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Background. Pulmonary tuberculosis (PTB) is a global epidemic of infectious disease; the purpose of our study was to explore new
potential biomarkers for the diagnosis of pulmonary tuberculosis and to use the biomarkers for further pan-cancer analysis.
Methods. Four microarray gene expression sets were downloaded from the GEO public databases and conducted for further
analysis. Healthy control (HC) samples and samples of pulmonary tuberculosis (PTB) were calculated with enrichment scores
in folate biosynthesis pathways. The scores acted as a new phenotype combined with clinical information (control or PTB) for
subsequent analysis. Weight gene coexpression network analysis (WGCNA) was used to seek the modules mostly related to
PTB and folate biosynthesis in training sets. Twenty-nine coexistence genes were screened by intersecting the genes in the
green-yellow module of GSE28623 and the brown module of GSE83456. We used the protein-protein interaction network
analysis to narrow the gene range to search for hub genes. Then, we downloaded the unified and standardized pan-cancer data
set from the UCSC database for correlations between biomarkers and prognosis and tumor stage differences. Results.
Eventually, RTP4 was selected as a biomarker. To verify the reliability of this biomarker, an area under the ROC (AUC) was
calculated in gene sets (GSE28623, GSE83456, and GSE34608). Lastly, to explore the difference in RTP4 expression before and
after antituberculosis treatment, the GSE31348 gene set was enrolled to compare the expressions in weeks 0 and 26. The results
showed significant differences between these two time points (p < 0:001). RTP4 was significantly upregulated in the pulmonary
tuberculosis group compared to the healthy control group in three gene sets and downregulated after antituberculosis therapy
in one gene set. These results suggest that RTP4 can be used as a potential biomarker in diagnosing tuberculosis. The results of
pan-cancer analysis showed that high expression of RTP4 in 4 tumor types was positively correlated with poor prognosis and
high expression of RTP4 in 6 tumor types was negatively correlated with poor prognosis. We found significant differences in
the expression of the RTP4 gene at different stages in 5 types of tumors. Conclusion. RTP4 might be a new potential biomarker
for diagnosing pulmonary tuberculosis.

1. Introduction

Mycobacterium tuberculosis (MTB) is one of the significant
causes of tuberculosis. According to the World Health Orga-
nization, about 5.8 million people worldwide were infected
with TB in 2020 [1]. Mycobacterium tuberculosis infection
has become a global public problem, especially in developing
countries [2].

MTB can escape immune surveillance and kill by
inhibiting oxidative stress, autophagy, and apoptosis of
cells. It also can affect antigen presentation of antigen-

presenting cells (APC) by inhibiting the synthesis of
histocompatibility complex molecules [3]. There are many
clinical trials used to test for diagnosing TB, such as
tuberculin skin test (TST), T-SPOT, smear microscope,
the culture of Mycobacterium tuberculosis, and chest X-
ray [4, 5]. But as a slow-growing intracellular parasitic
bacteria [6], the above clinical test methods have certain
false negative and hysteresis.

To search for sensitive indicators in Mycobacterium
tuberculosis infection, we use bioinformatics methods to
compare and analyze the spectrum of gene expression
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spectrum of pulmonary tuberculosis and healthy people,
hoping to find genes that play a significant role in the path-
ogenesis of PTB as potential biomarkers for diagnosing pul-
monary tuberculosis and further explore the relationship
between biomarkers and tumor prognosis and stage through
pan-cancer analysis.

2. Materials and Methods

2.1. Data Acquisition and Processing. We downloaded the
GSE28623 (GPL4133, Agilent-014850 Whole Human Genome
Microarray), GSE83456 (GPL10558, Illumina HumanHT-12
V4.0 expression beadchip), GSE34608 (GPL6480, Agilent-
014850 Whole Human Genome U133 Microarray), and
GSE31348 (GPL570, Affymetrix Human Genome U133 Plus)
from Gene Expression Omnibus (GEO, https://www.ncbi
.nlm.nih.gov/geo/) by “GEOquery” R-package and extracted
each expression profile information and Clinical phenotype
of these gene sets. There were 46 pulmonary tuberculosis
samples and 37 healthy control samples in GSE28623 and
45 pulmonary tuberculosis samples and 61 healthy control
samples in GSE83456. Finally, 189 blood samples were
enrolled as training sets. There were 8 pulmonary tuberculo-
sis samples and 16 healthy control samples in GSE34608 and
135 pulmonary tuberculosis samples in GSE31348. In the
end, 159 blood samples were enrolled as validation sets.
After that, we downloaded the unified and standardized
pan-cancer data set from the UCSC (https://xenabrowser
.net/) database, TCGA Pan-cancer (PANCAN, N = 10535,
G = 60499), extracted expression data of the RTP4 gene
(ENSG00000136514) in each sample, and carried out a
log2 (x + 0:001) transformation, and finally, we also elimi-
nated cancer types with fewer than 3 samples in a single
cancer type and finally obtained the expression data of 26
cancer types.

2.2. KEGG and Gene Set Variation Analysis. The KEGG was
a set of databases that included information about biologi-
cal mechanisms, cellular processes, chemical substances,
and diseases [7]. Gene set variation analysis (GSVA) was
applied to explore different activity variations of the KEGG
pathway (c2.cp.kegg v7.5.1, http://www.gsea-msigdb.org/)
in GSE28623 and GSE83456 by using “GSVA” R package
[8]. “limma” R package was used to determine the
significant differences in GSVA enrichment between the
healthy control (HC) group and pulmonary tuberculosis
(PTB) group. After setting the threshold value (PTB ver-
sus HC, log 2FC > 0:25, adjust p value < 0.05) and taking
the intersection of the training set (GSE28623 and
GSE83456), we selected the folate biosynthesis pathway
enrichment scores for further analysis with clinical
phenotype.

2.3. Identification of Significant Modules and Weight Gene
Coexpression Network Analysis. Data selected in training sets
were processed using the “WGCNA” R package [9]. After
obtaining the gene expression matrix of GSE28623 and
GSE83456 gene sets, we chose the genes that variance in
the top quartile and used the hierarchical agglomerative

clustering (average link) to distinguish the outliers of each
gene set. Then, we set each threshold to construct a scale-
free network. After setting an approximate scale-free topol-
ogy fit index above 0.85, we built an adjacency matrix and
constructed the topological overlap matrix for searching
the coexpression modules, which is a collection of genes with
high topological overlap similarity and containing at least 30
genes. Genes in the same module usually have a higher
degree of coexpression. The module eigengene (ME) repre-
sents the first principal component of modules and reflects
the expression pattern of modules in each sample. After
merging modules whose similarities were higher than 75%,
8 modules in GSE28623 and 13 modules in GSE83456 were
identified according to the average hierarchical clustering
and dynamic tree clipping algorithm. The green-yellow
module of GSE28623 and brown module of GSE83456 were
most relevant to the clinical phenotype and folate biosynthe-
sis pathway enrichment.

2.4. Hub Gene Identification and PPI Network. The coexist-
ing genes in both modules were considered essential and
uploaded to the Search Tool for the Retrieval of Interacting
Genes (STRING) online database (http://string-db.org; ver-
sion 11.5). A confidence score > 0:70 was set as significant.
After obtaining the protein-protein interaction (PPI) net-
work data, we used the Cytoscape (version 3.9.1) to visualize
the results. In order to verify the effectiveness of the hub
genes, “pROC” and “ggplot2” were used to calculate and plot
the area under curve (AUC) [10, 11].

2.5. Pan-Cancer Analysis. We used R software to calculate
the expression difference between normal samples and
tumor samples in each tumor to analyze the significance of
the difference. The “Coxph” function of “survival” R package
(version 3.4.0) was used to establish a Cox proportional haz-
ard regression model to analyze the relationship between
gene expression and prognosis in each tumor. After that,
we calculated the expression difference of genes in different
clinical stage samples in each tumor to explore the correla-
tions between them.

2.6. Statistical Analysis. This study’s statistical analyses
were carried out by R (version 4.1.0). Linear fitting and
empirical Bayes, implemented in the “limma” R package,
were used to test the difference between the HC and
PTB groups [12]. Weight gene coexpression network
analysis was used to allocate genes with similar expres-
sion patterns into different modules. The Pearson correla-
tion analysis was applied to find correlations between the
selected modules and clinical phenotype. The receiver
operating characteristic (ROC) curve was used to evaluate
the reliability of candidate biomarkers. It was considered
statistically significant if the area under curve (AUC)
was greater than 0.70. Student’s t-test was used to esti-
mate the different expressions of RTP4 before and after
antituberculosis therapy. All p < 0:05 (bilateral) was con-
sidered statistically significant. The logarithmic ranking
test was to obtain the tumor prognostic significance.
The unpaired Student’st-test was used for analyzing
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difference between each type of tumor groups. The
unpaired Wilcoxon rank sum and signed rank tests were
used to explore the significance of the difference between
normal and tumor samples in each tumor type.

3. Results

3.1. Folate Biosynthesis Pathway Gene Set Scores andWGCNA.
The gene expression of GSE28623 (19172 genes) and
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Figure 1: Enrichment of differential KEGG pathway gene sets of training gene sets.
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GSE83456 (20937 genes) was obtained after data preprocess-
ing. After excluding latent tuberculosis, extrapulmonary
tuberculosis, and sarcoid samples, we had 83 samples left
in GSE28263 and 106 samples in GSE83456. We used an
agglomerative hierarchical clustering algorithm to exclude 2
PTB samples of GSE28623 and 4 PTB samples of
GSE83456 because there were outliers. Subsequently, the
top quartile variance genes were selected (GSE28623, 4982
genes; GSE83456, 5234 genes). Through gene set variation
analysis, we found that the KEGG pathways activated in
GSE28623 (PTB group versus HC group) were mainly asso-
ciated with ascorbate and aldarate metabolism, NOD-like
receptor signaling, porphyrin and chlorophyll metabolism,
pentose and glucuronate interconversions, bladder cancer,
nonhomologous and joining, hedgehog signaling, folate
biosynthesis, phenylalanine metabolism, valine leucine, and
isoleucine biosynthesis. However, the main KEGG pathways

activated in GSE83456 (PTB group versus HC group) were
cytosolic DNA sensing, systemic lupus erythematosus, toll-
like receptor signaling, glycosaminoglycan degradation,
leishmania infection, dorso-ventral axis formation, NOD-like
receptor signaling, lysosome, pantothenate and CoA biosyn-
thesis, folate biosynthesis, and proteasome. We observed the
same activation trend both in GSE28623 (log 2FC = 0:286,
adj:p < 0:001) and GSE83456 (log 2FC = 0:325, adj:p < 0:001)
of folate biosynthesis pathway. The differential KEGG pathway
gene set enrichment results were depicted by a heat map
(Figure 1). We set the threshold power at 6 (GSE28623, R2 =
0:850) and 4 (GSE83456, R2 = 0:895) respectively based on
an approximate scale-free topology fit index of above 0.85
for each gene set. This network conforms to the power-
law distribution closer to the real biological network state
(Figures 2(a) and 2(b)). Gene dendrograms and module
colors of the training sets are shown in Figure 3. After
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Figure 2: Determination of soft threshold power in the WGCNA.
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obtaining the different modules, we screened out that the
most associated with pulmonary tuberculosis. After that,
we selected the most relevant folate biosynthesis pathway
of them. By carefully comparing, we found that the green-
yellow module in GSE28623 and the brown module in
GSE83456 were highly related to pulmonary tuberculosis
and the folate biosynthesis pathway. Finally, we selected
these two modules for further analysis (Figure 4).

3.2. PPI Network Analysis and Hub Gene Identification. In
the intersection of the two modules, we obtained 29 coexist-
ing genes, which were illustrated by the Veen map
(Figure 5). After using the STRING online database, eight
nodes and sixteen edges were observed. Six genes (OAS2,
SAMD9L, RSAD2, RTP4, CD151, and BATF) were filtered
in the PPI network complex based on the setting confidence
score (Figure 6).

We then screen one (RTP4) of them according to the
area under curve both in training sets (GSE28623, AUC =
0:719; GSE83456, AUC = 0:964, Figures 7(a) and 7(b)) and

the validation cohort (GSE34608, AUC = 0:903 Figure 7(c))
as the hub gene. To make the outcome persuasive, we chose
the gene set (GSE31384) to validate diversity expression
before and after antituberculosis therapy and compare the
differential expression of RTP4 between the HC and PTB
groups in GSE28623 and GSE83456. As shown in Figure 8,
the expression of RTP4 was significantly downregulated
after 26 weeks of antituberculosis treatment. We also found
that there were significantly upregulated in the PTB group
(Figures 9 and 10).

3.3. Pan-Cancer Analysis. In the expression difference
between normal samples and tumor samples in each tumor,
we found that RTP4 was significantly upregulated in 13
types of tumor tissues such as GBM (tumor: 2:22 ± 1:14,
normal: 0:3 ± 0:44, p = 5:4e − 4), GBMLGG (tumor: 1:70 ±
1:09, normal: 0:35 ± 0:44, p = 3:2e − 3), LGG (tumor: 1:54
± 1:02, normal: 0:35 ± 0:44, p = 5:5e − 3), ESCA (tumor:
2:78 ± 1:49, normal: 1:00 ± 1:39, p = 1:5e − 4), STES (tumor:
2:87 ± 1:24, normal: 1:63 ± 1:20, p = 1:7e − 10), KIRP
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Figure 3: Dendrogram of all differentially expressed genes clustered based on the measurement of dissimilarity (1-TOM). The color band
shows the results obtained from the automatic single-block analysis. Each color band of dynamic tree cut represents a cluster of a collection
of genes with high topological overlap similarity and has minimal genes of 30. Merged dynamic represents the merged modules of dynamic
tree cut, in which the dissimilarity degree is below 75%.
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(tumor: 2:78 ± 1:34, normal: 2:00 ± 0:76, p = 4:2e − 13),
KIPAN (tumor: 3:15 ± 1:27, normal: 2:00 ± 0:76, p = 7:1e
− 28), STAD (tumor: 2:91 ± 1:12, normal: 1:86 ± 1:06, p =
1:1e − 7), HNSC (tumor: 3:07 ± 1:50, normal: 1:34 ± 1:51,
p = 6:5e − 11), KIRC (tumor: 3:44 ± 1:10, normal: 2:00 ±
0:76, p = 6:7e − 37), LIHC (tumor: 2:29 ± 1:29, normal:
1:50 ± 1:19, p = 1:3e − 6), KICH (tumor: 2:47 ± 1:48, nor-
mal: 2:00 ± 0:76, p = 2:8e − 3), and CHOL (tumor: 3:66 ±
1:28, normal: 1:25 ± 0:56, p = 6:0e − 7) and significantly
downregulated in 4 types of tumor tissues such as LUAD
(tumor: 2:19 ± 1:22, normal: 2:71 ± 0:56, p = 1:9e − 6),
COAD (tumor: 2:08 ± 1:13, normal: 2:51 ± 0:57, p = 0:02),
COADREAD (tumor: 2:02 ± 1:10, normal: 2:50 ± 0:55, p =
2:1e − 3), and PRAD (tumor: 1:50 ± 1:27, normal: 2:22 ±
0:75, p = 1:7e − 6) (Figure 11) [13].

In the analysis process of the relationship between
expression level and tumor prognosis, we found that the
poor prognosis of 4 tumors was positively correlated with
the high expression of RTP4 (GBMLGG (N = 619, p = 1:5e
− 13, HR = 1:58 (1.40, 1.78)), LGG (N = 474, p = 2:5e − 5,
HR = 1:49 (1.24, 1.79)), LAML (N = 144, p = 1:2e − 3, HR
= 1:30 (1.11, 1.53)), and PAAD (N = 172, p = 8:8e − 4,
HR = 1:44 (1.16, 1.78))), and the poor prognosis of 6
tumors was positively correlated with the low expression
of RTP4 (SARC (N = 254, p = 9:7e − 8, HR = 0:72 (0.64,
0.81)), KIRC (N = 515, p = 3:2e − 3, HR = 0:82 (0.72, 0.94)),
THCA (N = 501, p = 0:01, HR = 0:43 (0.23, 0.83)), MESO
(N = 84, p = 6:1e − 6, HR = 0:68 (0.58, 0.81)), SKCM-M

(N = 347, p = 1:1e − 3, HR = 0:85 (0.78, 0.94)), and SKCM
(N = 444, p = 4:2e − 3, HR = 0:88 (0.80, 0.96))) (Figures 12
and 13).

After exploring the expression difference of the RTP4 gene
in different clinical stages in each type of tumor, we found sig-
nificant differences among the 5 types of tumors. (HNSC
(stage I = 27, II = 82, III = 93, IV = 316) (p = 0:03), LIHC
(stage I = 169, II = 86, III = 85, IV = 5) (p = 0:04), THCA
(stage I = 283, II = 52, III = 112, IV = 55) (p = 2:7e − 3),
PAAD (stage I = 21, II = 147, III = 3, IV = 4) (p = 0:02),
and BLCA (stage II = 130, III = 140, IV = 133) (p = 0:02))
(Figure 14).
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4. Discussion

MTB can infect many tissues and organs of the human body,
causing various tuberculosis-related diseases, such as pri-
mary and secondary tuberculosis, tuberculous enteritis,

osteoarticular tuberculosis, tuberculous pleurisy, tubercular
meningitis, and tuberculous lymphadenitis. Some diseases
can be fatal because of delays in diagnosis and treatment.

Tuberculosis is a common infectious disease in develop-
ing countries. There are some clinical tests in diagnosing this

OAS2

SAMD9L
RTP4

CD151
BATF

RSAD2

(a)

OAS2
SAMD9L

RTP4

RSAD2

(b)

Figure 6: PPI network. (a) The interaction between 6 intersections coexisted; only 4 genes had the interaction. (b) The interaction between
hub genes.

GSE28623

1.0
RTP4

0.8

0.6

Se
ns

iti
vi

ty

0.4

0.2

0.0
0.0 1.00.5

1 − specifcity

AUC: 0.719

(a)

GSE83456

RTP4

0.0 1.00.5
1 − specifcity

1.0

0.8

0.6

Se
ns

iti
vi

ty

0.4

0.2

0.0

AUC: 0.964

(b)

GSE34608

0.0 1.00.5
1 − specifcity

1.0

0.8

0.6

Se
ns

iti
vi

ty

0.4

0.2

0.0

RTP4

AUC: 0.903

(c)
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disease, but those ways have somehow false negatives
[14–16]. The histopathologic biopsy is an excellent method
to diagnose tuberculosis infection. Due to the difficulty of
sampling, some tissues in vivo and patients cannot tolerate
the discomfort during the sampling process, so this method
is not often used in clinical diagnosis. Sputum culture is con-
sidered the gold standard for diagnosing PTB infections.

However, as a slow-growing bacteria, clinical doctors may
be able to get results in 2-3 months. We conducted this study
to reduce the time of diagnosing and improve the diagnostic
accuracy of PTB.

Several previous researchers have reported some poten-
tial biomarkers for tuberculosis [17, 18]. Our study is aimed
at investigating new biomarkers for diagnosing pulmonary
tuberculosis related to folate synthesis, and RTP4 was finally
identified in training and validated in the validation set.
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Folate acid is known as vitamin B9. It is necessary for
the body to yield amino acids, RNA, and DNA [19]. It has
previously been reported that lacking folic acid may lead
to neuropathy and neoplastic diseases [20–22]. Folic acid
is also an element for M. tuberculosis. It is believed that
folate can affect the synthesis of purines and thymidine
by regulating one-carbon transfer reactions as an essential
factor, which is vital for bacteria [23, 24]. In recent years,
there has been renewed interest in synthesizing antifolic
acid drugs due to the increase in clinical drug-resistant
tuberculosis cases [25, 26].

The RTP4 is known as a member of the receptor transport
protein (RTP), which participates in exporting odorant and
taste receptors to the cell surface [27, 28]. Previous studies have
suggested that RTP4 helps theGPCR oligomer properly assem-
ble in the endoplasmic reticulum, promotes the dimerization of
receptors in the Golgi apparatus, and decreases the ubiquitina-
tion of the heterodimers [29]. Other studies have shown that
the RTP4 was overexpressed in some connective tissue disor-
ders and parasitic infections [30, 31] and correlated with some
cancers [32, 33]. That RTP4 induced by IFN-I could explain
this phenomenon and is associated with immune responses.
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Figure 13: The relationship between RTP4 gene expression and prognosis in 39 types of tumors.
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In our research, we also found several other enriched
signaling pathways related to complications of PTB.
Previous studies have implicated the NOD-like signaling
pathway and Toll-like receptor signaling pathways in idio-
pathic pulmonary fibrosis [34]. The Hedgehog signaling
pathway was reported to be associated with lung cancer.
Abnormal activation of this pathway is thought to be
related to the development of lung cancer and promotes
malignant lung cancer progression with poor prognostic
outcomes [35, 36]. These may explain some PTB patients’
clinical progression of pulmonary fibrosis and lung cancer.
However, in this study, we only found that the folate bio-
synthesis singling pathways were most associated with the
PTB group in training gene sets.

Some previous articles have reported a correlation
between the RTP4 gene and certain characteristics of
tumors. For example, methylated RTP4 can be considered
as a new biomarker for precise diagnosis and treatment of
prostate cancer [37] and RTP4 can be considered as an
independent indicator to judge the prognosis of oral
cancer [38]. RTP4 has also been reported that it is
significantly associated with immune cell infiltration and
immune checkpoint encoding genes (PDCD1, TIM-3, and
LAG3) in melanoma [33].

We worked on seeking the different genes as biomarkers
of diagnosing PTB infection through four GEO databases
and used a method combing gene set variation analysis with
weight gene coexpression network analysis. There were
some limitations in this study. Firstly, the validated samples
were less than the training samples, and more gene chip
samples of patients with TB were validated from the experi-
mental verification. To further explore the relationship
between the expression of RTP4 and tumors, we performed
a pan-cancer analysis based on TCGA database. It was also
found that RTP4 expression was different between some
tumor and normal tissues, and it was correlated with the
overall survival time and stage of some tumors.

To conclude, our results suggest that RTP4 can be used
as a biomarker to identify tuberculosis infection, providing
a new perspective on TB diagnosis in clinical.
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