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Background. DNA methylation patterns have been found to be distinct between tumor and normal patients. However, the effect of
DNA demethylation enzymes, ten eleven translocation (TET) proteins, has not been comprehensively characterized in liver cancer.
In this research, we sought to unravel the linkage of TET proteins with prognosis, immune characteristics and biological pathways
in hepatocellular carcinoma (HCC).Materials and Methods. Four independent datasets with gene expression data and clinical data
of HCC samples were downloaded from public databases. CIBERSORT, single sample Gene Set Enrichment Analysis (ssGSEA),
MCP-counter, and TIMER were implemented to evaluate immune cell infiltration. limma was employed to screen differentially
expressed genes (DEGs) between two groups. The demethylation-related risk model was established by using univariate Cox
regression analysis, the least absolute shrinkage and selection operator (LASSO), and stepwise Akaike information criterion
(stepAIC). Results. TET1 was significantly higher expressed in tumor samples than that in normal samples. HCC patients with
advanced stages (III+IV) and grades (G3+G4) had higher TET1 expression compared to early stages (I+II) and grades (G1+G2).
HCC samples with high TET1 expression had worse prognosis than that with low expression. High and low TET1 expression
groups had distinct immune cell infiltration and response to immunotherapy and chemotherapy. We identified 90 DEGs related
to DNA demethylation in high vs. low TET1 expression groups. Furthermore, we established a risk model based on 90 DEGs
containing seven key prognostic genes (SERPINH1, CDC20, HACD2, SPHK1, UGT2B15, SLC1A5, and CYP2C9) with
effectiveness and robustness in predicting HCC prognosis. Conclusions. Our study suggested TET1 as a potential indicator in
HCC progression. TET1 was closely involved in immune infiltration and activation of oncogenic pathways. The DNA
demethylation-related risk model was potential to be applied for predicting HCC prognosis in clinics.

1. Introduction

Liver cancer contributes to a proportion of 4.7% new cancer
cases and 8.3% new cancer deaths worldwide according to
the global cancer statistics in 2020 [1]. Hepatocellular carci-
noma (HCC) is the most common histological type, com-
prising of approximately 75% of liver cancer patients [2].
The incidence of liver cancer in male populations are almost
two times of that in female populations, as shown in 2020

cancer data [1]. Strikingly, liver cancer contributes to the
second cancer death in male populations (10.5% of cancer
deaths) [1]. Metastatic liver cancer patients have a poor
overall survival, in spite of the treatment with molecular
drugs, which results from the unavoidable drug resistance
in most of the patients [3]. Also, due to the intratumor hetero-
geneity of liver cancer, the development of targeted therapies
becomes even challenging [4]. Therefore, understanding the
molecular mechanisms during liver cancer progression is of
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great importance for facilitating the exploration of novel ther-
apeutic targets.

It is knowledgeable that the variations of tumor suppres-
sor genes or protumor genes are the key inducers of cancer.
In addition to solid genetic mutations, the alterations of epi-
genetic modifications are also a crucial factor in the onset
process of cancer. Bulk of evidences have illustrated that
DNA methylation profiles are distinct between normal and
cancer genomes [5–7]. DNA methylation is under controlled
by two classes of enzymes, methylation enzymes (DNMT3a
and DNMT3b) [8] and demethylation enzymes (ten eleven
translocation (TET) family) [9]. TET enzymes, consisting
of consists of TET1, TET2, and TET3, are capable to reverse
DNA methylation by oxidizing 5-methylcytosine (5mC) to
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC),
and 5-carboxylcytosine (5caC) [10]. It has been shown that
the aberrant expression and mutations of TET proteins are
not rare in cancer patients [11, 12]. The expression levels
of TET proteins are associated with tumor progression and
metastasis, which offers a potential of TET proteins as
markers in cancer prognosis and diagnosis [13, 14].

In this study, we focused on the effect of TET1 in HCC
patients and sought to elucidate the potential crosstalk of
TET1 with immune microenvironment in HCC. In addition,
we identified key prognostic genes by extracting the TET1
and DNA methylation-related genes and established a risk
model for predicting HCC prognosis. We demonstrated
the potential of DNA methylation-related genes as prognos-
tic markers in HCC patients.

2. Materials and Methods

2.1. Data Acquisition. TCGA-LIHC dataset (abbreviated as
TCGA dataset) containing RNA sequencing (RNA-seq) data
and clinical information was downloaded from Genomic
Data Commons Data Portal (https://portal.gdc.cancer.gov/
projects/TCGA-LIHC) through TCGA GDC API [15].
ICGC-LIRI-JP dataset (abbreviated as ICGC dataset) was
downloaded from hepatocellular carcinoma database [16]
(HCCDB, http://lifeome.net/database/hccdb/home.html).
GSE14520 and GSE76427 datasets with microarray data
were obtained from Gene Expression Omnibus (GEO)
database [17] (https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE14520, https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE76427).

2.2. Data Preprocessing. For TCGA dataset, the HCC sam-
ples with survival time (over than 30 days and less than 10
years) and survival status were retained. Ensembl ID was
transferred to gene symbol. The median value of gene
expression was selected when the gene had multiple
Ensembl IDs. After preprocessing, 334 HCC samples and
50 paracancerous (normal) samples were included in TCGA
dataset. For two microarray datasets (GSE14520 and
GSE76427), the probes were matched to the gene symbols
according to the annotation file of microarray platform.
The probes matching to multiple gene symbols were
excluded, and the median expression level was used when
there were multiple probes of one gene. A total of 221 and

115 HCC samples were included in GSE14520 and
GSE76427 datasets, respectively. ICGC dataset included
212 HCC samples and 177 normal samples, and no prepro-
cessing was performed for the ICGC data.

2.3. Immune Analysis. CIBERSORT, single sample gene set
enrichment analysis (ssGSEA), Microenvironment Cell
Populations-counter (MCP-counter), and Tumor IMmune
Estimation Resource (TIMER) were employed to assess
immune cell infiltration. CIBERSORT [18] (http://cibersort
.stanford.edu/) is able to estimate the proportion of 22
immune cells from tumor mix based on a validated leukocyte
gene signature matrix (LM22). MCP-counter [19] allows to
detect the abundance of 10 cell populations including immune
cell and stromal cell populations from the transcriptome of
tumor tissues. SsGSEA [20] is a widely used methodology
for evaluating the absolute enrichment score of a gene set for
each sample. The gene sets of 28 immune cells were obtained
from a previous study [21], and the ssGSEA scores of the
immune cells were measured through GSVA R package [22].
TIMER [23] (http://timer.cistrome.org/) provides the inter-
pretation of six major immunemodules and visualizes the esti-
mated proportion of tumor-infiltrated immune cells. TIDE
[24] (http://tide.dfci.harvard.edu/) tool can predict the
response to immune checkpoint inhibitors (ICIs) through esti-
mating T cell status (exclusion and dysfunction) and infiltra-
tion of immunosuppressive cells including myeloid-derived
suppressor cells (MDSCs), cancer-associated fibroblasts
(CAFs), and M2 tumor-associated macrophages (TAMs).

2.4. Functional Enrichment Analysis of Biological Pathways.
Gene set enrichment analysis (GSEA) software [25] was
applied to identify enriched pathways with an ordered gene
set. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways “c2.cp.kegg.v7.5.1.symbols.gmt” and hallmark
pathways “h.all.v7.5.1.symbols.gmt” were downloaded from
Molecular Signature Database (MSigDB, https://www.gsea-
msigdb.org/gsea/msigdb/).

2.5. Differential Analysis. Differentially expressed genes
(DEGs) between two groups were identified by limma R pack-
age [26] based on their gene expression profiles. False discovery
rate ðFDRÞ < 0:05 and |log2 fold change ðFCÞj > 1 were set as
thresholds to screen significant DEGs. ClusterProfiler R pack-
age [27]was implemented to annotate the significantly enriched
Gene Ontology (GO) terms and KEGG pathways of DEGs.

2.6. Construction of a Risk Model for Predicting HCC
Prognosis. The gene sets of two DNA demethylation-related
biological processes (BPs) GOBP_DNA_METHYLATION_
OR_DEMETHYLATION and GOBP_POSITIVE_REGULA-
TION_OF_DNA_DEMETHYLATION were downloaded
from MSigDB. The enrichment score of the two BPs was cal-
culated by ssGSEA via GSVA R package. Pearson correlation
analysis was performed between DEGs and TET1 and DEGs
and the ssGSEA score of BPs by using Hmisc R package
(https://cran.r-project.org/web/packages/Hmisc/index.html).
The DEGs with significant correlations both with TET1 and
BPs were screened under jRj > 0:2 and P < 0:05. Next, the
DEGs were further screened by univariate Cox regression
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Figure 1: Continued.
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analysis, least absolute shrinkage and selection operator
(LASSO) [28], and stepwise Akaike information criterion (ste-
pAIC) [29]. Finally, the risk model was constructed with gene
expression and Lasso coefficients. Risk score = ΣðExp i ∗ beta
iÞ. Exp indicates the expression levels of genes (i), and beta
indicates the LASSO coefficients of corresponding genes. The
effectiveness and efficiency of the risk model were validated
by Kaplan-Meier survival analysis and receiver operating
characteristic (ROC) curve analysis.

2.7. Statistical Analysis. The statistical analysis used in this
study was performed in R software (v4.2.0). Wilcoxon test
was used to measure the difference between two groups.
ANOVA test was conducted to detect the difference among
four groups. P < 0:05 was determined as statistically signifi-
cant. The visualization of analyzed results was supported
by the Sangerbox platform [30] (http://sangerbox.com/).

3. Results

3.1. TET1 Expression Was Correlated with the Prognosis and
Clinical Characteristics in HCC. To evaluate the TET alter-
ation in HCC, we assessed the expression levels of TET1,
TET2, and TET3 in three independent datasets (TCGA,
GSE76427, and ICGC). As a result, only TET1 was differ-
ently expressed between tumor and normal samples in
TCGA, GSE76427, and ICGC datasets (P < 0:0001,
Figures 1(a)–1(c)). An upregulated expression level of
TET1 was observed in HCC samples compared with normal

samples. In addition, the samples with late grades or stages
showed higher TET1 expression (Figures 1(d) and 1(e)),
suggesting that high expression of TET1 may be a risk factor
of HCC progression. To examine the performance of TET1
as a prognostic biomarker in HCC, we divided HCC samples
into high TET1 expression (TET1-high) and low TET
expression (TET1-low) groups according to the median
value. Not surprisingly, samples in TET1-low group had
obviously longer overall survival than that in TET1-low
group (P = 4e − 04, Figure 1(f)). Moreover, the distribution
of clinical characteristics showed significant differences
between TET1-low and TET1-high groups (Figure 2). The
proportion of samples with early stages (T1, stage I, and
G1) was higher in TET1-low group than that in TET1-
high group. Conversely, TET1-high group had a higher pro-
portion of late stages than TET1-low group. In accordant
with the above observations, dead samples were more accu-
mulated in TET1-high group compared with TET1-low
group. The significant difference of clinical characteristics
and prognosis in two TET1 groups indicated that TET1
was importantly involved in HCC progression.

3.2. Immune Characteristics and Biological Analysis in Two
TET1 Groups. Evidence has shown that TET proteins play
a regulatory role in immune cell development and orches-
trate cell differentiation in tumorigenesis [31]. We compared
the immune cell infiltration in two TET1 groups through
multiple strategies including CIBERSORT, ssGSEA, MCP-
counter, and TIMER. The results presented that multiple
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Figure 1: TET1 expression was associated with HCC progression and survival. (a–c) The expression level of TET1 in normal and tumor
samples in three datasets. Wilcoxon test was performed. (d, e) The expression level of TET1 in different grades and stages in TCGA
dataset. ANOVA test was conducted. (f) Kaplan-Meier survival analysis of TET1-high and TET1-low groups in TCGA dataset. Log-rank
test was performed. ∗∗∗∗P < 0:0001.
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types of immune cells were differently enriched in TET1-
high and TET1-low groups, such as macrophages, CD8 T
cells, and natural killer (NK) cells (Figures 3(a)–3(d)). In
the response to immunotherapy, TET1-high group showed
higher TIDE score than TET1-low group, which suggested
higher immune evasion of TET1-high group possibly result-
ing from T cell exclusion and infiltration of MDSC
(Figure 3(e)). Furthermore, we assessed 10 oncogenic path-
ways in two TET1 groups and found that 9 oncogenic path-
ways had distinct enrichment scores between two groups
(P < 0:01, Figure 3(f)). TET1-high group had higher enrich-
ment score of most oncogenic pathways such as Hippo,
Notch, TGF-beta, cell cycle, TP53, and Wnt signaling path-
ways than TET1-low group. GSEA results showed that
metabolic pathways fatty acid metabolism and retinol
metabolism were more activated in TET1-low group com-
pared with TET-high group (Figure 3(g)).

To further explore the difference of activated biological
pathways in two TET1 groups, we performed differential
analysis and identified a total of 516 DEGs between two
groups. We identified 404 upregulated DEGs and 112 down-
regulated DEGs in TET1-high group (Figures 4(a) and 4(b)).

Functional analysis on the upregulated DEGs revealed that
cell cycle and DNA repair-related pathways were strikingly
enriched (Figure 4(c)). The above results suggested that
TET1 may serve as an important role in immune cell orches-
tration and tumorigenesis.

3.3. Construction and Verification of a Risk Model Related to
TET1 and Demethylation-Related Genes. TET1 proteins
serve an important role in DNA demethylation. Therefore,
we tried to obtain the DEGs associated with both TET1
and DNA demethylation. To reach this goal, we accessed
DNA demethylation-related BPs from MsigDB database
(GOBP_DNA_METHYLATION_OR_DEMETHYLATION
and GOBP_POSITIVE_REGULATION_OF_DNA_DEME
THYLATION). Correlation analysis was conducted between
DEGs and TET1 or the two demethylation-related BPs, and
a total of 90 DEGs were screened to be significantly corre-
lated with both TET1 and the ssGSEA score of two BPs
(jRj > 0:2; P < 0:05, Figure 5(a)). The 90 DEGs were used
as a basis for constructing a risk model. Subsequently, we
performed a series of methodologies to screen key DEGs
for reaching the optimal model. First of all, univariate Cox
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regression analysis identified the genes significantly associ-
ated with overall survival (defined as prognostic genes) in
TCGA dataset. Then, the number of prognostic genes were
compressed by LASSO and stepAIC. LASSO analysis identi-
fied 10 prognostic genes when the lambda and the model
reached the optimal (lambda = 0:0294) (Figure S1). Lastly,
stepAIC confirmed the 7 prognostic genes as the final
genes for constructing the risk model defined as follows
(Figure 5(b)):

Risk score = −0:351 ∗ SERPINH1 + 0:271 ∗ CDC20
+ 0:313 ∗HACD2 − 0:149 ∗ SPHK1
− 0:089 ∗UGT2B15 + 0:324 ∗ SLC1A5
− 0:084 ∗ CYP2C9:

ð1Þ

The risk model was verified in four independent
datasets. Each sample obtained a risk score and two groups
(high-risk and low-risk groups) were determined according
to the median value of risk score. Kaplan-Meier survival
analysis carried out significant differences on the overall

survival between two risk groups in four independent
datasets (P < 0:05, Figures 5(c), 5(e), 5(g), and 5(i)).
Moreover, ROC curve analysis verified that the risk score
was efficient to predict 1- to 5-year survival (Figures 5(d),
5(f), 5(h), and 5(j)), indicating the risk model was effective
and reliable in predicting prognosis for HCC patients.

3.4. The Linkage of Risk Score with Clinical Characteristics,
Immune Characteristics and Biological Pathways. In the rela-
tion between risk score and clinical characteristics, we
observed that there were evident differences on the risk score
between different genders, stages, and grades. Strikingly, the
risk score increased with the advancing stages and grades
(Figure 6(a)). We also analyzed the association of TET1 with
the risk score, and the result shown that TET1-high group
had markedly higher risk score than TET1-low group
(P < 0:0001, Figure 6(a)), implying that the 7 prognostic
genes in the risk model may be involved in the regulation
of TET1.

We investigated the immune microenvironment of two
risk groups by CIBERSORT, MCP-counter, ssGSEA, and
TIMER. Some immune cells were differently enriched
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Figure 3: Immune characteristics and biological pathways in TET1-high and TET-low groups in TCGA dataset. (a–d) The estimated
enrichment of immune cells analyzed by CIBERSORT, MCP-counter, ssGSEA, and TIMER. (e) TIDE analysis on TET1-high and TET-
low groups. (f) The ssGSEA score of 10 oncogenic pathways. (g) GSEA on TET1-high vs. TET1-low groups. Wilcoxon test was
conducted. ns: not significant. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001.
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between two risk groups, such as macrophages, memory
CD4 T cells, and dendritic cells (Figure S2). Notably,
significant correlations were observed between risk score
and M0 macrophages, type 2 helper T cells, monocytic
lineage, and activated CD4 T cells (Figure 6(b)). TIDE
analysis predicted that high-risk group was easier to escape
from immunotherapy due to its high T cell exclusion and
high infiltration of MDSCs (Figure 6(c)). However, high-
risk group may benefit more from chemotherapeutic drugs

than low-risk groups, because the estimated IC50 of
cisplatin, sunitinib, MG-132, paclitaxel, and cyclopamine
were lower in high-risk group (Figure 6(d)).

To explore whether two risk groups had different biolog-
ical activities, we included all hallmark pathways downloaded
from MSigDB and calculated the ssGSEA score for each
pathway in TCGA dataset. By comparing the ssGSEA score
in two risk groups, we identified a total of 25 pathways mark-
edly differently activated between two groups (Figure 7(a)).
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Figure 4: Differential analysis between TET1-high and TET1-low groups in TCGA dataset. (a) Volcano plot of DEGs between TET1-high
and TET1-low groups. (B) Heat map of the expression of DEGs. (c) GO enrichment analysis showed the top five enriched biological
pathways (BP), cellular components (CC), and molecular function (MF). (D) KEGG pathway analysis showed the top 10 enriched
pathways. FDR: false discovery rate. BP: biological process. CC: cellular component. MF: molecular function.
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Clustering results of these pathways presented that two risk
groups had distinct patterns of activated pathways. Cell
cycle-related pathways such as E2F targets, MYC target V1,
MYC target V2, G2M checkpoint, and DNA repair were evi-

dently activated in high-risk group, while metabolism-related
pathways were significantly activated in low-risk group such
as adipogenesis, fatty acid metabolism, heme metabolism,
xenobiotic metabolism, and bile acid metabolism. In

p = 0.00930
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Figure 5: Construction and verification of TET1 and demethylation-related risk model. (a) Venn plot of TET1-related DEGs and
demethylation-related DEGs. (b) Hazard ratio of the 7 prognostic genes determined by stepAIC. Kaplan-Meier survival curves of high-
risk and low-risk groups in TCGA (c), GSE14520 (e), GSE76427 (g), and ICGC (i) datasets. ROC curves of the risk model in predicting
1- to 5-year survival in TCGA (d), GSE14520 (f), GSE76427 (h), and ICGC (j) datasets.
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addition, glycolysis, PI3K Akt mTOR signaling, and unfolded
protein response were also found to be more enriched in
high-risk group. In the relation of risk score with the above
pathways, consistent results were outputted that a positive
correlation was shown between cell cycle-related pathways
and risk score, while a negative correlation was shown
between metabolic pathways and risk score (Figure 7(b)).

3.5. Optimizing the Clinical Application of Risk Score. To
make the risk score more conveniently used in clinical situ-
ations, we introduced a nomogram system involving all
prognostic factors. Cox regression was applied to determine
the variables involved in the nomogram. As a result, only
stage and risk score were independent risk factors with haz-
ard ratio (HR) of 2.369 and 2.690, respectively, in multivar-
iate regression (Figures 8(a) and 8(b)). Therefore, stage and
risk score were used to construct the nomogram for predict-
ing the 1-year, 3-year, and 5-year survivals (Figure 8(c)). The
predicted 1-year, 3-year, and 5-year overall survivals by the
nomogram were almost overlapped with the actual ones
(Figure 8(d)), indicating that the nomogram was reliable.

Moreover, decision curve analysis (DCA) demonstrated that
the nomogram had the best net benefit that the patients
could obtain from (Figure 8(e)).

4. Discussion

Previous studies have discovered that the aberrant DNA
methylation patterns with global hypomethylation are asso-
ciated with cancer progression in HCC [32, 33]. In the
demethylation process, TET proteins are responsible for
the removal of methylation and the alteration of DNA meth-
ylation patterns. To further understand the role of TET pro-
teins and DNA demethylation-related genes in HCC, this
study characterized the linkage of demethylation with sur-
vival, clinical characteristics, tumor microenvironment
(TME), and biological pathways using various strategies of
bioinformatics analysis. We emphasized the importance of
TET proteins in HCC progression and the response to clin-
ical treatment.

First of all, we compared the expression levels of TET
proteins between tumor and normal samples and found that
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Figure 6: The relation of risk score with clinical characteristics, immune characteristics, and chemotherapeutic drugs. (a) The risk score in
different genders, ages, stages, grades, and TET1 groups. (b) Correlation analysis between risk score and immune cell infiltration. (c) TIDE
analysis of two risk groups. (d) The estimated IC50 of chemotherapeutic drugs in two risk groups. Wilcoxon test was performed between
two groups, and ANOVA was performed among four groups. ns: not significant. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001.
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only TET1 had an elevated expression level in HCC samples
compared with the normal samples in three independent
datasets. The HCC samples with late grades (G2-G4) and
stages (II-IV) had higher TET1 expression than that with
the early grade (G1) and stage (I), suggesting a linkage

between TET1 expression and prognosis. To demonstrate
the speculation, we stratified HCC samples into two groups
by the median cut-off of TET1 expression. Not surprisingly,
TET1-high group showed evidently shorter overall survival
than TET1-low group. High expression level of TET1 may
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Figure 7: Pathway analysis of two risk groups. (a) Heat map of differently enriched pathways in two risk groups. Wilcoxon test was
performed. Red and blue indicate relatively activated and suppressed, respectively. (b) Correlation analysis between risk score and
hallmark pathways. Red and green indicate negative and positive correlations, respectively.
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lead to high activity of demethylation process, which sup-
ported that the downregulated methylations were associated
with poor prognosis.

TME is a critical component affecting cancer invasion,
metastasis, and even the efficiency of immunotherapy and
chemotherapy [34]. To understand the potential effect of
TET1 in TME, we assessed the relation of two TET1 expres-
sion groups with immune infiltration through multiple
methodologies. As a result, some immune cells were found
to be differently enriched in two TET1 groups, indicated that
DNA methylation may function an effect in TME regulation.
Lines of studies have found that DNA methylation patterns
had an influence in immune characteristics in various cancer
types. For example, Mitra et al. identified three immune
methylation-based clusters showing different immune cell
infiltration and prognosis in metastatic melanoma [35].
Meng et al. delineated a landscape of DNA methylation reg-
ulators in gastric cancer and found the extensive dysregula-
tion of the regulators [36]. Moreover, the expression of
DNA methylation regulators was closely related to immune
cell infiltration, where TET1 expression was related to the
enrichment of activated dendritic cells, neutrophils, and type
17T helper cells [36]. In our results, TET1-high and TET1-
low groups showed different enrichment of multiple
immune cells such as macrophages, natural killer cells, and

neutrophils. It could be implied that TET1 was involved in
the crosstalk with immune microenvironment. Strikingly,
TET1-high group was easier to escape from immunotherapy
than TET1-low group, suggesting that TET1 had a potential
to serve as an indicator for guiding immunotherapy in HCC.

To reveal the interplay of TET1 with biological path-
ways, we assessed oncogenic pathway and KEGG pathway
in TET1-high and TET1-low groups. Of 10 oncogenic path-
ways, it was remarkable that 9 of them were differentially
enriched in two TET1 groups, supporting that TET1 expres-
sion was related to the activation of oncogenic pathways.
Specifically, TET1-high group had significantly higher
enrichment of most of oncogenic pathways such as cell cycle,
Hippo, Notch, TGF-β, TP53, and Wnt signaling pathways.
Evidence has shown that there is a substantial difference
on DNA methylation of oncogenic pathways such as Hippo
and Wnt between HCC and normal samples [37]. We spec-
ulated that the demethylation effect resulting from high
TET1 expression activated the expression of genes involved
in the oncogenic pathways. In addition, KEGG enrichment
analysis on the DEGs between two TET1 groups unveiled
that cell cycle-related and DNA repair-related pathways
were more activated in the upregulated DEGs of TET1-
high group. The results further sustained the important role
of TET1 in regulating oncogenic pathways.
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Figure 8: Construction of a nomogram based on risk score and clinical characteristics. (a) Univariate Cox regression analysis of risk score
and clinical characteristics. (b) Multivariate Cox regression analysis of risk score and clinical characteristics. (c) The nomogram based on
risk score and stage. (d) Calibration curve of the predicted OS and the observed OS. (e) DCA curve of risk score, nomogram, and stage.
OS: overall survival. ∗∗∗P < 0:001.
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Due to the close relation of TET1 with survival and
oncogenic pathways, we dug out a bulk of genes related to
TET1 and DNA demethylation process for constructing a
risk model. Based on TET1 and DNA demethylation-
related genes, we identified seven key prognostic genes
including SERPINH1, CDC20, HACD2, SPHK1, UGT2B15,
SLC1A5, and CYP2C9 for the model construction. The risk
model manifested superior prediction efficiency of HCC
prognosis in four independent datasets. Notably, TET1-
high group had extraordinarily higher risk score than
TET1-low group. The risk score increased with the advanc-
ing stages and grades, which was consistent with the obser-
vation regarding TET1 expression. Therefore, the seven
key prognostic genes may be closely involved in the TET1-
mediated demethylation. Increased expression of CDC20
was reported to be associated with HCC progression
through promoting cell proliferation and inhibiting apopto-
sis [38, 39]. SPHK1 was found to be upregulated in HCC and
could induce epithelial-mesenchymal transition (EMT) pro-
cess [40]. Few studies have reported the other five prognostic
genes on their molecular mechanisms in HCC.

However, our study only relied on the bioinformatics
analysis, the mechanism of TET1 in HCC development
and progression needed verification in molecular experi-
ments. We did not simultaneously compare the DNA meth-
ylation patterns relating TET1 expression. In addition, the
seven-gene risk model should be further validated in clinical
samples, and the potential mechanisms of the seven key
prognostic genes in TET1-mediated demethylation needed
to be clarified in future study.

5. Conclusions

In conclusion, our study confirmed the overexpression of
TET1 in HCC patients and unveiled the relation of TET1
expression with survival, clinical stages, immune cell infiltra-
tion, the response to immunotherapy and chemotherapy,
and oncogenic pathways. We identified seven key prognostic
genes related to TET1 and DNA demethylation and estab-
lished a nomogram for effectively predicting HCC prognosis.
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Supplementary 1. Figure S1: LASSO regression of the prog-
nostic genes. (A) The coefficients of prognostic genes with
the changing lambda values. Red dotted line indicates
lambda = 0:0294. (B) Partial likelihood deviance of different
lambda values. Red dot indicates lambda = 0:0294.
Supplementary 2. Figure S2: the enrichment score of
immune cells analyzed by CIBERSORT (A), MCP-counter
(B), ssGSEA (C), and TIMER (D). TheWilcoxon test was con-
ducted. ns: not significant. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001;
∗∗∗∗P < 0:0001.
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