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Vitronectin, a Novel Urinary Proteomic Biomarker, Promotes
Cell Pyroptosis in Juvenile Systemic Lupus Erythematosus
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Objective. Identifying new markers of juvenile systemic lupus erythematosus (JSLE) is critical event to predict patient stratification
and prognosis. The aim of the present study is to analyze alteration of urinary protein expression and screen potential valuable
biomarkers in juvenile systemic lupus erythematosus (JSLE). Methods. The urine was collected from the patients with or
without JSLE and detected by mass spectrometry to analyze proteomic changes. ELISA was used to verify the Vitronectin
(VTN) changes in a new set of patients. The clinical correlation was performed to analyze between VTN and clinical
pathological parameters. WB and ELISA were used to analyze VTN-mediated cell pyroptosis. Results. Herein, we have
identified a group of 105 differentially expressed proteins with ≥1.3-fold upregulation or ≤0.77-fold downregulation in JSLE
patients. These proteins were involved in several important biological processes, including acute phase inflammatory responses,
complement activation, hemostasis, and immune system regulation through Gene Ontology and functional enrichment
analysis. Interestingly, urinary ephrin type-A receptor 4 (EPHA4) and VTN were significantly reduced in both inactive and
active JSLE patients, and VTN treatment in THP-1 derived macrophages led to a significant increased cell pyroptosis by
activation of Nod-like receptor family protein 3 (NLRP3) inflammasomes, resulting in caspase-1 activation, cleaved gasdermin
D (GSDMD), and IL-18 secretion. Most importantly, the urinary VTN was also linearly correlated with clinical characteristics
of JSLE, implying that VTN could be a specific diagnostic biomarker to distinguish inactive and active JSLE. Conclusion. This
study provided a novel role of VTN in pyroptosis in JSLE through the urinary proteomic profile for JSLE, which could be a
nonintrusive monitoring strategy in clinical diagnosis.
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1. Introduction

Systemic lupus erythematosus (SLE), an autoimmune disease
with inflammation, affects multiple organ systems character-
ized by excessive production of antinuclear antibodies and high
morbidity and low quality of life [1–3]. The precise pathophys-
iological mechanism of SLE is largely unknown. One of the
most important mechanisms involved in SLE is alteration of
immune reactions, which involved autoantibodies that target
the patient’s own tissues and subsequently lead to the inflam-
mation [4]. Despite tremendous basic and clinical research
progress regarding treatment [5], various cytokines and
chemokines have emerged as the potential biomarkers of SLE
disease activity [6]. However, due to the complexity of this dis-
ease, the clinical usefulness of these potential biomarkers in
assessing disease in SLE is not well established, especially
through noninvasive and easy collected urine samples to diag-
nose renal activity of SLE.

The changes in humoral metabolomics, including serum,
plasma, urine, and sputum, can provide abundant information
on the physiological and pathological states of individuals and
useful clinical parameters. Consequently, to understand the
enormous potential in terms of revealing disease conditions
will also bring the promise of a revolution in disease diagnosis
and therapeutic monitoring [7–10]. In a previous study, 23
differential metabolites and 5 perturbed pathways including
aminoacyl-tRNA biosynthesis, thiamine metabolism, nitrogen
metabolism, tryptophan metabolism, and cyanoamino acid
metabolism were identified between SLE patients and healthy
controls [1]. Also, the studies exhibited that immunoglobulin-
binding protein [7], urinary vitamin D-binding protein, and
S100 calcium-binding protein (S100) were the potential bio-
markers in patients with lupus nephritis [11, 12]. With signif-
icant advances in proteomic technologies, the comprehensive
profiling of protein expression in biofluids from patients with
a given disease prompts a deep exploration of disease and its
underlying mechanisms. In an attempt to reach greater under-
standing of the pathogenesis, based on advantage of proteomic
technologies, we tried to seek potential information in urine to
differentiate inactive juvenile SLE (JSLE) patients from active
ones and healthy donors.

Vitronectin (VTN), a multifunctional glycoprotein, has
been demonstrated to be enriched in the serum, extracellular
matrix, and platelets [13] and regulated cell adhesion, coagula-
tion, fibrinolysis, complement activation, and apoptosis by
interacting with integrin avβ3, plasminogen activator
Inhibitor-1 (PAI-1), and urokinase plasminogen activator
(uPAR) [14, 15]. Also, it has been reported that VTNwas asso-
ciated with inflammation in several biological processes, such
as acute lung injury, burns, and sepsis, which were involved in
the neutrophil and autoreactive T and B lymphocyte activa-
tion and tissue injury [16–19]. In addition to VTN, ephrin
type-A receptor 4 (EPHA4), belonging to the ephrin receptor
subfamily of the protein-tyrosine kinase family, has been impli-
cated in mediating developmental events and associated with
the development of SLE, particularly in the central nervous sys-
tem lupus erythematosus (CNS-SLE) [20, 21]. What is more,
ephrin-A1-EphA4 signaling has reported to negatively regulate
with myelination in the central nerve system [20]. Up to now,

some proteomic changes of urine have been described in
SLE patients. However, the proteomics of urinary specific bio-
markers that distinguished the inactive JSLE and active JSLE
remained to be identified.

In this study, we further showed that the VTN and
EPHA4, decreased in JSLE by urinary protein profiling,
could be considered the novel biomarkers associated with
the autoimmune inflammation among healthy donors and
inactive and active JSLE patients. Therefore, the alteration
of VTN and EPHA4 proteins could be a potential strategy
to develop innovative therapeutic approaches.

2. Materials and Methods

2.1. Patients and Study Design. A total of 9 healthy controls
(group 1/G1) and 19 patients diagnosed with SLE (group 2/
G2: 9 inactive JSLE patients; group 3/G3: 10 active JSLE
patients) were recruited in Guangzhou Women and Chil-
dren’s Medical Center. The written informed consent was
obtained from all subjects according to the Declaration of
Helsinki. This clinical ethical was approved by the Ethics
Committee of Guangzhou Women and Children’s Medical
Center. The clean morning urine samples were collected
and centrifuged at 3000 g, at 4°C for 15min. The superna-
tant was stored at -80°C for further proteomics analysis.

2.2. Disease Activity Assessment. Disease activity assessment
was performed using the modified SLE Disease Activity Index
2000 (SLEDAI-2K) described in the previous study [22]. The
modified SLEDAI-2K excludes 2 immunological items (the
complement levels and anti-double-stranded DNA/dsDNA)
from the original SLEDAI-2K, while maintaining the 16 clinical
manifestations and 4 laboratory tests (white blood cell count,
platelet count, urinalysis, and 24-hour proteinuria). Since the
British Isles Lupus Assessment Group 2004 (BILAG-2004)
index provided detailed assessments including severity for
affected organs and system manifestations [23], we have mod-
ified the total BILAG-2004 index based on the scorings of A
= 12, B = 8, C = 1, and D/E = 0. The inactive disease of JSLE
patients was defined as above modified BILAG-2004 index C/
D/E or modified SLEDAI-2K scores < 5. The active JSLE
patients were determined by modified BILAG-2004 index A/
B or modified SLEDAI-2K scores ≥ 5. Several clinical manifes-
tations of healthy controls were also demonstrated in the com-
parison to JSLE patients. Therefore, the correlation between the
differentiated protein levels and the severity of certain organ/
system manifestations of JSLE patients were also determined.

2.3. Sample Preparation, Mass Spectrometry (MS), and MS
Interpretation.All samples were prepared for proteomics assay
with the following preparations. Protein concentration in the
urine was determined using a BCA kit (Beyotime, P0009)
according to the manufacturer’s instructions. For digestion,
dithiothreitol was used to concentrate the total protein solu-
tion for 30min at 56°C, and then, alkylation of protein with
11mmol/L iodoacetamide was performed for 15min at room
temperature in the dark. After trypsin digestion, the peptides
were combined and dried and then subjected to an nitrogen
solubility index source followed by tandemmass spectrometry
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(MS/MS) in Q-Exactive (Thermo Fisher Scientific, San Jose,
CA, USA) coupled online to an ultraperformance liquid
chromatography system. The resulting MS/MS data were
processed using MaxQuant with the integrated Andromeda
search engine (v.1.5.2.8). Gene Ontology (GO) was a major
bioinformatics initiative to unify the representation of the gene
and gene product attributes across all species. The GO annota-
tion proteome was derived from the UniProt-GOA database
(http://www.ebi.ac.uk/GOA). The Kyoto Encyclopedia of
Genes and Genomes (KEGG) was used to connect known
information on molecular interaction networks. These path-
ways were classified into hierarchical categories according to
the KEGG website.

2.4. Protein-Protein Interaction (PPI) Network Construction
and Module Analysis. The Search Tool for the Retrieval of
Interacting Genes (STRING) online database (https://string-
db.org/cgi/input.pl) tool was employed to construct the PPI
network.

2.5. Cell Culture and Treatment. THP-1 cells were purchased
from American Type Culture Collection (ATCC, Manassas,
VA) and cultured according to the manufacturer’s recommen-
dations. Dulbecco’s modified Eaglemedium (DMEM) and fetal
bovine serum (FBS) were purchased from Gibco (Thermo
Fisher Scientific, USA). The cells were treated with PMA
(100nM, P6741, Solarbio, Beijing, China) for 72 hours and
induced into macrophages. For cell treatment, VTN (P00082,
Solarbio, Beijing, China) was used to treat THP-1-derivedmac-
rophages at 4μM. Other reagents used in this study were pur-
chased from Sigma.

2.6. Western Blotting. As described in our previous study
[24], the whole cell lysate was harvested and subjected to
SDS-PAGE and transferred into the nitrocellulose transfer
membrane. After incubation with 5% (w/v) milk in PBS/
0.05% (v/v) Tween-20 for 1 hour, the membrane was
incubated with indicated antibodies overnight at 4°C, subse-
quently followed by incubation with a horseradish peroxi-
dase secondary antibody (Jackson ImmunoResearch) for 1
hour at room temperature. Proteins were detected using an
enhanced chemiluminescence (PerkinElmer). The anti-
bodies used in this study were from Abcam: NLRP3
(ab263899, 1 : 2000 for WB), IL-1β (ab254360, 1 : 1000 for
WB), caspase-1 (ab179515, 1 : 1000 for WB), ASC
(AB283684,1 : 2000 for WB), GSDMD (ab219800, 1 : 2000
for WB), NF-κB (ab207297, 1 : 2000 for WB), phospho-NF-
κB (ab239882, 1 : 2000 for WB), β-actin (ab8226, 1 : 4000
for WB), and α-tubulin (ab7291, 1 : 5000 for WB).

2.7. Real-Time PCR. As described in our previous study [25],
the total RNA was extracted according to the instruction. The
All-in-One First-Strand cDNA Synthesis Kit and All-in-One
qPCR Mix were used to perform reverse transcription and
quantitative PCR (qPCR) according to the manufacturer’s
protocol. The primers used in this study are as follows: IL-1β:
forward: 5′-ATGATGGCTTATTACAGTGGCAA-3′ and
reverse: 5′-GTCGGAGATTCGTAGCTGGA-3′; IL-18:
forward: 5′-TCTTCATTGACCAAGGAAATCGG-3′ and

reverse: 5′-TCCGGGGTGCATTATCTCTAC-3′; GSDMD:
forward: 5′-GTGTGTCAACCTGTCTATCAAGG-3′ and
reverse: 5′-CATGGCATCGTAGAAGTGGAAG-3′; NLRP3:
forward: 5′-GATCTTCGCTGCGATCAACAG-3′ and reverse:
5′-CGTGCATTATCTGAACCCCAC-3′; ASC: forward: 5′-
TGGATGCTCTGTACGGGAAG-3′ and reverse: 5′-CCAG
GCTGGTGTGAAACTGAA-3′; caspase-1: forward: 5′-CCTT
AATATGCAAGACTCTCAAGGA-3′ and reverse: 5′-TAAG
CTGGGTTGTCCTGCACT-3′; and UBC: forward: 5′-ATTT
GGGTCGCGGTTCTTG-3′ and reverse: 5′-TGCCTTGAC
ATTCTCGATGGT-3′.

2.8. ELISA. IL-1β (ab229384) and IL-18 (ab215539) in
culture supernatants were measured and quantitated for
the indicated group by ELISA according to the manufactur-
er’s instructions, respectively.

2.9. Relative Cell Death Assays. LDH assay kit (Abcam,
ab102526) was used to analyze LDH in supernatants from
THP-1-derived macrophages treated in the experiment
according to the manufacturer’s instructions. Relative cell
death was determined as described in Zhou et al.’s study [26].

2.10. Statistical Analysis. Statistical analysis of in vivo data
was described in the section of each assay. Results were
expressed as mean ± standard deviation (SD) for normally
distributed data. Mann-Whitney U tests were tested for the
continuous variables. Comparison of different groups was
made with Kruskal-Wallis analysis of variance (ANOVA),
followed by Dunn’s posttest for comparing the differences
and calculating a probability (p) value for each pair of
comparison. All hypotheses were two-tailed, and p values
less than 0.05 were considered significant. Spearman’s rank
correlation test was used to assess the lineal correlations among
the urinary VTN expression with clinical parameters of JSLE
patients. r is the correlation coefficient. The t-test was per-
formed in qPCR and ELISA analysis. Data were analyzed using
GraphPad Prism (GraphPad Software, La Jolla, CA, USA).

3. Results

3.1. Patients and Clinical Characteristics.As shown in Table 1, a
total of 28 early morning urine samples were collected from 9
healthy controls, 9 patients with inactive JSLE, and 10 patients
with active JSLE. We found that creatinine level in healthy con-
trol is lower than inactive JSLE patients (22:87 ± 4:37 versus
61:13 ± 15:99, p < 0:05); the higher mean ratio of aspartate
amino transferase (AST)/alanine amino transferase (ALT) was
observed in inactive (1:47 ± 0:62 versus 2:54 ± 0:79, p < 0:01)
and active (1:36 ± 0:72 versus 2:54 ± 0:79, p < 0:01) JSLE
patients compared with healthy controls, respectively, while
lower hemoglobin (HB) levels in active JSLE patients
(96:78 ± 25:92 g/L) were found compared to those in healthy
controls (96:78 ± 25:92 versus 126:10 ± 31:90) and inactive
JSLE patients (96:78 ± 25:92 versus 116:00 ± 21:33),
respectively.
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In comparison with inactive JSLE patients, SLEDAI
(11:50 ± 7:29 versus 4:11 ± 4:08, p < 0:05), ANA
(417:60 ± 201:80 versus 16:71 ± 14:85, p < 0:001), and dsDNA
(443:10 ± 309:70 versus 14:52 ± 12:27, p < 0:01) were higher,
while erythrocyte sedimentation rate (ESR) (6:50 ± 6:76 versus
29:11 ± 22:86, p < 0:05) and complement C3 (0:38 ± 0:39
versus 0:75 ± 0:13, p < 0:05) and C4 (0:06 ± 0:05 versus 0:14
± 0:04, p < 0:01) in active JSLE patients. However, no statistical
differences were obtained in analysis of SLICC, proteinuria,
white blood cell (WBC), blood platelet (PLT), and C-reactive
protein (CRP). The detailed statistical differences in clinical
characteristics between JSLE patients and healthy controls are
listed in Table 1.

3.2. Prolife of the Proteome in the Urine of JSLE Patients. Prote-
omics analysis was then performed on the urine samples. As
shown in Figure1(a), heatmap results showed that 105 different
proteins have been identified among groups (group 1/G1:
healthy controls; group 2/G2: inactive JSLE patients; and
group3/G3: active JSLE patients) through liquid chromatogra-
phy- (LC-) mass spectrometry (MS). Bioinformatics analysis
of 16 downregulated proteins (≤0.77-fold downregulation)
and 9 upregulated proteins (≥1.3-fold upregulation) was
obtained between JSLE patients (G2+G3) and healthy controls
(Figures 1(a) and 1(b)). Further results showed that a total of
3 increased (≥1.3-fold upregulation) and 34 decreased (≤0.77-
fold downregulation) proteins were quantified between G2

and G1 (Figure 1(c)), while 21 increased (≥1.3-fold upregula-
tion) and 16 decreased (≤0.77 downregulation) proteins were
observed in a comparison between G3 and G1 (Figure1(d)).
Interestingly, compared to the G2, only 2 decreased proteins
and 47 increased proteins were found in the urine of active JSLE
patients (Figure 1(e)).

Based on these findings, to further explore the specific
differentially expressed genes (DEGs) among three groups,
we overlapped the downregulated proteins that reflected gene
expressions, and we achieved two downregulated proteins in
JSLE patients compared with healthy controls (VTN and
EPHA4, shown in Figure 2(a)), whereas none was obtained
by overlapping the upregulated proteins (Figure 2(b)). All
these DEGs are listed in Figure 2(c).

3.3. Functional Enrichment Analysis. To further analyze these
DEGs involved in the possible biological function, the enrich-
ment analysis was performed by the GO and KEGG terms,
including molecular function, cellular component, and biologi-
cal process that were significantly enriched to indicate the
nature of the differentially expressed proteins in urine between
JSLE patients and healthy controls using the Database for
Annotation, Visualization and Integrated Discovery online tool.

As for the DEGs in analysis of inactive JSLE patients and
healthy controls, multiple enriched GO terms and KEGG
pathways were demonstrated. The top 20 enriched GO terms
and KEGG pathways were selected and are shown in Figure 3.

Table 1: Demography of clinical characteristics for JSLE patients and healthy controls (mean ± SD).

Parameters Healthy controls (n = 9) Inactive JSLE (n = 9) Active JSLE (n = 10)
Age 3:38 ± 1:02 9:80 ± 1:00∗ 10:80 ± 0:97∗

Gender (M/F) 2/7 0/9 0/10

Disease duration (year) NA. 1:44 ± 0:69 2:03 ± 1:65
SLEDAI NA. 4:11 ± 4:08 11:50 ± 7:29#

SLICC NA. 1:56 ± 1:59 3:60 ± 2:59
Hematuria 0/9 1/9 5/10∗

Proteinuria 0/9 1/9 4/10

C3 (g/L) NA. 0:75 ± 0:13 0:38 ± 0:39#

C4 (g/L) NA. 0:14 ± 0:04 0:06 ± 0:05##

ANA (g/L) NA. 16:71 ± 14:85 417:6 ± 201:8###

dsDNA (g/L) NA. 14:52 ± 12:27 443:1 ± 309:7##

ESR (mm/h) NA. 29:11 ± 22:86 6:50 ± 6:76#

Creatinine (μmol/L) 22:87 ± 4:37 61:13 ± 15:99∗ 33:30 ± 1:90
Uric acid (μmol/L) 293:80 ± 107:20 399:40 ± 90:87 318:70 ± 85:48
AST/ALT ratio 2:54 ± 0:79 1:47 ± 0:62∗∗ 1:36 ± 0:72∗∗

CRP (mg/L) 8:94 ± 7:64 5:12 ± 7:18 2:13 ± 3:29
WBC (109/L) 6:70 ± 4:29 7:73 ± 2:19 7 :46 ± 1:78
HB (g/L) 126:10 ± 31:90 116:00 ± 21:33 96:78 ± 25:92∗

PLT (g/L) 238:20 ± 99:58 246:70 ± 108:70 260:80 ± 129:20
The statistically significant differences were shown between JSLE patients and healthy controls (∗p < 0:05, ∗∗p < 0:01), as well as the significant differences
between the active and inactive JSLE patients (#p < 0:05, ##p < 0:01, and ###p < 0:001). There are no statistically significant differences in the parameters of
gender, disease duration, SLICC, proteinuria, uric acid, CRP, WBC, and PLT among groups.
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Figure 1: Continued.
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Figure 1: Continued.
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Figure 1: Profile of urinary proteins. (a) Heatmap shows the differentially expressed genes (DEGs) reflected by differentially expressed
matching proteins in the indicated groups (group 1/G1: healthy controls, group 2/G2: inactive JSLE patients, and group 3/G3: active
JSLE patients). Red and green colors indicate higher and lower expression, respectively. (b–e) Volcano dot plot presents the mass
spectrometry data of proteome as -log10 (p value) plotted against the log2 (fold change/FC). The -log10 (p value) and log2 (FC) analysis
thresholds are indicated by dotted lines (≥1.3-fold upregulation or ≤0.77-fold downregulation, p < 0:05). Green dots represent the
downregulated proteins, while red dots represent the upregulated proteins and gray dots represent no significant difference in proteins.
The symbol of differentially expressed proteins labeled with relevant color is listed beside each graph.
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Figure 3(b) showed that the main enrich GO terms were
majorly associated with cell adhesion, biological adhesion,
peptidyl-tyrosine phosphorylation, peptidyl-tyrosine modifi-
cation, and cell-cell adhesion via plasma-membrane adhesion
molecules.When compared with healthy controls and inactive
JSLE patients, the differentiated KEGG pathways are listed in
Figure 3(a). Also, the involvement of salivary secretion, the
PI3K-Akt signaling pathway and human papillomavirus infec-
tion as well as focal adhesion were observed, while biological
function was related to posttranslational protein modification,
protein modification, cell adhesion, and cellular protein mod-
ification process in the comparison of active JSLE patients and
healthy controls (Figures 3(c) and 3(d)). In addition, from the
comparison results of inactive and active JSLE patients, we also
found DEGs participating in multiple biological pathways,

such as necroptosis, focal adhesion, and PI3K-Akt signaling
that were involved in the regulation of mitotic nuclear division
and nuclear division (Figures 3(e) and 3(f)).

3.4. The Protein-Protein Interaction Analysis of Differential
Genes. To clearly understand the interaction of downregulated
DEGs, the PPI network of these DEGs was generated to iden-
tify the key genes and their interactions in JSLE utilizing the
STRING online database. As shown in Figure 4, these results
showed that VTN is formed as a core molecule of the PPI net-
work among three groups, at least interacting with other genes
in the interatomic networks, including collagen type XVIII
alpha 1 (COL18A1), fibulin 5 (FBLN5), aggrecan (ACAN),
junctional adhesion molecule-A/F11 receptor (F11R), and
prion protein (PRNP). As for the active and inactive JSLE,
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Figure 2: Identification of aberrant differentially expressed proteins including downregulated and upregulated proteins. (a) Two aberrantly
downregulated proteins EPHA4 and VTN, (b) but no aberrantly upregulated proteins are obtained by Venn diagram among the indicated
groups (G1: healthy controls, G2: inactive JSLE patients, and G3: active JSLE patients). (c) The aberrant DEGs reflected by their matching
proteins are listed in the indicated groups.
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VTN, COL18A1, and ACAN were also significant hub genes
in the interatomic networks.

3.5. Correlation between Urine VTN Levels and Lupus
Clinical Parameters. In this study, upon the quantitative
results, we tried to seek the clinical values for a detection
of urinary VTN in JSLE patients. We found that VTN was
negatively associated with serum dsDNA (inactive JSLE: r
= −0:6328, p < 0:05, Figure 5(a); active JSLE: r = −0:7002, p
< 0:05, Figure 5(b)), and the similar relationship was
obtained in the correlation of ANA and VTN (inactive JSLE:
r = −0:743, p < 0:05, Figure 5(c); active JSLE: r = −0:5603, p
< 0:05, Figure 5(d)). In addition, complement C3 and C4
were positively associated with VTN in both inactive JSLE
(C3: r = 0:6440, p < 0:05, Figure 5(e); C4: r = 0:8343, p <
0:01, Figure 5(g)) and active JSLE (C3: r = 0:7156, p < 0:05,
Figure 5(f); C4: r = 0:8192, p < 0:01, Figure 5(h)).

3.6. Correlation between Urine VTN Levels and Different
Lymphocyte Subsets. SLE is characterized by the loss of toler-
ance to self-antigens, downstream activation, and expansion
of autoreactive T and B lymphocytes [19]. In this study,
upon the quantitative results, we found that urine VTN level
was negatively associated with %CD19+ B cells (r = −0:8978,

p < 0:01, Figure 6(a)) and %CD3+CD4-CD8- T cells
(r = −0:8313, p < 0:05, Figure 6(b)) in the peripheral blood
mononuclear cell (PBMC), as well as positively associated with
%CD16+CD56+ NK cells (r = 0:6724, p < 0:05, Figure 6(c)) in
the whole blood of inactive JSLE. The similar relationship was
obtained in an analysis for the correlations of VTN with the
ratio of %CD3+ T cells/%CD45+ lymphocytes (r = 0:6257, p
< 0:05, Figure 6(d)), %CD3+CD4+ helper T cells (Th)
(r = −0:8716, p < 0:01, Figure 6(e)), and %CD3+CD8+ sup-
pressor T cells (Ts) (r = 0:8385, p < 0:01, Figure 6(f)), the ratio
of %CD4+ Th/%CD8+ Ts (r = −0:6881, p < 0:05, Figure 6(g))
and %CD16+CD56+ NK cells (r = −0:7663, p < 0:01,
Figure 6(h)), and absolute number of NK cells (r = −0:6813,
p < 0:01, Figure 6(i)) in PBMC of active JSLE. Moreover, no
significant associations were observed between VTN and
other index (data not shown).

3.7. VTN Induced Cell Pyroptosis in THP-1-Derived
Macrophages. To further explore the possible function of VTN
in SLE, the THP-1-derived macrophages were used in the
in vitro model and treated with or without VTN to detect cell
pyroptosis change. As shown in Figure 7(a), morphologically,
a larger number of dead cells were observed in THP-1-derived
macrophages treated with VTN compared with the control
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Figure 3: Functional enrichment analysis of signaling pathways and biological process of DEGs. A comparison of top 20 Gene Ontology
terms of signaling pathways (a, c, e) and biological process (b, d, f) is indicated among groups (group 1: healthy controls, group 2:
inactive JSLE patients, and group 3: active JSLE patients).
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Figure 4: The protein-protein interaction (PPI) networks of common DEGs. (a–c) The comparisons of PPI networks of DEGs are shown
among the indicated groups (group 1: healthy controls, group 2: inactive JSLE patients, and group 3: active JSLE patients) by using the
STRING online database. The top 20 enrich KEGG pathways are selected and classified into hierarchical categories according to the
comparison between groups.
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group. The LDH release assay revealed that cell death was dras-
tically increased in thp-1-derived macrophages in response to
VTN stimulation (Figure 7(b)). These findings implied that
VTN has a propyroptosis effect.

The results from the real-time PCR assay showed that
VTN treatment led to a significant upregulation of IL-18
and GSDMD expression, a pivotal executioner of cell pyrop-
tosis [27, 28], while no significant difference was obtained in
IL-1β expression (Figure 7(c)). In line with this, the western
blotting and quantified results also demonstrated that IL-18
and GSDMD expression was significantly enhanced in THP-
1-derived macrophages treated by VTN stimulation com-
pared with the control group (Figure 7(d)). Further results
from ELISA suggested that IL-18 release was increased in
response to VTN stimulation, and VTN has failed to alter
IL-1β expression (Figure 7(e)). These findings suggested that
VTN triggered GSDMD-executed cell pyroptosis, leading to
the increase in IL-18 release to aggravate inflammation.

3.8. VTN Regulated Pyroptosis through Triggering NLRP3
Inflammasome Activation. The NLRP3 inflammasome, the

well-known characterized inflammasome, consists of NLRP3,
apoptosis-associated speck-like protein containing a CARD
(ASC), and caspase-1, which focused our attention to explore
the effect of VTN on the NLRP3 inflammasome [29]. Based on
this, we detected NLRP3 inflammasome changes in THP-1-
derived macrophages with VTN stimulation. The results from
qPCR and WB showed that VTN induced NLPR3 and
caspase-1 expression in THP-1-derived macrophages, while
no significant difference was obtained in ASC expression,
leading to enhancing cleaved GSDMD andGSEMD-N expres-
sion (Figures 8(a) and 8(b)).

Our previous study has demonstrated that the NF-κB path-
way is involved in cell pyroptosis [24], which further asked us
to reveal the potential mechanism underlying VTN-regulated
cell pyroptosis. As shown in Figure 8(c), phosphorylation of
NF-κB was significantly increased in THP-1-derived macro-
phages in response to VTN treatment, while inhibition of
NF-κB by BAY 11-7085 could reverse the induced effect of
VTN on IL-18 expression and secretion (Figures 8(d)–8(f)).
These findings suggested that VTN promoted cell pyroptosis
through the NF-κB pathway.
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Figure 5: Clinical correlation between VTN with dsDNA, ANA, and complement C3 and C4. The dot plot shows the correlation between
urinary VTN expression and (a) serum dsDNA level, (c) serum ANA level, (e) serum complement C3 level, and (g) serum complement C4
level in inactive JSLE patients, as well as the correlation between urinary VTN expression and (b) serum dsDNA level, (d) serum ANA level,
(f) serum complement C3 level, and (h) serum complement C4 level in active JSLE patients (group 2: inactive JSLE patients, group 3: active
JSLE patients).
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4. Discussion

The development of SLE is closely associated with the alter-
ation in molecular functions, biological processes, and signal-
ing pathways. However, the molecular characteristics and the
molecular functions, pathways, and interactions in different
stages of SLE are not well understood. In the currently study,
we revealed 105 different proteins in the comparison between
JSLE patients and healthy controls based on the proteomic

assay. The results showed that these specific DEGs had differ-
ent molecular functions, biological pathways, and formed
complex interactome networks. What is more, we have found
both urine EPHA4 and VTN levels are reduced in inactive and
active JSLE patients when compared to healthy controls.
Further bioinformatics analysis implied us that the EPHA4
and VTN in urine might have a potential possibility to be bio-
markers of JSLE patients because of the clinical relationship
between the pathological parameter and VTN. Most
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Figure 6: Clinical correlation between VTN and lymphocyte subsets. The dot plot shows the correlation between urinary VTN expression
with (a) %CD19+ B cells, (c) % CD16+CD56+ NK cells in PBMC, and (b) %CD3+CD4-CD8- T cells in the whole blood of inactive JSLE
patients, as well as the correlation between urinary VTN expression with (d) the ratio of %CD3+ T cells/%CD45+ lymphocytes, (e)
%CD3+CD4+ helper T (Th) cells, (f) %CD3+CD8+ suppressor T (Ts) cells, (g) %CD4+ Th/%CD8+ Ts, (h) %CD16+CD56+ NK cells, and
(i) absolute number of NK cells in PBMC of active JSLE patients (group 2: inactive JSLE patients, group 3: active JSLE patients).
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Figure 7: VTN triggered cell pyroptosis. (a) LDH assay was performed to determine relative cell death in the indicated group in THP-1-
derived macrophages; data represented the mean ± SD of three independent experiments; t-tests were used to analyze statistical
significance; ∗∗∗p < 0:001, ∗∗p < 0:01. (b) Real-time PCR was performed to examine the mRNA level of GSDMD, IL-1b, and IL-18
expression in THP-1-derived macrophages. Data represented the mean ± SD of three independent experiments; t-tests were used to
analyze statistical significance; ∗∗∗p < 0:001. (c) Western blotting was performed to test pyroptosis-related proteins, including GSDMD,
IL-1b, and IL-18, in THP-1-derived macrophages with or without VTN (4 μM) stimulation, and the quantified results were analyzed by
the t-test. Data represented the mean ± SD of three independent experiments; t-tests were used to analyze statistical significance; ∗∗∗p <
0:001. (d) The contents of IL-1b and IL-18 in the supernatant and GSDMD/GSDMD-N expression of THP-1-derived macrophages with
or without VTN treatment were detected by ELISA; data represented the mean ± SD of three independent experiments; t-tests were used
to analyze statistical significance; ∗∗p < 0:01. (e) IF assay was performed to detect GSDMD expression in THP-1-derived macrophages
with or without VTN treatment.
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Figure 8: VTN triggered the NF-κB pathway and NLRP3 inflammasome. (a) Real-time PCR and (b) western blotting were performed to
detect ASC, NLRP3, and caspase-1 expression in THP-1-derived macrophages with or without VTN treatment. Data represented the
mean ± SD of three independent experiments; t-tests were used to analyze statistical significance; ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
(c) Phosphorylation of NF-κB was detected in THP-1-derived macrophages in response to VTN stimulation for 1 hour. (d, e) IL-18 was
analyzed by western blotting and ELISA in THP-1-derived macrophages treated with VTN for 1 h, followed by BAY 11-7085 stimulation
for another 48 hours. Data represented the mean ± SD of three independent experiments; one-ANOVA was used to analyze statistical
significance; ∗∗p < 0:01, ∗∗∗p < 0:001. (f) The schematic illustration for VTN-regulated cell pyroptosis.
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importantly, VTN treatment led to a significant activation of
NLRP3 inflammasomes, leading to cleaving GSDMD-N and
IL-18 secretion to aggravate inflammation in THP-1-derived
macrophages, suggesting that VTN might serve as a useful
biomarker for clinical prognosis.

Coincidentally, it is reported that the high levels of VTN
are associated with the circulating immune complex- (CIC-)
soluble membrane attack complex (MAC) in SLE patients with
active nephritis [30], implying the possible value of VTN in
active nephritis. Interestingly, in our study, we further demon-
strated a significant decreased level of urinary VTN and lower
expression of serum C3 and C4 in inactive JSLE and also a
positive association between VTN and C3/C4, which may
derive from the metabolic dissociation of CIC-MAC in JSLE
glomerulus, identifying that a novel mechanism may contrib-
ute to the JSLE nephritis. What is more, it has been demon-
strated that EPHA4 performed an important role in a
number of cellular processes, including promoting cell prolifer-
ation and cell adhesion-mediated drug resistance via the Akt
signaling pathway [30], while COL18A1 interacted with VTN
and EPHA4 to modulate acute liver injury through binding
α1β1 integrin on hepatocytes [31]. In addition, EPHA4 recep-
tor activation-mediated PI3K/Akt and Wnt/β-catenin signal-
ing pathways as well as ERK1/2 play an important role in
regulating epithelial-mesenchymal transition development
[32], which is in line with the analysis of these pathways as
shown in Figures 4(d) and 4(e), including PI3K-Akt, cell adhe-
sion molecules, and focal adhesion. Specifically, EPHA4 is the
most abundant ephrin receptor, which interacted with almost
all ephrin ligands, ranging from effects on inflammatory
responses to axonal degeneration and regeneration in the cen-
tral nervous system, especially in neurological functional recov-
ery by regulating various processes, such as neuroinflammation,
angiogenesis, neurogenesis, axonal reorganization, and synaptic
plasticity [33]. Although there is no available evidence that
proved the function of EPHA4 in the pathogenesis of SLE,
EPHA4 as a possible inflammatory mediator may contribute
to the immunopathological disease like multiple sclerosis and
neuropsychiatric disorder in SLE [34–39]. Occasionally, in our
study, we have shown a significant decreased protein level of
EPHA4 in the urine of JSLE patients, which implied a potential
role of EPHA4 in neurodevelopment of JSLE patients via the
PI3K-Akt signaling pathway. However, the correlation between
EPHA4 and clinical parameters will be further addressed in the
future study with a large number of JSLE patients.

In addition to the EPHA4, we found that dsDNA and
ANA had a negative correlation with urine VTN level, which
was similar with many other studies like circulating S100
and serum triggering receptor expressed on myeloid cell-1
[40, 41]. Otherwise, VTN was reported to involve in promot-
ing the expression of inflammatory factors, such as IL-6 and
leukemia inhibitory factor via integrin-focal adhesion kinase
and uPAR signaling pathways [42], and to promote neurogen-
esis [43]. Another study also revealed an increased colocaliza-
tion ofMAC, VTN, and VTN receptor (avβ3 integrin), both of
which are within and around the subepithelial deposits in
membranous nephropathy [44]. What is more, prevention of
autoimmune diseases depends on immune homeostasis,
which results from the balances of different T lymphocyte sub-

sets. Therefore, in this study, we have found that urine VTN
level was significantly negativ
e associated with %CD19+ B cells in PBMC and
%CD3+CD4-CD8- T cells in the whole blood of
inactive JSLE. The similar relationship was found
in an analysis for the correlations of VTN with
%CD3+CD8+ suppressor T cells in PBMC of
active JSLE. These results imply that due to the
higher expression of VTN in active JSLE and
lower expression of VTN in inactive JSLE, the
corresponding increased %CD3+CD8+ suppressor
T cells in active JSLE and higher %CD19+ B cells
in inactive JSLE may be involved into the autoin-
flammation and accumulation of MAC. This
reminded that the urine VTN level may become a
novel biomarker for the diagnostics of JSLE
progression.

Inflammasomes are intracellular multiprotein complexes
that coordinate antipathogenic host defense during inflamma-
tory responses in myeloid cells in inflammatory autoimmune
rheumatic diseases, especially macrophages [45]. Interesting,
VTN has been demonstrated to induce cell pyroptosis through
triggering NLRP3 inflammasomes, leading to caspase-1 activa-
tion, cleaving GSDMD-N, and IL-18, while no significant
difference of ASC expression was obtained in response to
VTN stimulation. Further analysis showed that VTN caused
a drastic enhancement of phosphorylation of NF-κB, a critical
regulator of cell pyroptosis. However, the further work is
required to address how VTN regulated NF-κB activity.

In summary, the present study demonstrated the differen-
tial abundance of proteins in the urine of JSLE patients, which
provided a new insight into the prognosis and development of
JSLE. Particularly, the urinary VTN was considered to be the
potential biomarkers, which deserved to be further studied
before their utility for JSLE diagnosis.
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