, TNF-α, and IL-1β
was reduced in the hippocampus. Aβ1–42 enhanced the
activity of caspase-3 and reduced the Bcl-2/Bax ratio, leading
to obvious apoptotic reactions in the hippocampus. How-
ever, CTS treatment showed strong antiapoptotic effects by
reversing the upregulation of proapoptotic proteins [213].
These results demonstrates that CTS therapy can ameliorate
Aβ1–42-induced learning and memory disorder through
neuroinflammation and apoptosis mediated by the TLR-4/
NF-κB signal pathway. This finding provides an idea for
the treatment of CTS in AD.

5.6.2. Electroacupuncture. Acupuncture originates from
ancient China and is one of the oldest treatments worldwide.
Acupuncture, a part of traditional Chinese medicine (TCM),
has been an alternative and complementary therapy for over
millennia. It belongs a complement of traditional medicine
in various eastern and western countries recently [214].
Electroacupuncture (EA) combines acupuncture and electri-
cal stimulation to treat multiple diseases effectively. Acu-
puncture therapy has a beneficial effect in mitigating
cognitive impairment in AD [215, 216]. Recent research
has shown that EA treatment improves neuroinflammation
and thus cognitive dysfunction in mice with AD [217,
218]. EA therapy inhibited microglial activation, which
showed that electroacupuncture at GV 20 and ST 36 points
could relieve neuroinflammation effectively and thus reduce
cognitive impairment. Previous research has also reported
that EA at ST36 represses TLR4/NF-κB signaling, thereby
reducing LPS-regulated inflammation in rat models [219].
Moreover, acupuncture could regulate the gut microbiome
[220]. He et al. demonstrated that inflammatory substances
produced by dysbiosis of intestinal flora could trigger subse-
quent cerebral inflammatory reactions. They also observed
that preventive EA therapy during ageing could rescue
learning and memory dysfunction in ageing rats via modu-
lating the gut microbiome and impaired microbiome-gut-
brain axis. Furthermore, this protective effect of EA might
be related to the downregulation of the TLR4/NF-κB signal-
ing pathway [221]. In conclusion, the neuroprotective effect
of EA in suppressing the TLR4 pathway activation may be
an effective treatment for AD.

6. Conclusion

Although therapeutic targeting of TLR4 in AD models has
yielded promising results, further research is needed to
translate these approaches into clinical practice. The design
and optimization of agonists that selectively target the
TLR4-MyD88 pathway may be a promising future agent that
can preferentially enhance the phagocytic activity of glial
cells while moderately upregulating glial cytokines and cyto-

toxins. Since the activation of TLR4 may modulate neuroin-
flammation and promote glial scarring, further preclinical
and clinical safety research is needed before recommending
these agents for clinical trials.

Moreover, the key adverse activities of TLR4 antagonists
may be associated with their inhibition of abnormal protein
and cell fragment clearance and interference with myelina-
tion. One challenge facing the clinical development of some
TLR4-specific agonists and antagonists is their large molec-
ular structure, which may prevent them from crossing the
BBB. Besides, the effectiveness of therapeutic strategies tar-
geting TLR4 may rely on the stage of the disease. For
instance, prevention of Aβ accumulation with TLR4 agonists
may be beneficial only in early AD. Therefore, early AD
diagnosis is the key to effective treatment of TLR4. Thus,
the specific involvement of TLR4 in disease staging in AD
pathology is an important goal. The imbalance of the
immune system in AD is complex, with interactions and
interacting factors affecting neuroinflammation. Therefore,
a single inflammatory mediator may not be entirely harmful
or beneficial. In the future, it will be significant to explore the
mechanisms between TLR4 and other receptors to deter-
mine effective therapeutic strategies for AD.
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