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Hepatocellular carcinoma (HCC) is a typical inflammation-driven cancer and ranks sixth in the incidence rate worldwide. The
role of adenylate uridylate- (AU-) rich element genes (AREGs) in HCC remains unclear. HCC-related datasets were acquired
from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. Differentially expressed
AREGs (DE-AREGs) between HCC samples and healthy controls were identified. The univariate Cox and LASSO analyses
were performed to determine the prognostic genes. Furthermore, a signature and corresponding nomogram were configured
for the clinical prediction of HCC. The potential signature-related biological significance was explored using functional and
pathway enrichment analysis. Additionally, immune infiltration analysis was also performed. Finally, the expression of
prognostic genes was verified using real-time quantitative polymerase chain reaction (RT-qPCR). A total of 189 DE-AREGs
between normal and HCC samples were identified, wherein CENPA, TXNRD1, RABIF, UGT2B15, and SERPINE1 were
selected to generate an AREG-related signature. Moreover, the prognostic accuracy of the AREG-related signature was also
confirmed. Functional analysis indicated that the high-risk score was related to various functions and pathways. Inflammation
and immune-related analyses indicated that the difference of T cell and B cell receptor abundance, microvascular endothelial
cells (MVE), lymphatic endothelial cells (lye), pericytes, stromal cells, and the six immune checkpoints was statistically
significant between the different risk groups. Similarly, RT-qPCR outcomes of these signature genes were also significant. In
conclusion, an inflammation-associated signature based on five DE-AREGs was constructed, which could act as a prognostic
indicator of patients with HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most com-
mon cancers and has the second-highest mortality rates
worldwide [1]. Currently, the standard treatment for HCC
includes resection, local therapies such as ablation and
radiotherapy, and liver transplantation. However, owing to
the high recurrence and mortality rates, the prognosis of
patients with HCC remains unsatisfactory [2, 3].

As an essential cis-acting short sequence in the 3′UTR,
adenylate uridylate- (AU-) rich element (ARE) has a signif-

icant effect on mRNA stability and translation and is closely
related to mRNA decay [4, 5]. Chen and Shyu reported three
classes (class I, class II, and class III) of ARE, which were
based on the presence of an AUUUA motif in the U-rich
region [6]. Specifically, among U- or AU-rich sequences
and repeated sequences of AUUUA or non-AUUU overlap-
ping pentamers determined as ARE sequences, the latter two
forms are considered to be the least functional ARE
sequences [4, 7]. Moreover, the AU-rich binding factor 1
(AUF1) is a well-known ARE-specific RNA-binding protein
(ARE-BPs). Zhang et al. reported a novel role of AUF1 in
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promoting the development and drug resistance of HCC [8]
Furthermore, if the degradation of ARE-mRNAs was
destroyed, chronic inflammation will be induced. For exam-
ple, IL-17, a mediator implicated in chronic and severe
inflammatory diseases, can enhance the production of pro-
inflammatory mediators by attenuating the decay of ARE-
mRNAs [9]. Similarly, the correlation of the biomarkers rel-
evant to inflammatory response disorder and HCC progno-
sis was explored by Xing et al., wherein an inflammation-
related gene (IRG) risk model comprising six IRGs that
could identify tumors with low immune levels and also indi-
cate the efficacy of immunotherapy was constructed [10].

HCC is a typical inflammation-driven carcinoma with
progressive chronic nonresolving inflammation [11]. In
addition, owing to the disruption of the degradation prog-
ress of ARE-mRNA, chronic inflammation and cancer are
considered potential outcomes [12]. For example, the ARE
gene uPA is upregulated in various cancers and stimulates
angiogenesis, providing tumor cells with abundant nutrition
and oxygen [13]. COX-2 in ARE genes contributes to angio-
genesis, metastasis, and other tumor-related mechanisms in
colon cancer [14]. Additionally, AUBPs contain typical
sequences that are rich in AU bases (AREs) and can rapidly
regulate 3′-UTR harbouring ARE-binding motifs of liver
disease-related cytokines and proinflammatory molecules.
AUBPs could also be considered effective factors in HCC
progression [15]. Therefore, ARE genes are speculated to
be closely related to tumors and have promising potential
prognostic value as a new target for tumor therapy.

This study is aimed at demonstrating the prognostic
value of the ARE genes for the first time in HCC using bio-
informatics analysis and exploring its potential therapeutic
agents. This study is also aimed at aiding in the theoretical
guidance for the treatment of HCC.

2. Materials and Methods

2.1. Data Source. The TCGA-LIHC datasets were down-
loaded from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/), including 374 samples with
HCC and 50 controls. A total of 421 non-formalin-soaked
tumor tissues and normal tissues (50 normal samples, 371
HCC samples) were selected for differential expression anal-
ysis. Moreover, 363 samples were retained for constructing a
prognostic model based on extracted complete survival status
and clinical information. The GSE14520 dataset was down-
loaded from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/gds/) for external validation,
wherein 221 case samples had complete survival information.
Furthermore, the GSE54236 dataset containing 81 HCC tis-
sue samples and 80 adjacent nontumor samples was utilized
for gene expression analysis. Additionally, 4884 AREGs were
downloaded from the Adenylate Uridylate-Rich Element
Database (ARED, https://brp.kfshrc.edu.sa/ared).

2.2. Differential Expression Analysis. Limma within R was
applied to select differentially expressed genes (DEGs)
(p < 0:05 and jLog2FCj > 1) between the HCC and healthy
groups in the TCGA-LIHC datasets [16]. Following this,

TBtools were used to intersect DEGs and ARE genes to
obtain differentially expressed AREGs (DE-AREGs) [17].

2.3. Functional and Pathway Enrichment Analysis of DE-
AREGs. The Gene Ontology (GO) and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment scores of
DE-AREGs were further analysed using “clusterProfiler,” with
p.adj<0.05 and q value cutoff=0.2 determining statistical sig-
nificance [18].

2.4. Construction and Validation of the DE-AREG Signature.
A total of 363 HCC samples with complete survival and clin-
ical information were used as the training set to construct an
AREG-related signature. Moreover, prognostic DE-AREGs
were screened using univariate Cox and LASSO regression
methods, which were performed using the survival and
glmnet package, respectively [19, 20]. Subsequently, the
multivariate Cox regression was used to construct the DE-
AREG signature. The risk score was calculated as follows:
Risk score =h0(t)∗ exp (β1X1+β2X2+⋯+βnXn). Follow-
ing this, the training set was classified into high- and low-
risk groups based on the median value among risk scores
of patients of HCC. Kaplan-Meier (K-M) curves were plot-
ted using the survminer package [21]. The receiver operating
characteristic (ROC) curve and the area under the curve
(AUC) were drawn using the R package survival ROC [22].
Finally, the GSE14520 dataset was used to validate the prog-
nostic performance of the signature.

2.5. Independent Prognostic Analysis. The wilcox.test function
in Rwas used to evaluate the clinical relevance of the riskmodel
based on the clinical data of HCC samples. Using the univariate
andmultivariate Cox regressionmodels, the independent prog-
nostic factors and relevant clinical parameters (p-value<0.05)
were used to establish the prognostic nomogram.

2.6. Functional Enrichment Analysis. To further investigate
the functions related to the DE-AREG signature, gene set
enrichment analysis (GSEA) was conducted using the gene

Table 1: Primers for real-time quantitative polymerase chain
reaction (RT-qPCR).

Primer Sequence

UGT2B15 F ATTTCTGTTCCCTCCTTCC

UGT2B15 R AACTGGTCCCACTTCTTCA

SERPINE1 F ACCCACCGCCGCCTCTTC

SERPINE1 R CCACCGTGCCACTCTCGT

RABIF F GGACCGCTCTCTTCTCTC

RABIF R AACTTGATGTTGCCCACG

CENPA F TCGTGGTGTGGACTTCAAT

CENPA R GCTTCTGCTGCCTCTTGTA

TXNRD1 F ATAAATGAAAAGACTGGAAAAA

TXNRD1 R GCCAAAAGTAACTATGGTAAAC

Internal reference
H-GAPDH

F CCCATCACCATCTTCCAGG

Internal reference
H-GAPDH

R CATCACGCCACAGTTTCCC
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expression data extracted from the two risk groups.
c5.go.v7.4.symbols.gmt (GO) and c2.cp.kegg.v7.4.sym-
bols.gmt (KEGG) were selected as reference gene sets. The
pathways and GO terms with jNESj > 1, NOM p value <
0.05, and FDR qvalue < 0:25 were extracted for further
analysis.

2.7. Inflammatory and Immune-Related Analyses. The differ-
ences in inflammation-related factors, cytolytic score (CYT),
antigen presentation mechanism (APM), infiltration of vascu-
lar cells, and immune checkpoints were interpreted in the two
risk groups using xCell [23]. Additionally, the single sample
GSEA (ssGSEA) algorithm was used to estimate the relative
abundance of 28 immune cells for comparison between the
risk groups [19]. Correlation analysis was performed to iden-
tify the relationship between immune cells and risk score.
Next, overlapping immune cells with r > 0:3 were obtained
that could be associated with different risk groups.

2.8. Prediction of Potential Biomarker-Drug Interactions. The
potential drugs for the signature genes were predicted based
on the Binding DB database (https://www.bindingdb.org/

bind/index.jsp), STRING database (https://cn.string-db
.org), and ZINC15 database (https://zinc15.docking.org/).
In the Binding DB database, the drugs with affinity value <
50 were selected first, and then, these drugs were screened
in the STRING database with a confidence value = 0:85. In
the ZINC15 database, the potential drugs with the lowest
affinity according to the molecular docking score were
selected.

2.9. Real-Time Quantitative Polymerase Chain Reaction (RT-
qPCR) Analysis and Validation of the Signature Genes in Cell
Lines. Total RNA was collected from the nontumorigenic
hepatocyte cell line (WRL68) and three HCC tumor cell
lines (Huh-7, HepG2, and Sk-Hep-1) using a TRIzol reagent
(Invitrogen, Eugene, OR, USA). The first-strand cDNA was
synthesized with superScript RT I First-Strand cDNA Syn-
thesis All-in-One™ First-Strand cDNA Synthesis Kit (Servi-
cebio, Wuhan, China). The 2x Universal Blue Sybr Green
qPCR Master Mix (Servicebio, Wuhan, China) was used
for RT-qPCR detection. The primers used in this study are
presented in Table 1. The 2-ΔΔCt method was used for the
expression detection of the signature genes [24].

TCGA-HCC queue ARED database

4884 ARE genesDiferentially expressed genes

Diferentially expressed ARE genes (DAREGs)

Construction and validation of prognostic models

Clinical correlation and independent prognostic analysis of prognostic models

Functional enrichment analysis of GSEA in high and low risk groups

Infammation and immune
score analysis in high and
low risk groups

Analysis of vessel and
stromal cell content in
high and low risk groups

Immune checkpoint
analysis in high and
low risk groups

Analysis of immune
infltration in high
and low risk groups

Potential drug prediction based on biomarkers

Validation of the expression levels of biomarkers in cell line

Figure 1: Workflow of the study on AREG prognostic signatures for HCC.
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3. Results

We conducted our study as presented in the workflow
(Figure 1). A total of 1512 genes were identified as differently
expressed at mRNA level in tumor tissues (n = 371) when
compared with that of normal tissues (n = 50) [25]. More-
over, the following software was used in this study: xCell
(v.1.1.0), limma (v.3.44.3), ggplot2 (v.3.3.2), TBtools
(v.1.098661), clusterProfiler (v.3.16.0), Survival (v.3.2 3),

pROC (v.1.16.2), psych (v.2.0.9), GSVA (v.1.38.2), rms
(v.5.4-1), and Vina (v.1.1.2).

3.1. Identification of DE-AREGs. We identified 1512 DEGs
between HCC and normal samples, including 1046 upregu-
lated and 366 downregulated DEGs (Figure 2(a)). Following
this, 189 overlapping genes were obtained between 1512
DEGs and 4884 AREGs, which were considered DE-
AREGs (Figure 2(b)). Furthermore, the hypergeometric
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Figure 2: A total of 180 DE-AREGs were selected. (a) Volcano plot of 1512 differentially expressed genes (DEGs). Red, upregulation; green,
downregulation. (b) Venn diagram of the 189 overlapping genes.
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Figure 3: Functional enrichment analysis. (a) GO annotation of DE-AREGs with the top 10 enrichment scores. (b) Top 10 KEGG pathways
of DE-AREGs.
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Figure 4: Five signature genes were generated based on the LASSO Cox regression. (a, b) Construction of the LASSO Cox regression model.
(c) Forest map of the multivariate Cox results.

Table 2: Top five differentially expressed adenylate uridylate-rich element genes (DE-AREGs) identified using the multivariate Cox
regression analysis.

ID Coef HR HR.95L HR.95H p value

TXNRD1 0.295306992 1.343538751 1.144714554 1.576896501 0.000301488

CENPA 0.35019523 1.41934462 1.142163909 1.763791637 0.00158281

UGT2B15 0.089964684 0.913963462 0.841185018 0.99303862 0.03358938

SERPINE1 0.080432278 1.08375545 0.977870418 1.201105845 0.125189516

RABIF 0.247936243 1.281378233 0.911795369 1.800766085 0.15326473
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Figure 5: The prognostic value of the five gene signatures in the training set. (a) Distribution of risk score, survival time, and heatmap of the
five gene signatures in the training set. (b) Kaplan-Meier curve of patients with HCC having different risk scores (p < 0:0001). (c) The
receiver operating characteristic (ROC) curve evaluating the validity of the risk model.
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Figure 6: Risk model validation is in the GSE14520 dataset. (a) Risk score, survival time, and gene expression heatmaps were plotted in the
validation set (GSE14520 dataset). (b) Kaplan-Meier analysis in the validation set (GSE14520 dataset) (p < 0:001). (c) The receiver operating
characteristic (ROC) curve evaluating the validity of the risk model.
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distribution of the intersection data in the Venn graph was
analysed using the Phyper function of R language. A signif-
icant overlap between the non-DEGs and AREG sets was
observed (p=2.42e− 46), indicating that the AREGs tend
to be stable between tumor and normal samples.

3.2. Functional and Pathway Enrichment of Different Risk
Groups. From the perspective of the biological roles of the
189 DE-AREGs, a total of 59 GO terms were enriched,
including biological process (BP) of 52 terms, cell compo-
nent (CC) of six terms, and one molecular function (MF)
term. GO BP analysis suggested that 189 DE-AREGs were
relevant to mitotic nuclear division, regulation of lipid met-
abolic process, epithelial cell proliferation, etc. (Figure 3(a)).
For GO CC analysis, the top three enriched terms were con-
densed chromosome, centromeric region, and collagen-
containing extracellular matrix. For GO MF analysis, 189
DE-AREGs were related to growth factor binding. Further-
more, the KEGG pathway showed enrichment in the insulin
resistance pathway (Figure 3(b)).

Furthermore, enrichment analyses of the aforemen-
tioned DE-AREGs with different expression trends indicated
that the upregulated genes enriched 19 GO terms and down-
regulated genes enriched two GO terms; however, no KEGG
pathway enrichment was observed. Moreover, the downreg-
ulated genes annotated in GO terms included core promoter
sequence−specific DNA binding and neurotrophin receptor
binding of the MF category. The upregulated genes mainly

enriched in GO terms included epithelial cell proliferation,
regulation of lipid metabolic process, response to peptide
hormone, urogenital system development, and renal system
of BP (Figure S1).

3.3. Construction of an AREG-Related Signature. The univar-
iate Cox regression analysis was first performed with 189
DE-AREGs, and 72 DE-AREGs were screened (Table S1).
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Figure 7: Correlation analysis between AREG-related signature and clinicopathological features. (a) Correlation of risk score and
clinicopathological features. The abscissa represents clinical traits, and the ordinate represents risk score. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p <
0:001, and ∗∗∗∗p < 0:0001. ns: not significant. (b) Forest plots of independent prognostic-univariate Cox results. (c) Forest plots of
independent prognostic-multivariate Cox results.

Table 3: Results of independent prognostic-univariate analysis.

ID HR HR.95L HR.95H p value

Age 1.004326 0.986076 1.022914 0.644558

Gender 0.795005 0.493806 1.279922 0.345073

Grade 1.00493 0.735968 1.372186 0.975314

Stage 1.856679 1.448018 2.380673 0.00000107

T 1.796322 1.42663 2.261814 0.000000629

N 2.007582 0.49043 8.218068 0.332458

M 3.825294 1.199118 12.20303 0.023405

Risk score 1.44637 1.296357 1.613743 0.0000000000395

Table 4: Results of independent prognostic-multivariate analysis.

ID HR HR.95L HR.95H p value

T 1.670126 1.313847 2.123019 0.0000279

Risk score 1.392981 1.237027 1.568598 0.0000000447
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Subsequently, the LASSO Cox analysis on the 72 DE-AREGs
showed that 13 DE-AREGs were potential prognostic genes
at the lambda:min = 0:047 (Figures 4(a) and 4(b)).
Moreover, the adopted multivariate Cox analysis identified
five 5 signature genes (CENPA, TXNRD1, RABIF,
UGT2B15, and SERPINE1) (Table 2 and Figure 4(c)).
Furthermore, the five DE-AREG expressions were validated
in the GSE14520 and TCGA datasets. The expression levels
of CENPA, TXNRD1, and RABIF in the HCC groups were
significantly higher than that in the normal groups.

Contrarily, UGT2B15 and SERPINE1 were significantly
higher in the normal groups compared with the HCC
samples (Figure S2).

3.4. Evaluation and Validation of the AREG-Related
Signature. Risk score = 0.3501952×CEN-
PA+0.295307×TXNRD1+0.2479362×RABI-
F+ (−0.0899647)×UGT2B15+0.0804323× SERPINE1. The
samples of the training set were divided into the high- (182
HCC samples) and low-risk (181 HCC samples) groups
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Figure 8: Evaluation of the clinical benefit of the risk score. (a) The nomogram to predict the survival rate of patients with hepatocellular
carcinoma (HCC). (b) Calibration curves of the nomogram.
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Figure 9: Gene set enrichment analysis outcomes in different risk groups. (a) The Top2 GO significant enrichment in the high-risk group.
(b) The Top2 GO significant enrichment in the low-risk group. (c) The Top2 KEGG significant enrichment in the high-risk group. (d) The
Top2 KEGG significant enrichment in the low-risk group.
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Figure 10: Analysis of inflammation and immune response. Differences in inflammatory immune factors (a), APM score (b), vascular cell
infiltration (c), and stromal cell infiltration (d) in different risk groups were displayed. (e, f) Heatmap and box plots of immune checkpoint
expressions in different risk groups. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001. ns: not significant.
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(median risk score = 0:9064) (Figure 5(a)). Additionally, the
overall survival (OS) of HCC samples showed that a higher
risk score was accompanied by poorer OS (Figure 5(b)). Fur-
thermore, the ROC curve revealed that the AUC was greater
than 0.6 (Figure 5(c)).

Furthermore, the five DE-AREG prognostic signatures
were verified in the GSE14520 dataset. The GSE14520 data-
set was also divided into two risk groups (cutoff=5.581)

(Figure 6(a)). The performance of the K-M analysis and
AUC values were per the training set (Figures 6(b) and
6(c)), indicating that the five AREG-related signatures had
higher specificity and sensitivity for HCC.

3.5. Independent Prognostic Value of the DE-AREG
Prognostic Signature and Construction of a Predictive
Nomogram. To estimate the correlations between the

Acti
vat

ed
 B ce

ll

Acti
vat

ed
 CD4 T

 ce
ll

Acti
vat

ed
 CD8 T

 ce
ll

Acti
vat

ed
 den

driti
c c

ell

CD56
brig

ht n
atu

ral
 kille

r c
ell

CD56
dim

 natu
ral

 kille
r c

ell

Centra
l m

em
ory 

CD4 T
 ce

ll

Efect
or m

em
ory 

CD4 T
 ce

ll

Centra
l m

em
ory 

CD8 T
 ce

ll

Efect
or m

em
ory 

CD8 T
 ce

ll

Eosin
ophil

Gam
ma d

elt
a T

 ce
ll

Im
matu

re 
B ce

ll

Im
matu

re 
den

driti
c c

ell

Macr
ophage

Mast
 ce

ll
MDSC

Mem
ory 

B ce
ll

Monocyt
e

Natu
ral

 kille
r c

ell

Natu
ral

 kille
r T

 ce
ll

Neutro
phil

Plas
macy

toid den
driti

c c
ell

Regu
lat

ory 
T ce

ll

T fo
llic

ular
 help

er 
cel

l

Typ
e 1

 T help
er 

cel
l

Typ
e 1

7 T
 help

er 
cel

l

Typ
e 2

 T help
er 

cel
l

Low

High

Risk

0.00

0.25

0.50

0.75

1.00 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns

Ab
un

da
nc

e

⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎ ⁎ ⁎ ⁎ ⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎

(a)

Acti
vat

ed
 B ce

ll

Acti
vat

ed
 CD4 T

 ce
ll

Acti
vat

ed
 CD8 T

 ce
ll

Acti
vat

ed
 den

driti
c c

ell

CD56
brig

ht n
atu

ral
 kille

r c
ell

CD56
dim

 natu
ral

 kille
r c

ell

Centra
l m

em
ory 

CD4 T
 ce

ll

Efect
or m

em
ory 

CD4 T
 ce

ll

Centra
l m

em
ory 

CD8 T
 ce

ll

Efect
or m

em
ory 

CD8 T
 ce

ll

Eosin
ophil

Gam
ma d

elt
a T

 ce
ll

Im
matu

re 
B ce

ll

Im
matu

re 
den

driti
c c

ell

Macr
ophage

Mast
 ce

ll

MDSC

Mem
ory 

B ce
ll

Monocyt
e

Natu
ral

 kille
r c

ell

Natu
ral

 kille
r T

 ce
ll

Neutro
phil

Plas
macy

toid den
driti

c c
ell

Regu
lat

ory 
T ce

ll

T fo
llic

ular
 help

er 
cel

l

Typ
e 1

 T help
er 

cel
l

Typ
e 1

7 T
 help

er 
cel

l

Typ
e 2

 T help
er 

cel
l

Risk score

0.25

0.00

–0.25

⁎⁎
p<0.01

C
or

re
lat

io
n

⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎⁎ ⁎⁎

(b)

Type 2 T helper cell
activated CD4 T cell
eosinophil

difmmuCell corrimmuCell

8 3 0

(c)

Figure 11: Immunoinfiltration analysis. (a) Box plot of the 28 immune cell differences in the two risk groups. (b) Heatmap of immune cell
correlation with a risk score. (c) Venn diagram of 11 differentially expressed immune cell types and three immune cell types significantly
correlated with risk score (r > 0:3). ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001. ns: not significant.
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AREG-related signature and clinicopathological features, the
risk score and clinicopathological information were com-
bined. As shown in Figure 7(a), the grade, stage, and T stage
were significantly different. Univariate analysis suggested
that stage, T/M stage, and risk score were considered essen-
tial to the prognosis of HCC (p < 0:05) (Table 3 and
Figure 7(b)). Additionally, the T stage and risk score had
an independent prognostic value for HCC (p < 0:05)
(Table 4 and Figure 7(c)).

Furthermore, a nomogram was generated with T stage
and risk score as the variables (Figure 8(a)), and the C-
index of 1, 3, and 5 years indicated that the nomogram per-
formed well (Figure 8(b)).

3.6. GO and KEGG Pathways Enriched in the Two Risk
Groups. To explore the biological function of the DEGs
between different risk groups, functional and pathway

enrichment was performed. A total of 2242 GO annotations
were correlated with high-risk scores (Table S2 and
Figure 9(a)), such as nucleotide phosphorylation and
negative regulation of the cell cycle process. The low-risk
group was found to affect the monocarboxylic acid
catabolic process and blood coagulation intrinsic pathway
(Table S3 and Figure 9(b)). Moreover, 72 KEGG pathways
were enriched in the high-risk group, such as pyrimidine
metabolism, cell cycle, and lysosome (Table S4 and
Figure 9(c)). A total of 13 KEGG pathways were enriched
in the low-risk group, such as primary bile acid
biosynthesis, fatty acid metabolism, and retinol metabolism
(Table S5 and Figure 9(d)).

3.7. Difference Analyses of Inflammation, Immune, Vascular
Cells, and Stromal Cells with Different Risk Scores. Inflamma-
tion and immune infiltration were validated to be critical to
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Figure 12: Prediction for the potential drugs of biomarkers. (a) Potential drug targets for biomarkers. Red triangles represent biomarkers
and green diamonds represent drug targets. (b) Molecular docking complex and element legend.
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HCC development. Additionally, T cell and B cell receptor
abundance and APM levels were significantly upregulated
in the low-risk group (Figures 10(a) and 10(b)). Moreover,
in the low-risk group, higher cell infiltrations were observed
in microvascular endothelial cells (MVE), lymphatic endo-
thelial cells (lye), pericytes, and stromal cells (Figures 10(c)
and 10(d)). The immune checkpoints of PDCD1, CTLA4,
HAVCR2, and TIGIT had a significant difference in differ-
ent risk groups (Figures 10(e) and 10(f)).

Furthermore, the results of immune cell infiltration sug-
gested that 11 immune cells were significantly different such
as activated CD4 T cells and eosinophils (Figure 11(a)).
Moreover, five cell types, such as activated CD4 T cell and
type 2 T helper cell, were positively correlated with risk
scores (Figure 11(b)). However, there was a significantly
negative correlation between eosinophil and risk score
(Figure 11(b)). Finally, activated CD4 T cells, type 2 T helper
cells, and eosinophils were identified as key immune cells in
different risk groups (Figure 11(c)). Additionally, the hyper-
geometric distribution of the intersection data in the Venn
graph was validated using the Phyper function of R language
(p = 0:05).

3.8. Potential Drug Prediction. To investigate the potential
drugs that regulate signature genes, the predictions were per-
formed based on the Binding DB database and ZINC15
database. In the Binding DB database, 11 drug targets were
predicted for CENPA; four drug targets were predicted for

TXNRD1; two drug targets were predicted for RABIF; two
drug targets were predicted for UGT2B15; 10 drug targets
were predicted for SERPIN1 (Figure 12(a)). In the ZINC15
database, the target drugs of TXNRD1, CENPA, UGT2B15,
SERPINE1, and RABIF were ZINC00014768621,
ZINC000167289767, ZINC000003932831, and ZINC0000
52955754, respectively (Figure 12(b)).

3.9. Validation of Signature Genes in Cell Lines by Using RT-
qPCR. Differences in the expression of the five signature
genes between the nontumorigenic hepatocyte cell line
(WRL68) and three HCC tumor cell lines (Huh-7, HepG2,
and Sk-Hep-1) were compared using RT-qPCR
(Figure 13). UGT2B15 and SERPINE1 were significantly
higher in WRL68 than in HCC cells. However, the mRNA
levels of RABIF, CENPA, and TXNRD1 were lower in
WRL68 compared with HCC cells.

4. Discussion

Owing to the progressivity of HCC, it is necessary to estab-
lish reliable prognostic signatures for HCC diagnosis and
treatment. Computational models have recently become an
effective adjunct to explore possible carcinogenic factors
and biomarkers for HCC [26]. Additionally, several vital
proteins were identified that were coded by AU-rich
mRNAs, which play a similar role in inflammation and can-
cer development [4].
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Figure 13: Real-time quantitative polymerase chain reaction (RT-qPCR) validation of five signature genes in hepatocellular carcinoma cells
and controls.
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For the treatment of HCC, histological grades and gene
expression data were utilized to construct a novel signature
for the prediction of HCC prognosis [27]. Moreover,
immune-related genes and corresponding potential com-
pounds were investigated in HCC [24]. In this study, a five
DE-AREG-based prognostic signature was generated and
validated. Furthermore, several potential drugs were identi-
fied, providing a reference for HCC treatment. Additionally,
RT-qPCR results confirmed the expression of the prognostic
genes in HCC cell lines.

RNA-seq data in the TCGA-HCC datasets was con-
ducted to investigate biomarkers related to HCC prognosis,
wherein a prognostic model comprising CENPA, TXNRD1,
RABIF, UGT2B15, and SERPINE1 was constructed. Func-
tional and pathway enrichment analyses of these model
genes showed that they could play an important role in the
prognosis of patients with HCC using various pathways.
Specifically, CENPA (centromere protein A), an essential
factor in cell division, acts on centromeres and kinetochores.
A study on breast cancer indicated that the functional alter-
ation of the CENPA-related coexpression network can affect
and contribute to the development of various cancers by tar-
geting the process of cell cycle progression [28]. Addition-
ally, a study related to HCC prognosis revealed that high
expression levels of CENPA were correlated to poor progno-
sis in patients with HCC [29], which was consistent with this
study’s findings where CENPA was considered an unfavour-
able prognostic factor for HCC prognosis. Furthermore, in
the current study, the cell cycle-related KEGG pathway was
significantly enriched in the high-risk group. The expression
of CENPA was also observed to be lower in HCC samples
compared to normal samples, indicating that CENPA could
play an important role in the prognosis of HCC patients via
cell cycle-related pathways. The overexpression of TXNRD1
(thioredoxin reductase 1) had been reported as a promising
therapeutic factor in HCC [30]. Conversely, the lipid
peroxidation-related gene SLC27A5 was found to downregu-
late TXNRD1 expression and inhibit HCC progression [31].
Notably, the fatty acid metabolism pathway was activated in
the low-risk group, indicating that the imbalance between
TXNRD1 mRNA expression and fatty acid metabolism reg-
ulation could promote poor prognosis in patients with HCC.
Furthermore, RABIF (RAB interacting factor) was mutated
in GTPase Sec4 and was speculated to be involved in cancer
cell progression, invasion, and metastasis [32, 33]. The RT-
qPCR results also demonstrated the increased expression
of RABIF in HCC cell lines. Uridine diphosphate glucuronic
acid transferase (UGT) is a crucial phase II metabolism
enzyme in the human body, mainly found in liver micro-
somes. Moreover, studies have demonstrated that the homo-
zygous D85 UGT2B15 (UDP glucuronosyltransferase family
2 member B15) allele genotype could be associated with an
increased risk of prostate cancer [34]. In this study, the uni-
variate Cox analysis revealed that UGT2B15 was a favour-
able prognostic factor. The RT-qPCR analysis also revealed
that UGT2B15 mRNA was lower in the three HCC cell lines
than that in the control group, indicating the favourable
prognostic value of UGT2B15 in HCC. SERPINE1 (serpin
family E member 1) could promote the malignant transfor-

mation of chronic hepatitis to HCC by targeting miR-145
[35–37]. Hachim et al. indicated that SERPINE1 is also
closely associated with the cell cycle process [38]. Consis-
tently, multivariate Cox results suggested that SERPINE1
was an unfavourable prognostic factor for HCC. Notably,
the gene expression results showed that SERPINE1 was
expressed lower in HCC samples than in paracancerous tis-
sues, which was contradictory to the multivariate Cox
results. Thus, we hypothesised that this phenomenon could
be due to the complex mechanism of genes and disease;
however, further experimental verification is needed.

Next, we analysed inflammatory and immune-related
differences between the risk subgroups associated with the
five DE-AREG prognostic models. The results indicated an
inconsistent immune microenvironment and inflammatory
status between the two risk subgroups. Through ssGSEA
analysis of the three essential immune cells, it was revealed
that activated CD4 T cell, type 2 T helper cell, and eosinophil
have a great relationship with the five DE-AREG prognostic
models. First, activated CD4 T cells in HCC could induce the
generation of IgG-producing plasma cells with the assistance
of macrophages. IgG further inhibited the tumor immune
response by producing cytokines [39]. Second, the neddyla-
tion pathway was activated in HCC and changed with dis-
ease development. Herein, we revealed that an activated
neddylation pathway was accompanied by a higher infiltra-
tion of Th2 cells. Meanwhile, the immunosuppressive effects
of IL-4 and IL-10 secreted by Th2 cells could further regulate
tumor growth and metastasis [40, 41]. However, Th2-
released cytokines were also influenced by the Th1/Th2
imbalance in patients with HCC [42, 43]. Additionally, it
was reported that eosinophils, originally located in the pri-
mary cancer cells, could be stimulated by eosinophilic che-
mokines and transported into the liver to promote cancer
development [44, 45]. These findings provided more possi-
bilities by targeting immunotherapy for HCC treatment.

Cui et al. identified five prognosis-related metabolic
genes that were involved in the dysregulation of the meta-
bolic microenvironment in the survival prognosis model of
patients with HCC, which was constructed using TCGA-
LIHC. They also reported on the use of these genes in met-
abolic therapy [46]. Moreover, based on TCGA-LIHC and
GSE14520 datasets, the prognosis model of HCC, which
included a nine-gene amino acid metabolism-related risk
signature, represented only amino acid metabolisms that
cause liver cancer. Meanwhile, amino acid metabolism ther-
apy was also proposed [47]. Shen et al. constructed a ten-
immune-related gene risk model to predict the survival of
patients with HCC in terms of immune regulation, provid-
ing a novel target for the treatment of patients with HCC
[48]. In comparison, the five DE-AREG prognostic models
in this study present more carcinogenic factors. Addition-
ally, multiangle therapy could be used to guide clinical ther-
apy, such as using multiple types of anticancer drugs based
on the five signature gene targets. Moreover, this model
could improve the treatment options for patients with HCC.

Currently, the presence of cirrhosis causes a considerable
challenge to the surgical treatment of HCC [1, 24]. Liver
transplantation has many limitations, such as the lack of
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an appropriate liver source or graft rejection [24, 49]. In the
treatment of patients with advanced HCC, such as first-line
sorafenib and second-line regorafenib, only certain patients
exhibited good liver function [50, 51]. Therefore, bioinfor-
matics analysis based on next-generation sequencing is
becoming an important method to identify biomarkers and
explore therapeutic drugs and pathogenesis. Moreover,
ARE genes can reliably predict the OS of patients with
HCC, and the prognostic signature was relevant to the
inflammation-associated element. However, to provide
patients with a better prognosis and aid in personalised tar-
geted therapy, further prospective trials to test the clinical
efficacy of the signature should be conducted.

5. Conclusions

Using three cohort profile datasets and integrated bioinformat-
ics analysis, five DE-AREGs were identified and referred to as
biomarkers of the inflammation-associated prognostic model
in HCC. The novel DE-AREG-based risk scoring system was
established for the clinical assessment of patients with HCC.
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