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Background. 5-Methylcytosine (m5C) RNA modification is closely implicated in the occurrence of a variety of cancers. Here, we
established a novel prognostic signature for ovarian cancer (OC) patients based on m5C RNA modification-related genes and
explored the correlation between these genes with the tumor immune microenvironment. Methods. Methylated-RNA immuno-
precipitation sequencing helped us to identify candidate genes related to m5C RNAmodification at first. Based on TCGA database,
we screened the differentially expressed candidate genes related to the prognosis and constructed a prognostic model using LASSO
Cox regression analyses. Notably, the accuracy of the model was evaluated by Kaplan–Meier analysis and receiver operator
characteristic curves. Independent prognostic risk factors were investigated by Cox proportional hazard model. Furthermore,
we also analyzed the biological functions and pathways involved in the signature. Finally, the immune response of the model was
visualized in great detail. Results. Totally, 2,493 candidate genes proved to be involved in m5C modification of RNA for OC. We
developed a signature with prognostic value consisting of six m5C RNA modification-related genes. Specially, samples have been
split into two cohorts with low- and high-risk scores according to the model, in which the low-risk OC patients exhibited
dramatically better overall survival time than those with high-risk scores. Besides, not only was this model a prognostic factor
independent of other clinical characteristics but it predicted the intensity of the immune response in OC. Significantly, the accuracy
and availability of the signature were verified by ICGC database. Conclusions. Our study bridged the gap between m5C RNA
modification and the prognosis of OC and was expected to provide an effective breakthrough for immunotherapy in OC patients.

1. Introduction

As one of the most common gynecological malignant tumors,
ovarian cancer (OC) kills more than 200,000 women annually
[1]. The high-mortality rate of OC is closely related to its
asymptomatic nature, with a 5-year survival rate of less
than 50% [2]. Cytoreductive surgery combined with chemo-
therapy remains the gold standard of treatment for OC. How-
ever, chemotherapy resistance followed by intraperitoneal
dissemination still leads to unpredictable deaths, possibly

due to the neglect of tumor cell heterogeneity, thus treating
it as a single disease [3]. Therefore, personalized treatment
seems to be a feasible strategy for improving the quality of
prognosis in the patients with OC.

Being considered as an emerging gene expression regula-
tion method, posttranscriptional RNA modifications are
involved in the development of a range of human diseases,
including cancer, which may develop to be an ideal target for
cancer therapy [4, 5]. RNA epigenetic modifications mainly
involve N1-methyladenosine (m1A), pseudouridine (ψ),
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5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C),
N6-methyladenosine (m6A), andN7-methylguanosine (m7G)
[5]. Characterized by the attachment of a methyl group to the
fifth carbon atom in cytosine residues, RNA m5C participates
in the metabolism and structural stability of RNA and the
recognition of transfer RNAs (tRNA), which allows dynamic
regulation of cellular responses to adapt to rapidly changing
microenvironments. For example, adaptation to the chemo-
therapeutic drugs plays a vital role in ensuring the survival of
tumor cells [6, 7], suggesting an affinity between RNA m5C
and cancer cells. Recent studies have shown that RNA m5C
performs well in predicting prognosis and immune infiltration
characteristics in triple-negative breast cancer [8], cervical
cancer [9], hepatocellular carcinoma [10], colorectal cancer
[11, 12], clear cell renal cell carcinoma [13], and lung squa-
mous cell carcinoma and adenocarcinoma [14, 15], the role of
RNA m5C in OC prognosis remains to be elucidated.

In the present study, we attempted to expand our under-
standing of the effects of RNA m5C-related genes in the
affecting of overall survival (OS) in OC. In addition, efforts
have been made to reveal the potential role of these genes in
the changes in the immune microenvironment and chemo-
sensitivity of OC, which might help in improving treatment
strategies.

2. Materials and Methods

2.1. Sample Collection and Ethical Approval. Three pairs of
high-grade serous ovarian cancer (HGSOC) samples and
corresponding adjacent tissues were obtained from the Second
Hospital of Hebei Medical University, and all tissues were
histopathologically confirmed by pathologists. After surgery, the
HGSOC samples and adjacent normal tissues were immediately
stored at −80°C for further use. This study was approved by the
Ethics Committee and Institutional Review Board of the Second
Hospital of Hebei Medical University. Written informed consent
was obtained from all participants before the study began. This
study was conducted in accordance with the Declaration of
Helsinki.

2.2. Detection of m5C RNAModification-Related Genes. First,
we used TRIzol reagent (Invitrogen Corporation, Carlsbad,
CA) to extract RNA. The m5C-methylated mRNA fragments
were enriched by immunoprecipitation with an anti-m5C
antibody (Synaptic Systems). The NEBNext Ultra II Direc-
tional RNA Library Prep Kit (New England Biolabs, Inc.)
was used to construct the cDNA library, whose quality and
purity were evaluated using the Agilent Bioanalyzer 2100
system (Agilent Technologies, Inc., USA). Sequentially, DCC
and MACS (v1.4.2) were applied to identify circular RNA
(circRNA) peaks andmethylated m5C peaks on the circRNAs.
Differentially, m5Cmethylation peaks were filtered with a fold
change >2 or < 0.5 (p-value < 0.00001) using diffReps soft-
ware. The circRNA region where the m5C peak was located
was calculated for the two cohorts. Statistical significance was
set at p<0:05. Finally, we combined transcriptome and meth-
ylation analyses to identify the effects of methylation on tran-
scriptional expression.

2.3. Original Data Acquisition. The RNA-seq data from 88
normal samples and 379 OC tissues were extracted from the
Genotype-Tissue Expression (GTEx) database (https://xena
browser.net/) and The Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov/), respectively. The corresponding clinical
information was also downloaded. Then we unified the two sets
of expression data fromdifferent sources using “limma” package
in R 4.1.1 and got normalized datasets [16]. We collected the
patients’ informed consent for the publication of the data used
in the experiment. Additionally, the public materials involved in
this study were downloaded free of charge from the public
database; therefore, ethical review and approval are optional
from the Ethics Committee.

2.4. Data Normalization. For the purpose of integrating the
expression data from GTEx and TCGA database, we utlized
the batch normalization to correct unwanted technical vari-
ation. At first, log2(x+ 0.001) transformed RNA-seq FPKM
values of ovary tissue were extracted from GTEx database. In
the meanwhile, we obtained the RNA-seq FPKM data of
TCGA-OV patients. Then, these expression data from both
databases were log2(x+ 1) transformed. Finally, batch nor-
malization was performed across abovementioned data by
the function named normalizeBetweenArrays in “limma”
package in R 4.1.1 [17].

2.5. Calculation of Differentially Expressed Genes (DEGs)
Related to Survival Time.We performed the DEGs screening
process using R with the filtering criteria of false discovery
rate (FDR) < 0.01 and |log2 FC|≥ 2. p-Values were adjusted
to control for FDR using the Benjamini–Hochberg method,
which can enhance the reliability of the results [18]. At the
same time, univariate Cox regression analysis was applied to
determine the target genes valuable for prognosis. Finally,
the core genes in this signature were generated after inter-
section of the two gene sets.

2.6. Development of the Prognostic Model. With the aid of
Lasso-penalized Cox regression analysis, we calculated the
risk coefficient (coef) of each m5C-related gene and deter-
mined each sample’s risk score combined with gene expres-
sion. Each OC patient was assigned a risk score, which= gene1
(coef ∗ expression)+ gene2 (coef ∗ expression)+ .. gene7 (coef
∗ expression). As such, we built an m5C-related model in the
TCGA cohort to predict the risk characteristics of OC patients,
in which those with a risk score less than the median value
were recognized as the low-risk group, whereas the others were
recognized as the high-risk group. To evaluate the accuracy of
this signature in prognostic value, we plotted Kaplan–Meier
(K–M) survival curves and time-dependent receptor operating
characteristic (ROC) curves using “survival” and “timeROC”
package in R. Similarly, themedian score in TCGAwas used as
a cutoff value to distinguish high- and low-risk groups in The
International Cancer Genome Consortium (ICGC) (https://
dcc.icgc.org/), and survival differences between two risk sta-
tuses were explored further following above steps.

2.7. Evaluation for the Performance of the Signature. Princi-
pal component analysis (PCA) and t-distributed Stochastic
Neighbor Embedding (t-SNE) were employed to investigate
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whether OC patients could be significantly distinguished
based on the m5C-related risk scores. Multivariate Cox anal-
ysis was used to determine whether m5C-related risk scores
could be an independent risk factor affecting the prognosis of
patients was figured out using multivariate Cox analysis.
After that, we constructed a nomogram to predict the 1-,
3-, and 5-year OS utilizing “rms” package in R.

2.8. Biological Function and Pathway Enrichment Analysis.
According to our previous method [19], the gene sets of
differentially expressed genes between the two risk cohorts
were prepared for the subsequent steps followed by the
thresholds:p¼ 0:05 and logFC= 1. We used the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) and gene ontology
(GO) analyses to label different signaling pathways and func-
tions, respectively. The annotations were revealed using pack-
age “ggplot2” package in R.

2.9. Immune Infiltration Exploration. Discrepancies in the
abundance of immunocytes and immune-related functions
between low- and high-risk populations were assessed using
single-sample gene set enrichment analysis (ssGSEA). Of
note, 13 immunocyte types and 13 immunological functions
were involved in the quantification of immune infiltration.
And we controlled the entire process via R package “limma,”
“ggpubr,” and “reshape2.”

2.10. Drug Sensitivity Prediction. Combining the m5C RNA
modification-related genes with drug sensitivity, we assessed
the therapeutic response to chemotherapy for OC patients in
our signature, which was reflected by half-maximal inhibi-
tory concentration (IC50) values. To complete the whole
procedure, “pRRophetic” package in R was applied in this
prediction.

3. Results

3.1. Generation of Model Genes in OC. Conjoint analysis of
transcriptomics and methylome data captured 2,493 m5C
RNA modification-related genes from the prophase experi-
ment (Supplementary 1), of which 897 were calculated
as DEGs between tumor and normal samples in TCGA
(Figure 1(a)) and 52 were identified to be significantly corre-
lated with survival time (Supplementary 2). Finally, six genes
remained (ATP1A3, GRIN2D, PLA2G2D, GALNT10, LAMP3,
and GALNT6) after the intersection of the two gene sets
(Figure 1(b)). The details are provided in a forest plot and
heat map (Figures 1(c) and 1(d)).

3.2. Association Analysis between Hub Genes and m5C RNA
Methylation Regulators. Bymeans of “igraph” and “reshape2”
packages in R, the correlation network captured the features
of intimate connectivity among the candidate genes (Figure 1(e)).
Significantly, ATP1A3, GRIN2D, LAMP3, and GALNT6 were
positively correlated with m5C writers. GALNT10 was posi-
tively correlated with an eraser but negatively associated with
the writer and reader genes. As shown in Supplementary 3,
there is a weak positive correlation between PLA2G2D and
the regulator of writers [20].

3.3. Construction and Evaluation of m5C RNA Modification-
Related Signature in OC. By listing the coef values of the six
genes (Table 1), we can use the formula mentioned above to
compute the risk score of each sample in both training
TCGA (Figure 2(a)) and testing ICGC (Figure 2(b)). We
noticed distributional differences in OC patients, character-
ized by the risk scores in PCA and t-NSE (Figure 2(c)–2(f)).
In addition, as the risk score increased, the spread of patients
shifted toward a decreased survival time and higher mortality
(Figures 2(g) and 2(h)). And we got to know from K–M
survival curves that patients with low-risk scores took on
significantly better survival outcomes than the others: train-
ing cohort (p= 2.633e−10) (Figure 2(i)) and testing cohort
(p= 2.001e−02) (Figure 2(j)). Crucially, it was deniable that
the ROC curves showed an accurate predictive capability of
this signature in 1-, 2- and 3- years OS with high-area under
the curve (AUC) values. The AUC were 0.635, 0.693, and
0.670 in the training group and 0.721, 0.700, and 0.661 in the
testing group, respectively (Figures 2(k) and 2(l)). Based on
these results, our model demonstrated robust predictive per-
formance for OS in general OC patients.

3.4. Comprehensive Investigation of Risk Factors Affecting
Survival in OC Patients. Taking age, risk score, and grade
into univariate and multivariate analyses using Cox regres-
sion, we recognized age and risk score as independent factors
for OS in TCGA cohort (Figures 3(a) and 3(b)). In the ICGC
cohort, although age showed little significance for prognosis,
the RNAmodification-related signature still displayed super-
ior value for survival prediction in both univariate (hazard
ratio (HR) : 1.938; 95% confidence interval (CI) : 1.193
− 3.148) and multivariate (HR : 1.884; 95% CI : 1.159
− 3.062) Cox regression analyses (Figures 3(c) and 3(d)).
Furthermore, aware that a single risk score would contribute
to the insufficient prediction; we devised a nomogram plot
composed of risk scores and age. In the training cohort, there
was a high degree of agreement between the observed and
nomogram-predicted survival rates at 1, 3, and 5-year
(Figure 3(e)). Similarly, the calibration curves of the nomo-
gram showed good congruence between the x- and y-axes in
the validation cohort (Figure 3(f)).

3.5. Molecular Mechanisms of the Difference between Two
Risk Status. A total of 82 DEGs were used for GO and
KEGG analyses (Supplementary 4). As shown in Figure 4(a),
they are of paramount importance for immunological biolog-
ical processes, such as “humoral immune response,” “immu-
noglobulin production,” and “production of molecular
mediators of immune response”. And the cellular compounds
results indicated that these genes participated in the forma-
tion of “immunoglobulin complex,” “blood microparticle,”
and “immunoglobulin complex, circulating”. While “antigen
binding,” “receptor ligand activity,” and “signaling receptor
activator activity” were significantly enriched for the category
of molecular functions. Essentially, KEGG results emphasized
the connection between the signature and immune-related
signaling pathways, including the IL-17 signaling pathway,
chemokine signaling pathway, toll-like receptor signaling
pathway, and NF-κB signaling pathway (Figure 4(b)).
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FIGURE 1: Generation and characteristics of model genes. (a) Green and red dots: genes of significant differentially expressed (|log2 FC|≥ 2
with false discovery rate (FDR) < 0.01); black dots: normally expressed genes. (b) The Venn plot for core genes. (c) The forest plot of core
genes. (d) The heat map for expression levels of core genes. (e) The correlation network between core genes and RNA m5C regulators. Blue
lines represent negative correlation; red lines represent positive correlation.
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TABLE 1: The risk coefficient value of each core gene.

Gene Coef

ATP1A3 0.130955704
GRIN2D 0.236142949
PLA2G2D −0.373104088
GALNT10 0.448763921
LAMP3 −0.162535052
GALNT6 −0.069757800
Note. Coef, coefficient.
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3.6. The Landscape of Immune Infiltration in TwoOC Subgroups.
Considering that the risk score was close to immune signa-
tures, we compared the immune diversity between the two
risk states (Figure 5). Patients with high-risk scores tended to
have reduced levels of tumor-infiltrating immune cells,
involving dendritic cells (DCs), activated DCs, plasmacytoid
DCs, CD8+ T cells, tumor-infiltrating lymphocytes (TILs),
type 1/2 T helper (Th1/2) cells, T follicular helper (Tfh) cells,
B cells, and NK cells (Figure 5(a)). In other words, these high-
abundance immune cells might account for the favorable
prognosis in OC patients. Moreover, all immune functions,
which were significantly different between the two risk sub-
types, exhibited more active patterns in low-risk patients, as
expected (Figure 5(b)). In any case, the ssGSEA results dem-
onstrated that low-risk scores were associated with enhanced
immune profiles.

3.7. Chemotherapy Response Identification. To further
explore antitumor drugs, we collated IC50 values of several
compounds based on the Genomics of Drug Sensitivity in
Cancer database (https://www.cancerrxgene.org/). As a con-
sequence, we found multiple medicaments more effective in
high-risk people (Figure 6), which included ponatinib, axiti-
nib, AZ628 (a pan-Raf kinase inhibitor), saracatinib, bexar-
otene, bicalutamide, BMS-754807 (an insulin-like growth
factor-1R/IR inhibitor), bryostatin 1, CHIR-99021 (a potent
GSK-3 inhibitor), dasatinib, embelin, erlotinib, FH535 (a PPAR

and Wnt/β-catenin inhibitor), FTI-277 (an inhibitor of Farne-
syltransferase), GNF-2 (a BCR-ABL inhibitor), GSK269962A
(an inhibitor of ROCK), GW-441756 (a TrkA inhibitor), ima-
tinib, midostaurin, NVP-TAE684 (an ALK inhibitor), linsitinib,
palbociclib, PF-562271 (an inhibitor of FAK), refametinib,WH-
4-023 (a dual LCK/SRC inhibitor), tanespimycin, XMD8.85 (an
inhibitor of ERK5 and LRRK2). Admittedly, these discoveries
extended future prospects of OC therapy, in which the needs of
prolonging survival of high-risk patients may be satisfied.

4. Discussion

Over the years, m5C RNA modification has gradually
emerged as a prominent channel that influences tumor initi-
ation and progression. Simultaneously, efforts have been
made to improve the feasibility of m5C RNA modification
in predicting the prognosis of clear cell renal cell carcinoma
[21], lung squamous cell carcinoma [15], triple-negative
breast cancer [8], and prostate adenocarcinoma [22]. How-
ever, few studies have focused on its role as an exclusive
biomarker for OC on the one hand [23]. However, there
are also limitations to access m5C RNA modification-related
genes, which are confined to writers, erasers, and readers
[23]. In comparison, we performed methylated-RNA immu-
noprecipitation sequencing (MeRIP-seq) to identify related
genes in our research, other than, as in the similar studies,
the involved genes were directly obtained from the previous
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findings. Therefore, we have provided more reliable and
comprehensive strategies. We attached great importance to
m5C RNA modification, which has not yet been reported. In
the current study, we identified differentially expressed m5C

RNA modification-related genes between human OC and
adjacent non-tumor tissues, which was devised for the first
time using the MeRIP-seq method. By making full use of
TCGA and experimental data, we established a prognostic
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FIGURE 4: Functional analyses results. (a) GO enrichment analysis. (b) KEGG pathway enrichment analysis.
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model encompassing six novel RNA m5C-related genes:
GALNT10, ATP1A3, PLA3G2D, GRIN2D, LAMP3, and
GALNT6. Subsequently, we categorized the OC patients
into low- and high-risk subtypes in terms of coef values
and the corresponding gene expression levels in TCGA. Sub-
sequent analyses reached an absolute consensus on the sig-
nificantly negative correlation between risk scores and
survival advantage, which was validated using the ICGC
dataset. In addition, the immune profile was dramatically
different between the low- and high-risk populations. In
conclusion, our results not only lay a solid foundation for
the refinement of prognostic stratification but also exert pos-
itive effects on the immunotherapy in OC patients.

GALNT10 belongs to the N-acetylgalactosaminyltransferase
(GalNAc-T) family, the encoded protein of which plays a cata-
lytic role in O-glycan synthesis [24]. Subtle alterations in
GALNT10 give rise to aberrant O-glycosylation, thus facilitating
tumor cell proliferation in hepatocellular carcinoma and gastric
cancer [24, 25]. In vitro cell assays have shown that the stem cell-
like characteristics of OC cells are regulated by GALNT10, hing-
ing on its glycosyltransferase property [26]. In addition, it has
been reported that OC patients are more likely to experience
dismal prognosis and immune suppression with elevated
GALNT10 expression [27]. Moreover, it dovetails precisely
with our findings. Regrettably, the role of GALNT10 in the
regulation of RNA modification remains unclear. However, it
must be noted that GALNT10 represents an adverse factor for
OC patients’ survival, according to our data. Similarly, it is com-
monly recognized that GALNT6, another GalNAc-T family

member, impedes tumor growth and progression when losing
expression [28, 29]. Interestingly, previous studies have empha-
sized that OC patients tend to experience adverse outcomes
upon increased GALNT6 expression [30, 31], which is in con-
trast to our present report. Undoubtedly, a completely different
argument does cause a controversial issue about the GALNT6
functions of in OC prognosis, awaiting further exploration. As a
widespread transmembrane protein, Na+/K+-ATPase (NKA) is
responsible for the maintenance of the electrochemical gradient
across plasma membranes, of which ATP1A3 encodes the α3
subunit [32]. It is commonly believed that pathogenic ATP1A3
variants have resulted in a variety of neurological disorders in the
last 20 years, such as rapid-onset dystonia parkinsonism, alter-
nating hemiplegia of childhood, and cerebellar ataxia [32]. By
targeting ATP1A3, Y-box binding protein 1 (YB-1), and RNA-
binding protein Human Antigen R (HuR) participate in the
formation of RNA-dependent complexes on m5C modified
nucleotides [33]. In addition, recent studies have confirmed
that ATP1A3 activation not only enhances temozolomide sensi-
tivity but also inhibits the proliferation of glioma cells immedi-
ately [34, 35]. In contrast, overexpressed ATP1A3, which
promotes tumor invasion, has been identified in clinical speci-
mens of gastric cancer [36]. More importantly, a recent study
indicated that OC patients were more likely to suffer from poor
OS when ATP1A3 was upregulated, which agrees well with our
findings [37]. Phospholipase A2 (PLA2) proteins are a group of
lipid metabolism-related molecules with catalytic properties of
that hydrolyze membrane glycerol phospholipids and are there-
fore essential for various biochemical processes, such as the
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response to inflammation [38]. On the one hand, PLA2G2D is
responsible for encoding a member of secreted PLA2, group IID
PLA2, which is associated with resistance to immune checkpoint
blockade as well as limitation of the immune system in primary
solid tumors [39, 40]. In contrast, a positive correlation between

immune infiltration and PLA2G2D expression has been
identified in cervical cancer [38]. In addition, upregulation
of PLA2G2D improves the prognosis of cutaneous mela-
noma [41], breast cancer [42], and head and neck squamous
cell carcinoma [43]. Together with our results, PLA2G2D
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represents a good chance of acting as a beneficial regulator
rather than an immunosuppressive role in OC. Encoding a
subunit of the N-methyl D-aspartate receptor, GRIN2D is
highly expressed in hepatocellular cancer and can exert an
obstacle effect on the immune response, thus promoting
tumor growth [44]. Additionally, GRIN2D can be used as
an executor controlled by miR-129-1-3p to regulate breast
cancer cell infiltration and migration [45]. Herein, elevated
GRIN2D expression was dramatically detected in neoplastic
tissues along with a potential marker for poor therapeutic
effects in OC. LAMP3, a lysosome-associated membrane pro-
tein, is indispensable for sustaining the integrity of lysosome
structure and related functions [46]. A recent study indicated
that excessive LAMP3 activation could induce the degrada-
tion of other transmembrane proteins of the lysosome, which
in turn increases membrane permeability, leading to caspase
activation and autophagy inhibition [47]. More impor-
tantly, LAMP‑3(+) DCs stimulate the proliferation of
tumor infiltrating cells CD8 which symbolizes a favorable
prognosis in esophageal squamous cell carcinoma [48].
Conversely, they also cause tumor aggressiveness and resis-
tance to endocrine therapy in breast cancer, indicating the
opposite effects on cancer types [49]. Although the specific
mechanism of LAPM3 in OC cells remains unclear, we
preliminarily conclude that LAMP3 serves as a beneficial
gene for prolonging the survival of OC patients.

Recently, m5C RNA modification has been recognized to
play a role in immune cell biological processes [50]. First, GO
analysis showed that the DEGs between the two risk groups
objectively participated in the process of canonical immune
responses and the formation of prominent immunoglobu-
lins, which also have an impact on antigen and cytokine
binding. The signaling pathways, “Chemokine signaling
pathway,” “IL-17 signaling pathway,” “Toll-like receptor sig-
naling pathway,” and “NF-kappa B signaling pathway” are all
associated with immunomodulation and tumor metabolism.
To some extent, functional annotation suggests that immune
status can be essentially distinguished between the two risk
groups in an m5C RNA modification manner.

In this study, we also noticed that immune cells and
related functions were widely retarded in the high-risk group
displayed on GSEA results, implying that antitumor immu-
nity is perturbed in OC patients with high-risk scores. As
specialized antigen-presenting cells, mature DCs, when stim-
ulated by antigens, activate CD8+ T cells to function [51].
The density of CD8+ T cells is well known as the most
essential antitumor effector associated with superior survival
in OC patients [52]. It should be noted that type I IFN
secreted by pDCs is a vital anti-cancer cytokine that activates
and recruits NK and B cells [53, 54], although pDCs are
generally considered intruders in the regulation of T cell
responses to cancers [55]. In addition, Tfh cells have been
positively correlated with prognosis owing to the promotion
of B cell maturation and maintenance of CD8 T cell-
dependent antitumor activity. The characteristics of Tfh cells
in OC patients remain further refined, but we found that the
group with prolonged survival appeared to carry more

conspicuous Tfh cell infiltration in OC. Th 1 cells, one of
the Th cell subsets, participate in antitumor immunity
through the production of inflammatory mediators to eradi-
cate cancer cells directly, while simultaneously promoting
the activation and recruitment of NK cells [56, 57]. Th1 cells
are particularly relevant for extending recurrence-free sur-
vival in OC patients [58]. In addition, a recent update
revealed a distinct effector mechanism in that Th 2 cells
induce terminal differentiation to osteoblasts and initiate
breast cancer [59].

Over the past several years, blocking immune check-
points has reframed the treatment of a variety of malignan-
cies and has led to remarkable improvements in OS [60].
Accordingly, it seems to be more efficient for the low-risk
population to benefit from immune checkpoint inhibitors, as
they harbor a greater density of immune checkpoints that
mediate immune escape. The immune escape mechanism of
multiple solid tumors is mainly due to the loss of antigenicity
induced by the deficiency of major histocompatibility complex
class I (MHC I)/human leukocyte antigen (HLA) [61–63]. In
contrast, an increase in tumor-specific antigen presentation
recognized by T cells on HLA/MHC I molecules has been
deemed to improve survival outcomes [62]. Our signature
revealed impaired HLA/MHC I functions in high-risk OC
patients. Moreover, MHC I can hardly be upregulated in
poorly differentiated tumor cells under corresponding condi-
tions for activation, a signature that is likely unique to OC [63].
Hence, there is presumably stratification of differentiation
between our risk groups to some extent. Alongside these, the
higher portion of antitumor-associated immune responses has
been observed in the low-risk cohort, such as “APC co inhibi-
tion,” “cytolytic activity,” “CCR,” “parainflammation,” “flam-
mation-promoting,” “T cell co-stimulation/inhibition,” and
“Type I IFN Reponse.” Overall, the immune profile revealed
bridges the gap between immunotherapy andm5CRNAmod-
ification, which is of clinical significance in strengthening the
applications of immunotherapy in OC.

In addition, we have identified more effective chemother-
apeutic drugs for high-risk patients, which may lay a solid
foundation for prolonging the survival of the overall popula-
tion with OC.

5. Conclusion

In conclusion, we have described the survival prediction
patterns of six m5C RNA methylation-related genes in OC
derived from MeRIP-seq. Based on TCGA, our signature
could predict the survival profiles and immune infiltration
status of OC patients independently, which has been signifi-
cantly reproduced in a separate database. More importantly,
our findings are expected to provide a novel horizon for
stratified management and brilliant immunotherapeutic
strategies as well as potential adjuvant chemotherapy for
high-risk patients. However, the detailed regulatory mecha-
nism of the candidate genes in m5C RNA methylation
remains unclear, and further experimental studies are
required.
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The data supporting the findings of this study are openly
available online. Transcriptome profiling and clinical data
of OC patients were downloaded from TCGA (https://porta
l.gdc.cancer.gov/), the Genotype-Tissue Expression (GTEx)
database (https://xenabrowser.net/), and ICGC (https://dcc.
icgc.org/). In total, 88 normal ovary tissues in the GTEx,
379 OC samples in the TCGA-OV cohort, and 93 samples
in the ICGC-OC-AU cohort were used for further analysis.
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