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Dihydromyricetin (DMY), a natural flavonoid compound extracted from the stems and leaves of Ampelopsis grossedentata, has been
found as a potential therapeutic chemical for treating atherosclerosis. This study explores the underlying mechanism of DMY
repressing M1 macrophage polarization in atherosclerosis. We showed that DMY treatment markedly decreased M1 macrophage
markers (e.g., Tnf-α and IL-1β) and p65-positive macrophage numbers in the vessel wall of Apoe-deficient (Apoe–/–) mice.
Overexpression of miR-9 or knockdown of SIRT1 in macrophages reversed the effect of DMY on M1 macrophage polarization.
The data we presented in the study indicate that the miR-9-mediated SIRT1/NF-κB pathway plays a pivotal role in M1
macrophage polarization and is one of the molecular mechanisms underlying the anti-atherosclerosis effects of DMY. We provide
new solid evidence that DMY may be explored as a potential therapeutic adjuvant for treating atherosclerosis.

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of
mortality worldwide, responsible for one-third of all-cause
deaths [1, 2]. The accumulative formation of unstable ath-
erosclerosis plaque in the vessel wall has been recognized
as a hallmark in the progress of cardiovascular diseases [3,
4]. Enormous evidence from clinical trials and fundamental
researches has demonstrated that atherosclerosis is a lipid-
driven chronic inflammatory disease [5–7]. Macrophages,
one of the most important immune cells in inflammation,
are divided into two subtypes based on their biological func-
tions [8]. One phenotype is M1-like macrophages (classically
activated), which secrete inflammatory cytokines (e.g., TNF-
α and IL-1β) and promote inflammation. The other one is
M2-like macrophages (alternatively activated), which pro-
duce anti-inflammatory cytokines (e.g., IL-10 and Arg1)

and repair injured tissues. Abnormal activation and infiltra-
tion of macrophages in the vessel wall have been identified
as a crucial character of unstable plaque. More specifically,
increased M1 macrophages with decreased M2 macrophages
in the lesion aggravate the vascular inflammation and even-
tually accelerate atherosclerosis [9, 10].

Dihydromyricetin (DMY), a natural flavonoid com-
pound extracted from the stems and leaves of Ampelopsis
grossedentata, has been reported to exert anti-
inflammatory activities in various diseases [11, 12]. For
instance, DMY declines IL-1β and TNF-α levels in the
LPS-treated rats’ plasma via inhibiting oxidative stress [13].
DMY was also found to inhibit systemic inflammation and
prevent infiltration of inflammatory cells in the joints,
resulting in relief of synovitis in rheumatoid arthritis [14,
15]. Most recently, Zhou et al. [16] reported that in an
exhaustive exercise- (EE-) induced hepatic inflammatory
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injury animal model, DMY suppressed hepatic inflamma-
tion by orchestrating macrophage polarization. In agree-
ment with these findings, we also observed that DMY
decreased the expression of M1 macrophage markers (e.g.,
Tnf-α and IL-1β) and macrophage accumulation in the ves-
sel wall of Apoe–/– mice [17]. However, the underlying
mechanisms about how DMY regulates macrophage polari-
zation and alleviates vascular inflammation are largely
unknown.

MicroRNAs (miRNAs), a class of small noncoding RNA,
have been recognized as potent regulators of various patho-
logical and physiological processes by binding to the 3′UTR
of target mRNA [18, 19]. Recently, multiple studies have
indicated that miR-9, a highly expressed miRNA in M1 mac-
rophage, plays an essential role in promoting M1 polariza-
tion by targeting SIRT1/NF-κB signal pathway activation
[20, 21]. In this study, we found that DMY downregulated
miR-9 and upregulated its target gene SIRT1 expression
both in vivo and in vitro. We identified the role of the
miR-9/SIRT1/NF-κB signaling pathway on the antiathero-
sclerosis effect of DMY, which may, through regulating mac-
rophage polarization and subsequently alleviating vascular
inflammation. This study provides new evidence that DMY
may emerge as a potential therapeutic adjuvant in treating
atherosclerosis.

2. Materials and Methods

2.1. Animal Protocol. All animal procedures were approved
by the Institutional Animal Care and Use Committee of Sec-
ond Xiangya Hospital, Central South University. Apoe–/–

mice and C57BL/6J mice of 8~12 weeks old were purchased
from the Beijing Vital River Laboratory Animal Technology
Co. and were fed on a chow diet or a high cholesteric diet
(HCD) (D12108C, Research Diets, USA) for 12 weeks.
Apoe–/– mice were administered daily with DMY (500mg/
kg; D101549, Aladdin; n = 8) or the solvent of 0.05%
CMC-Na (n = 10) via intragastric gavage. The liver, aorta,
and peripheral blood mononuclear cells (PBMC) were har-
vested after 12 weeks. Aortic roots were embedded in an
optimal cutting temperature (OCT) compound and stored
at -80°C.

2.2. Immunofluorescent Staining. The detail of immunofluo-
rescent staining was described in our previous study [17].
Briefly, the OCT-embedded aorta root was cut into sections
at 6μm using a Lab-Tek tissue processor Leica CM1950. Sec-
tions were incubated with anti-Mac-2 (1 : 100, #CL8942AP,
Cedarlane) and anti-p65 (1 : 200 dilution, Thermo Fisher
Scientific) at 4°C overnight, followed by being stained with
Alexa Flour 555 (1 : 300, #A21434, Invitrogen) or 488
(1 : 300, #A11034, Invitrogen) for 1 hour at room tempera-
ture. DAPI (#P36935, Invitrogen) was used to label the
nuclei. All images were collected by confocal laser scanning
microscopy (Nikon, Japan).

2.3. Primary Macrophage Culture, Stimulation, and
Transfection. Bone marrow-derived macrophages (BMDMs)
were extracted from 12-week-old C57 BL/6J mice. BMDMs

were cultured in DMEM medium containing 10% FBS and
10ng/ml Recombinant Mouse M-CSF Protein (416-ML,
R&D), followed by treatment with DMY (50, 100μmol/L)
or control vehicle for one hour, then stimulated with
100 ng/ml LPS (Cat# L2880, Sigma-Aldrich) and 20ng/ml
INF-γ (IF005, Sigma-Aldrich) for 24 hours. Lipofectamine
3000 transfection reagent (L3000008, Invitrogen) was used
for miRNA (miR10000142-1-5, miR20000142-1-5, RiboBio)
and siRNA (AM16708, Thermo Fisher Scientific) transfec-
tion according to the manufacturers’ instructions.

2.4. Real-Time qPCR. Total RNA was isolated by TRIzol
reagent (15596018, Invitrogen) from the homogenized liver,
aorta, and BMDMs. The PrimeScript RT reagent kit
(RR047A, Takara) was used to generate cDNA, and the TB
Green Premix EX Tag kit (RR820A, Takara) was used for
real-time qPCR with the Real-time PCR system (Roche) fol-
lowing the manufacturer’s instructions. Specific primers,
including miR-9 and U6 (MQPS0000002-1-100), were pur-
chased from RiboBio (Guangzhou, China). Primers’ infor-
mation is listed as follows: β-actin (forward: 5′-GAAATC
GTGCGTGACATCAAAG-3′, reverse: 5′-TGTAGTTTCAT
GGATGCCACAG-3′); IL-1β (forward: 5′-GCAACTGTT
CCTGAACTCAACT-3′, reverse: 5′-ATCTTTTGGGGTCC
GTCAACT-3′); IL-6 (forward: 5′-TAGTCCTTCCTACC
CCAATTTCC-3′, reverse: 5′-TTGGTCCTTAGCCACT
CCTTC-3′); Tnf-α (forward: 5′-CCCTCACACTCAGATC
ATCTTCT-3′, reverse: 5′-GCTACGACGTGGGCTACAG-
3′); Nos2 (forward: 5′-GTTCTCAGCCCAACAATACAA
GA-3′, reverse: 5′-GTGGACGGGTCGATGTCAC-3′); IL-
10 (forward: 5′-GCTCTTACTGACTGGCATGAG-3′,
reverse: 5′-CGCAGCTCTAGGAGCATGTG-3′); Arg1 (for-
ward: 5′-GTGGAAACTTGCATGGACAAC-3′, reverse: 5′-
AATCCTGGCACATCGGGAATC-3′); and SIRT1 (for-
ward: 5′-GACGCTGTGGCAGATTGTTA-3′, reverse: 5′-
AAACATGGCTTGAGGGTCTG-3′).

2.5. Western Blot. Protein samples were extracted and mea-
sured using a BCA kit (Beyontime, Jiangsu, China). Target
protein (20μg of each sample) was separated by 10% SDS-
PAGE gels and then transferred onto 0.45μm polyvinyli-
dene fluoride (PVDF) membranes (Millipore, Billerica,
MA, USA) and followed by incubation with 5% fat-free milk
in TBST for 90min at RT and subsequently interacted with
corresponding antibodies as follows: p-p65 and SIRT1
(1 : 1000, Abcam, USA), IkBα (1 : 1000, Cell Signaling Tech-
nology, USA), and β-actin (1 : 5000, Sigma, USA) at 4°C
overnight. The images were captured using the Bio-Rad
Chemi Doc XRS+ Imaging System (Bio-Rad Biosciences,
USA).

2.6. Statistical Analysis. All data were analyzed using SPSS
26.0 statistical software (IBM Corp., NY, USA), and GraphPad
Prism 8.0 (GraphPad Software, CA, USA) was used for data
present in the study. Unpaired two-tailed Student’s t-test was
used to calculate statistical significance between two groups
for normally distributed continuous variables. One-way
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Figure 1: Continued.
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analysis of variance (ANOVA) was utilized for multiple group
comparison. Nonparametric Mann–Whitney U test or
Kruskal-Wallis test was used for data without normal distribu-
tion. All data were expressed as mean ± SEM, and ∗P < 0:05,
∗∗P < 0:01, and ∗∗∗P < 0:001 were considered significant for
all tests.

3. Results

3.1. DMY Decreases Expression of M1 Markers and Increases
Expression of M2 Markers in Apoe−/− Mice and LPS-
Stimulated BMDMs. To investigate whether macrophage
polarization is a potential antiatherosclerosis target of
DMY, we performed several experiments with the tissues
of the aorta, PBMC, and liver from the Apoe–/– mice har-
vested in our previous study [17]. As shown in
Figures 1(a)–1(c), compared with vehicle-treated Apoe–/–

mice, M1 markers’ expressions (IL-1β, Tnf-α, IL-6, and
Nos2) in the tissues were downregulated and expressions
of M2 markers (IL-10 and Arg1) were upregulated in the
DMY-treated Apoe–/– mice. In line with the in vivo data,
qPCR showed that expressions of M1 markers dramatically
declined in LPS-stimulated BMDMs with the DMY treat-
ment in a dose-dependent manner (Figures 1(d)–1(g)).
Interestingly, elevated M2 marker expressions in the
BMDMs with DMY treatment were not significantly differ-
ent between the high concentration and low concentration
of the DMY group (Figures 1(h) and 1(i)). Taken together,
our in vivo and in vitro data demonstrate that DMY inhibits
M1 macrophage polarization and promotes M2 macrophage
polarization in atherosclerosis.

3.2. DMY Suppresses M1 Macrophage Polarization via miR-9
in BMDMs. Numerous studies have indicated that miR-9
plays a crucial role in macrophage polarization in inflamma-
tory diseases [22, 23]. Therefore, we next explored whether
miR-9 was associated with DMY’s antiatherosclerosis effect.

We investigated the expression of miR-9 and found that
miR-9 was decreased in the aorta, PBMC, and liver of
Apoe–/– mice after intragastric gavage with DMY
(Figure 2(a)). Consistent with the in vivo data, miR-9 expres-
sion was significantly repressed byDMY treatment in the LPS-
stimulated BMDMs (Figure 2(b)). Transfection of miR-9
mimic was used to validate this hypothesis. As we expected,
the downregulation of IL-1β, Tnf-α, IL-6, and Nos2 expres-
sions was reversed by miR-9 transfection in the DMY group
(Figures 2(c)–2(f)). To our surprise, increased expression of
IL-10 and Arg1 in BMDMs with DMY treatment could not
be reversed by miR-9 transfection (Figures 2(g) and 2(h)). In
summary, these results indicate that overexpression of miR-9
could abrogate the effect of DMY on M1 macrophage polari-
zation but not M2 macrophages.

3.3. miR-9 Mediates the Effect of DMY on M1 Macrophage
Polarization by Targeting SIRT1/NF-κB Signaling Pathway
in BMDMs. The abnormal activation of the NF-κB signaling
pathway is a core factor in M1 macrophage polarization and
the pathogenesis of atherosclerosis. The NF-κB signaling
pathway has been reported as a potential pharmacological
target for DMY [24–26]. As shown in Figure 3(a), we found
that DMY diminished Mac2 positive/p-65 positive cell num-
bers in the aortic sinus lesions of Apoe–/– mice. How does
DMY affect macrophage polarization and eventually amelio-
rate atherosclerosis? Recently, Wang et al. [21] revealed that
miR-9 promoted M1 macrophage polarization in osteoar-
thritis progression by targeting SIRT1 and subsequently acti-
vating the NF-κB signal pathway. In agreement with Wang
et al.’s study, we found that SIRT1 was a direct target of
miR-9 in macrophages (Figure 3(b)). Moreover, elevated
SIRT1 expression was observed in Apoe–/– mice with DMY
treatment, which indicated that the miR-9/SIRT1 pathway
may contribute to the regulation of DMY on M1 macro-
phage polarization (Figure 3(c)). Thus, we transfected miR-
9 mimic in BMDMs and found that miR-9 transfection
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abolished the increased expression of SIRT1 and inhibited
the NF-κB signaling pathway under the treatment of DMY
(Figures 3(d)–3(g)). The data mentioned above indicate that
DMY suppresses M1 macrophage polarization, probably by
targeting the miR-9/SIRT1/NF-κB signaling pathway.

3.4. The Effect of DMY on M1 Macrophage Polarization
Depends on the SIRT1/NF-κB Signaling Pathway in BMDMs.
To confirm whether SIRT1 was involved in the effect of
DMY on M1 macrophage polarization, siRNA was used to
knock down the expression of SIRT1 in BMDMs. We found
that silence of SIRT1 rescued the decrease of IkBα and p-p65
in BMDMs treated with DMY (Figures 4(a)–4(c)); meanwhile,
the declined expressions of M1 markers (IL-1β, Tnf-α, IL-6,
and Nos2) in the DMY group were also reversed
(Figures 4(d)–4(g)). These results reveal that SIRT1 is the cru-
cial factor contributing to the effect of DMY on M1 macro-
phage polarization by modulating the NF-κB signaling
pathway.

4. Discussion

Accumulating clinical and experimental studies have dem-
onstrated that traditional Chinese herbal medicine is a
promising therapy for cardiovascular diseases [27, 28]. Here,
we provided evidence that DMY relieved vascular inflamma-
tion and repressed M1 macrophage polarization in athero-
sclerosis through modulating the miR-9/SIRT1/NF-κB
signal pathway. Overexpression of miR-9 or knockdown of
SIRT1 expression in macrophage could both reverse the
effect of DMY on M1 macrophage polarization. The data
we presented above indicate that the miR-9-mediated
SIRT1/NF-κB pathway plays a pivotal role in M1 macro-
phage polarization and is one of the molecular mechanisms
underlying the antiatherosclerosis effects of DMY.

Macrophages are involved in all stages of atherosclerosis,
from lesion initiation to rupture of advanced lesions. More spe-
cifically, M1 andM2macrophages are recruited to the intima at
an early stage to eliminate accumulated lipids and repair injured
tissue. In the advanced stage, cumulative M1 macrophages and
decreased M2 macrophages appear in the lesion, leading to the
formation of a necrotic core which may result in a cardiovascu-
lar event [29, 30]. Targeting macrophage polarization is consid-
ered one of the most promising therapeutic strategies for
atherosclerosis [31]. Recently, Zhou et al. [16] found that
DMY-encapsulated liposomes efficiently inhibited exercise-
induced liver inflammation by targeting hepatic macrophages,
repressing M1 macrophage polarization, and promoting M2
macrophage polarization. Our previous study also reported that
DMY inhibited macrophage accumulation in the aortic sinus
lesions and liver of Apoe–/– mice [17]. In the present study,
decreased expressions ofM1markers and increased expressions
of M2 markers in the circulating monocytes, livers, and aorta
were observed in DMY-treated Apoe–/– mice (Figures 1 and
3(a)). Our data suggested that M1/M2 polarization may be an
essential target for DMY to alleviate vascular inflammation
and eventually ameliorate atherosclerosis.

How does DMY regulate M1/M2 polarization? Numerous
studies have demonstrated that highly expressed miR-9 in
macrophage induced by pathological stimulus (e.g., LPS) dur-
ing the inflammatory response is associated with M1 polariza-
tion [32, 33]. Tong et al. [20] showed that head and neck
squamous cell carcinoma- (HNSCC-) derived exosomal
miR-9 could induce M1 macrophage polarization. In support,
another study [34] found that lipotoxic hepatocyte-derived
extracellular vesicle- (EV-) encapsulated miR-9-5p markedly
activated hepatic macrophage M1 polarization both in vivo
and in vitro. These researches indicate that miR-9 secreted
and delivered frommacrophages or other cell types can induce
M1 macrophage polarization. Thus, we hypothesized that
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Figure 2: (a) The expression of miR-9 in the vehicle control (n = 10) and DMY (n = 8) groups. (b) qPCR detection of miR-9 expression in
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miR-9 was a potential target of DMY in macrophages, which
mediated the effect of DMY on macrophage polarization. As
we expected, downregulation of miR-9 expression was
observed in DMY-treated Apoe–/– mice and BMDMs

(Figures 2(a) and 2(b)). More critically, overexpression of
miR-9 by miR-9 mimic in BMDMs entirely blocked the inhi-
bition effect of DMY on M1 macrophage polarization
(Figures 2(c)–2(f)). Surprisingly, DMY-induced increased
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expression of SIRT1 in the tissues. (d–g) Western blot analysis of NF-κB signaling pathway in BMDMs in each group (n = 3). ∗P < 0:05.
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Figure 4: Continued.
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expressions of M2 markers in macrophage cannot be abro-
gated by miR-9 overexpression (Figures 2(g) and 2(h)). Our
data indicated that miR-9 mediated the regulation of DMY
on M1 macrophage polarization but not M2 macrophage
polarization. The underlying molecular mechanisms of DMY
on M2 macrophage polarization require further investigation.

Impaired expression of SIRT1 promotes p65 nucleus
translocation in macrophages, resulting in the phenotype
switching to M1 [35]. An increasing number of data showed
that traditional Chinese herbs, including DMY, alleviated
inflammation by modulating M1/M2 polarization in a
SIRT1/NF-κB pathway-dependent manner. Zeng et al. [36]
recently reported that DMY treatment increased hepatic
SIRT1 expression and subsequently repressed the NF-κB sig-
nal pathway in nonalcoholic steatohepatitis (NASH) mice.
Consistent with Zeng et al.’s finding, we found that DMY
elevated SIRT1 expression in Apoe-/- mice and BMDMs
(Figures 3(c) and 3(d)). More importantly, overexpression
of miR-9 repressed the increased expression of SIRT1 in
DMY-treated BMDMs (Figure 3(d)). Knockdown of SIRT1
in macrophages promoted NF-κB pathway activation and
abrogated the suppression of DMY on M1 macrophage
polarization (Figure 4). Taken together, we hypothesized
that DMY modulated SIRT1 expression by decreasing the
expression of miR-9, which can inhibit NF-κB pathway acti-
vation and M1 macrophage polarization. Of note, Zhou
et al.’s [16] finding revealed that SIRT3 was the critical target
for DMY-encapsulated liposomes to orchestrate M1/M2
macrophage polarization and improve exhaustive exercise-
induced hepatic inflammation. However, our study did not
investigate if SIRT3 played a role in the antiatherosclerosis
effect of DMY, which will be examined in future studies.

In this study, DMY alleviated vascular inflammation by
orchestrating M1/M2 macrophage polarization. Zeng et al.
[37] also revealed that DMY facilitatesmacrophage cholesterol
efflux and prevents foam cell formation in an LXRα-ABCA1/
ABCG1-dependent manner. Moreover, we [17] and Liu et al.
[38] confirmed that DMY increased endothelial nitric oxide

production, improved lipid profiles, downregulated hepatic
inflammation, and inhibited atherosclerosis. In addition,
DMY could modulate gut microbiota to either improve DSS-
induced colitis or exert an antiobesity effect [39, 40]. These
previous findings indicate that gut microbiota is a potential
target for DMY in treating atherosclerosis. Collectively,
DMY exerts antiatherosclerosis activities by targeting multiple
cell types, tissues, and gut microbiota involved in the patho-
logical process of atherogenesis. Herein, in the present data,
we highlight that orchestrating M1/M2 polarization may be
an essential target for DMY to alleviate vascular inflammation
and ameliorate atherosclerosis. Furthermore, the miR-9-
mediated SIRT1/NF-κB pathway is a crucial target for DMY
to inhibit M1 macrophage polarization.

There are several limitations in our research. Firstly, our data
from the in vivo samples (aorta, PBMC, and liver) was based on
mixed cell populations, and macrophage-specific miR-9 knock-
out/in mice are needed to validate our hypothesis further. Sec-
ondly, miR-9 mediated the effect of DMY on M1 macrophage
polarization but not M2 macrophage polarization, which indi-
cates that other regulation mechanisms may contribute to the
impact of DMY on orchestrating macrophage polarization.

5. Conclusion

In summary, our data demonstrate that miR-9 contributes to
the inhibition effect of DMY on M1 macrophage
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Figure 4: (a–c) Western blot detects SIRT1 and NF-κB signaling pathway in each group (n = 3). (d–g) qPCR examines the expression of M1
markers in BMDMs in each group (n = 3). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 5: Scheme of miR-9 mediates the inhibition of DMY on M1
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polarization, at least in part, by targeting SIRT1 and activat-
ing the NF-κB pathway in atherosclerosis (Figure 5). Our
findings shed new insights on how DMY regulates macro-
phage activation and provides solid evidence that DMY
may be explored as a potential therapeutic adjuvant in treat-
ing atherosclerosis.
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