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Background. Amino acid metabolism (AAM) is related to tumor growth, prognosis, and therapeutic response. Tumor cells use
more amino acids with less synthetic energy than normal cells for rapid proliferation. However, the possible significance of
AAM-related genes in the tumor microenvironment (TME) is poorly understood. Methods. Gastric cancer (GC) patients were
classified into molecular subtypes by consensus clustering analysis using AAMs genes. AAM pattern, transcriptional patterns,
prognosis, and TME in distinct molecular subtypes were systematically investigated. AAM gene score was built by least
absolute shrinkage and selection operator (Lasso) regression. Results. The study revealed that copy number variation (CNV)
changes were prevalent in selected AAM-related genes, and most of these genes exhibited a high frequency of CNV deletion.
Three molecular subtypes (clusters A, B, and C) were developed based on 99 AAM genes, which cluster B had better prognosis
outcome. We developed a scoring system (AAM score) based on 4 AAM gene expressions to measure the AAM patterns of each
patient. Importantly, we constructed a survival probability prediction nomogram. The AAM score was substantially associated with
the index of cancer stem cells and sensitivity to chemotherapy intervention. Conclusion. Overall, we detected prognostic AAM
features in GC patients, which may help define TME characteristics and explore more effective treatment approaches.

1. Introduction

Globally, gastric cancer (GC) ranks among the deadliest
gastrointestinal disorders, accounting for 5.7% of all cancer
diagnoses and causing more than a million cases annually;
increases among people under 40 years of age [1, 2]. The cur-
rent treatment for GC is surgical resection followed by fluoro-
uracil and platinum-based chemotherapy. Unfortunately, GC
is characterized bymild initial symptoms, a high degree of het-
erogeneity, distinct molecular kinds, and a range of biological
characteristics. Most patients with GC are diagnosed late due
to clinical relapse, distant metastases, inadequate treatment,
and a poor prognosis. Chemotherapy-targeted drugs and
immunotherapy are frequently employed to increase the
survival rates of these patients. However, substantial systemic

toxicity and rapidly developing drug resistance significantly
reduce treatment efficacy [3]. Recently, the characterization
of novel tumor subtypes based on expression profiling has
contributed to a better understanding of molecular features
and tumor heterogeneity in GC, such as the four molecular
subtypes identified by a comprehensive molecular evaluation:
the Epstein-Barr virus-positive tumors, unsteady microsatel-
lite tumors, genomically secure lesions, and chromosomally
unstable growths [4]; the three subtypes to describe the molec-
ular and genetic characteristics of gastric adenocarcinoma [5];
the two molecular subtypes of metastatic gastric adenocarci-
noma [6]; and three subtypes based on the altered proteome
[7]. However, these molecular subtypes still face significant
challenges in distinguishing patient prognosis and guiding
personalized gastric adenocarcinoma treatment regimens.
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Tumor cell metabolism is a key pathway that drives can-
cer stem cell survival, tumor cell transformation, immune
evasion, drug resistance, and disease recurrence. Targeting
tumor cell metabolism can enhance treatment responses to
drug-resistant cancers and mitigate treatment-related toxic-
ity by reducing the need for genotoxic drugs. Therefore, tar-
geting tumor cell metabolism is a popular form of cancer
treatment, especially amino acid consumption therapy,
which has been the focus of recent research [8]. The catego-
ries of amino acid metabolism KEGG components include
proline and aromatic amino acid metabolism and branched
and branched-chain amino acid metabolism. A combination
of signaling pathways and transcription factors often
changes amino acid metabolic pathways in tumor cells [9,
10]. Cancer cells rely on foreign amino acid supply and meet
increasing demand by upregulating the expression of the
amino acid transporter. Interfering with amino acid avail-
ability is the Achilles heel unique to cancer [11]. Amino
acids are also critical elements for immunological cells. T
cells can upregulate amino acid transporter expression
during proliferation, differentiation, and immunological
response, increasing amino acid absorption and improving
immune function [12, 13].

Regarding drug resistance, amino acids support cancer
cells against therapy by maintaining biosynthetic processes,
maintaining redox homeostasis, regulating epigenetic modi-
fications, and providing metabolic intermediates for energy
production [14]. For example, leucine or branched-chain
amino acid therapy increases cisplatin sensitivity in cancer
cells by suppressing cisplatin- or bcat1-mediated autophagy
and promoting mTOR signaling [15].

In this study, our aim was to investigate the characteris-
tics of AAM-related genes in GC systematically and compre-
hensively. First, we used TCGA-STAD and GSE84337,
which were obtained from the Cancer Genome Atlas
(TCGA) database and GEO database, to analyze that the
genome associated with amino acid metabolism (AAM)
could divide GC into different subgroups. We then evaluated
molecular signatures and infiltrative immune cell strength to
identify AAM clusters. In addition, risk profiles based on
four genes were confirmed as independent prognostic fac-
tors for gastric cancer, suggesting an association between
amino acid metabolism-related genes and prognosis. Finally,
we determined an AAM score that significantly predicted
clinical outcomes and medication therapy effects in patients
with gastric cancer. These findings might open up new
avenues for GC study and customized therapy.

2. Materials and Methods

2.1. Data Collection and Collation. TCGA-STAD tool
(https://portal.gdc.cancer.gov) was used to retrieve informa-
tion on RNA expression, somatic mutations, copy number
variation (CNV) files, and related GC clinicopathology.,
Moreover, GSE84337 from the GEO archive (https://www
.ncbi.nlm.nih.gov/geo/) was used to obtain clinical parame-
ters and normalized gene expression data. Two datasets were
combined, and batch effects were eliminated by applying the
“Combat” algorithm [16]. A total of 101 AAM genes were

discovered in older research in addition to the amino acid
and derivative metabolic process gene list in the Molecular
Signatures Database (MSigDB) (https://www.gsea-msigdb
.org/gsea/index.jsp) (Table S1). STRING analysis (https://
string-db.org/) was utilized to illustrate interactions between
AAM-correlating genes.

2.2. Differential Expression and Mutation Analysis of AAM
Genes. Differential expression AAM genes were identified
in TCGA-STAD dataset by the limma package in R software
[17]. The landscape of AAM gene mutations was illustrated
by the maltools package’s waterfall graph, while changes in
CNV placements of AAM genes on chromosomes were
mapped by the RCircos program [18].

2.3. Consensus Clustering. The different AAM correlation
modes were defined by the ConsensusClusterPlus package
[19] and the K-means method. These steps have been per-
formed 1000 times to guarantee the stability of the catego-
ries. Then, the clustering results were validated using
principal component analysis (PCA) [20]. The clinical sig-
nificance of the clusters was determined by evaluating
molecular patterns, clinical variables, and patient outcomes.
Additionally, GSVA enrichment analysis was performed in
the heatmaps using the GSVA program to evaluate if the
verified gene sets differed significantly across three clusters
[21]. Additionally, a single-sample gene set enrichment anal-
ysis (ssGSEA) was applied to examine the differences in
immune cell infiltration proportions between subgroups.

2.4. Differentially Expressed Genes (DEGs). Package “limma”
in R [17] was used to identify DEGs between different AAM
molecular subtypes, with the criterion of jlog 2FCj > 0:585
and false discovery rate ðFDRÞ < 0:05. Genes that intersect
or do not intersect between subgroups were visualized using
Venn diagrams.

2.5. Development of a Risk Signature Based on Clusters of
AAM. AAM score was constructed to quantify amino acid
metabolism in GC patients. Intersect genes were chosen based
on DEGs expression data in various clusters of AAM across
GC samples. The 65 intersect genes associated with prognosis
were screened and analyzed by univariate Cox regression.
Genes linked with AAM were scored using PCA through the
following technique: AAM score = ΣðExpi × coefiÞ. Then,
TCGA-STAD and GSE84437 cohorts were used for further
analysis. A nomogram was created from risk scores and clini-
cal data using the rms program [22] to predict the overall sur-
vival (OS) of patients with GC at one, three, and five years. The
stromal, immunological, and ESTIMATE scores were exam-
ined using the ESTIMATE algorithm [23] to determine the
relationship between the risk score and the tumor immune
microenvironment.

2.6. Chemotherapy Sensitivity Prediction. To explore
differences in chemotherapy sensitivity between groups,
we evaluated the highest half-maximal inhibitory concen-
tration of chemotherapy drugs (IC50) by R-package “pRRo-
phetic” [24].
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Figure 1: Continued.
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Figure 1: Genetic mutational landscape of AAMs in GC. (a) Expression distributions of DEGs between GC and normal tissues. (b) The PPI
network acquired from the STRING database among the DEGs. (c) Genetic alteration on a query of AAMs. (d) Frequencies of CNV gain,
loss, and non-CNV among AAMs. (e) Circus plots of chromosome distributions of AAMs. (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001).
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Figure 2: Continued.
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2.7. Statistical Analysis.All statistical tests were performed using
R software, version 4.2.0, and the relevant feature packages. Dif-
ferences between different datasets were determined using the
Chi-square test. Two groups were compared using theWilcoxon
test. The log-rank test was applied to determine the Kaplan-
Meier (KM) survival analysis. P values below 0.05 were classified
as statistically significant (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001).

3. Results

3.1. AAM Gene Expression Analysis and Mutation Analysis
in STAD. We examined 101 AAM gene expressions in
tumor and normal tissue samples using the TCGA-STAD
dataset. 79 AAM genes were either up or downregulated in

STAD (Figure 1(a)). At the protein level, the interactions
between the 101 AAM gene proteins were analyzed using
STRING and mapped the PPI network (Figure 1(b)) The
incidence of somatic mutations and CNVs of AAM-related
genes in GC patients was assessed. Only 163 of 433 samples
contained mutations in AAM-related genes, with a mutation
frequency of 37.41%, and the data implicated DCT as the gene
with the highest mutation frequency (4%) (Figure 1(c)). Mis-
sense mutations are the most common type of gene alteration.
We also discovered that at the CNV level, the focus was mostly
on CNV loss. FPGS and KYAT1 have a broad rate of CNV
gain (Figure 1(d)). Additionally, we discovered alterations in
95 AAM genes with chromosomal CNV characteristics
(Figure 1(e)).
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Figure 2: AAM subgroups and clinicopathological and biological characteristics of three distinct subtypes of samples divided by consistent
clustering. (a) A network of correlations including AAMs in the TCGA cohort. (b) Consensus matrix heatmap defining three clusters and
their correlation area. (c) PCA analysis indicating an obvious difference in transcriptomes among the three subgroups. (d) Univariate
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Figure 3: Different clusters’ TME characteristics. (a–c) GSVA of biological pathways among three distinct subgroups. (d) The abundance of
each TME infiltrating cell in three AAM clusters.
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3.2. AAM Patterns in GC. We combined TCGA-STAD and
GSE84337 transcriptome data and retrieved the mRNA
expression data for 101 AAM genes; Table S2 lists the OS
statistics and clinical details for these subjects. Table S2
provides information on these subjects. Ninety-one genes in
GC have prognostic scores determined using univariate Cox
regression analysis and KM analysis (Table S3). The
regulator network illustrated the entire landscape of 91 gene
connections, regulator relationships, and their prognosis for
GC patients (Figure 2(a)). The above data showed that AAM
might significantly characterize TME cell infiltration within
specific tumors. Patients were categorized using the
ConsensusClusterPlus R package based on the expression of
the 91 AAM genes. The unsupervised clustering technique
divided the data into three distinct groups: 234 cases of
model A, 291 cases of model B, and 282 cases of model C
(Figure 2(b)). PCA analysis also showed a good distribution
among groups (Figure 2(c)). The cluster B model provided
a significant health benefit (Figure 2(d)). Moreover,
Figure 2(e) shows that both cluster’s genomic expression
and clinic pathological factors were compared, revealing a
significant difference in AAM gene expression and clinical
characteristics.

3.3. Different Clusters’ TME Characteristics. GSVA enrich-
ment analysis revealed that cluster A was greatly elevated in
cardiovascular pathways, including vascular smooth muscle
contraction, dilated cardiomyopathy, and hypertrophic
cardiomyopathy (Figure 3(a)). Cluster C described the
enrichment mechanisms for metabolism. These included the
alanine, aspartate, glutamate, arachidonic acid metabolisms,
toxic substances metabolism by cytochrome P450, and nicoti-
nate and nicotinamide metabolisms (Figure 3(c)). Cluster B
was significantly associated with nucleic acid anabolism
(Figure 3(b)).

Furthermore, we analyzed the immune cell infiltration of
three clusters using the ssGSEA technique. Cluster A con-
tained a significantly high number of innate immune cells,
such as activated B cells, activated CD4 T cells, activated
CD8 T cells, activated dendritic cells (DC), eosinophils,
immature B cells, immature DC, MDSCs, macrophages,
mast cells, natural killer T (NKT) cells, natural killer (NK)
cells, plasmacytoid DC, regulatory T cells, and T helper cells
(Figure 3(d)).

3.4. Generation of AAM-Related Gene Signatures. We
discovered 65 overlapped genes in the three groups to
further investigate the possible biological properties of
AAM-related genes (Figure 4(a)). GO enrichment analysis
revealed that these cluster-related genes were primarily
enriched in biological processes associated with metastasis
(Figure 4(b)). Afterward, we performed a uniCox analysis
to determine the importance of these genes for survival. 51
genes were considered for the next analysis because they
met P < 0:05 criteria (Table S4). Individuals were separated
into 2 gene clusters (clusters A and B) based on prognostic
genes to investigate this regulatory regime (Figures 4(c)
and 4(d)). We identified that the OS time for cluster A
patients was the shortest, while the OS time for cluster
B patients was the best (Figure 4(e)). Figure 4(f) shows
a heatmap of the correlation between clusters and
clinicopathological symptoms. The AAM gene clusters
showed significant differences in the AAM gene expression,
as predicted by the AAM subgroups (Figure 4(g)).

3.5. Prognostic AAM Score Construction and Validation. The
AAM score was derived from DEGs connected with clusters.
The GC participants were randomly divided into two groups: a
training group (n = 402) and a test group (n = 402) with a ratio
of 1 : 1. LASSO Cox regression analysis built a prognostic gene
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Figure 4: Generation of AAMs signatures. (a) Venn diagram showing overlapping genes of three distinct subgroups. (b) Results of GO
enrichment. (c, d) Consensus matrix heatmap defining two gene clusters and their correlation area. (e) Kaplan–Meier curves showing the
overall survival of gene clusters. (f) Heatmap of the clinical relevance of three AAM clusters and two geneClusters. (g) Gene expression
levels of AAM-related genes in two geneClusters.
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model based on the 4 prognostic AAM genes (Figures 5(a) and
5(b)). This is the risk score: ð0:099 × expression APODÞ +
ð0:236 × expressionCGNL1Þ + ð0:213 × expression SGCEÞ
+ ð0:164 × expressionAGMATÞ. Figure 5(c) shows the distri-
bution of patients among the three subtypes of AAM, two gene
subtypes, and two AAM score groups. Moreover, each gene
cluster A (Figure 5(a)) and AAM cluster A (Figure 5(e)) had
a high AAM score, whereas both gene cluster A (Figure 4(e))
and AAM cluster A (Figure 2(d)) had a poor prognosis. In
the training sample, KM survival analysis revealed that OS rates
were considerably lower in the high-score group than in the
low-score group (log-rank test, P < 0:001) (Figure 5(f)). The
ROC findings show AUC scores of 0.616, 0.635, and 0.645
for one, three, and five years, respectively, revealing that the sig-
nature’s accuracy was adequate (Figure 5(g)). This finding also
confirmed the results of our analysis. The hazard plot of the
AAM value revealed that as the AAM score increased, OS time
decreased, and death rates increased (Figures 5(h) and 5(i)).
Figure 5(j) also shows a heatmap of the chosen genes. Then,
the nomogram plot showed that the AAM score might be a
good tool for predicting long-term survival (Figure 5(k)). Cali-
bration maps demonstrated that the nomogram technique was
remarkably accurate, indicating that it can predict a patient’s
prognosis (Figure 5(l)).

3.6. AAM Score Association with TME, TMB, MSI, and CSC
Score. We used the estimate package to determine the rela-
tionship between the AAM score and immune and stromal
results. High AAM scores were closely linked to elevated
immune scores, and high AAM scores were linked to
increased stromal results (Figure 6(a)). The association
between the four genes in the suggested model and the num-

ber of immune cells was also evaluated. Most immune cells
were strongly linked to these genes (Figure 6(b)).

The “maftools” R software showed the distinctions in
somatic mutation patterns between the higher and lower
AAM score groups (Figures 7(a) and 7(b)). We discovered
that TTN, TP53, and MUC16 mutation occurrences in GC
patients in two risk categories were higher than or equivalent
to 20%. Additionally, our results showed that the TMB was
greater in the low-risk groups compared to the high-risk
groups (Figure 7(c)), indicating that immunotherapy may
be more beneficial for low-risk patients. Spearman’s correla-
tion analysis also demonstrated a negative relation between
the AAM score and TMB (Figure 7(d)). We also performed
a survival study across several TMB subgroups to examine
the effect of TMB status on prognosis in GC patients. Indi-
viduals with elevated TMB had a better prognosis than those
with reduced TMB (Figure 7(e)).

Moreover, correlation analysis revealed a significant rela-
tionship between a lower AAM score and the MSI-H condi-
tion, while a higher AAM score was associated with the
microsatellite constant (MSS) condition (Figures 7(f) and
7(g)). We also integrated the AAM score and CSC index
values to analyze any potential link between the AAM score
and CSC in GC. Figure 7(h) presents the findings of the lin-
ear correlation between the AAM score and the CSC index.
We discovered that the AAM scoring was negatively related
to the CSC index (R = 0:49,P < 2:2e − 16), indicating that
GC cells with a lower AAM score exhibited stem cell features
and a lower degree of cell differentiation.

3.7. Drug Sensitivity Testing. The IC50 of 98 drugs was mea-
sured in TCGA-STAD patients to determine the significance
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of the AAM value as an indicator of therapy response in
GC patients. We found that individuals with high AAG
scores may respond well to bexarotene and several tar-

geted therapy agents, such as axitinib, sunitinib, dasatinib,
lapatinib, imatinib, and pazopanib (Figures 8(a)). In con-
trast, individuals with low AAM scores may react better
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Figure 6: Evaluation of the TME between the two groups. (a) Correlations between AAM score and both immune and stromal scores.
(b) Correlations between the abundance of immune cells and four genes in the proposed model.
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to metformin, vorinostat, methotrexate, and sorafenib
(Figures 8(b)).

4. Discussion

GC is a highly heterogeneous malignant tumor that develops
through the synergistic action of multiple mechanisms. Cur-
rently, the most common treatments for GC include surgery
combined with immunotherapy, radiotherapy, chemother-
apy, and targeted therapy [25]. However, survival outcomes
for this cancer are far from satisfactory because of high
recurrence and metastasis rates. Numerous studies have
shown the essential function of amino acid metabolism in
innate immunity and antitumor responses [26]. Addition-
ally, most research has concentrated on a particular gene
related to amino acid metabolism or a specific cell type in
the TME. Therefore, the overall effect mediated by the com-
bined action of multiple genes and the infiltration properties
of the TME remains unknown. Moreover, our study can
provide valuable information for the in-depth investigation.
The outcomes of this research demonstrate alterations in
transcription and AAM variations at the genetic level in GC.

Our study initially investigated the genetic alterations
and AAM-related gene expressions using data from the
TCGA-STAD and GSE84437 cohorts. While AAM gene
mutation rates were lower, most prognosis-related genes
were higher in GC patients. Then, we employed an unsuper-
vised clustering approach to classify GC patients into three
AAM subgroups. We found that clinical outcomes, immune
infiltration, and function differed significantly among the

three subgroups. Patients with subtype A exhibited a shorter
OS and greater levels of immune cell infiltration than
subtypes B and C. However, subtype A was considerably
elevated in metastasis-related pathways. AAM cluster A was
significantly enriched in innate immune cell infiltration,
including activated B cells, activated CD4 T cells, activated
CD8 T cells, activated DC, eosinophils, immature B cells,
immature DC, MDSCs, macrophages, mast cells, NKT cells,
NK cells, plasmacytoid DC cells, regulatory T cells, and T
helper cells. Similar to the AAM clustering results, two
genomic groupings with distinct clinical characteristics,
immunological activities, and functions were discovered based
on AAM-related genes. The AAM subgroups were quantified
using LASSO Cox regression and the AAM score. Cluster A
and gene cluster A, with the worst outcome measures, had
the highest AAM value out of the three AAM clusters and
two gene clusters. Amino acids can supply nitrogen and car-
bon for rapid tumor cell development and biosynthesis [27].

The AAM score was substantially related to the clinic
pathological characteristics of GC. After adjusting for vari-
ous factors, the results demonstrated that the AAM score
was an independent predictor of survival outcomes in GC
patients. ROC validated its predictive robustness over one,
three, and five years of OS. Recently, risk scores associated
with AAM have established clinical outcomes in GC
patients. Moreover, the AAM score may provide useful
prognostic information for patients. The aggregation of gene
mutations leads to tumor development related to metabolic
changes. According to our research, there are substantial
variations between genetic modifications of individuals with
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Figure 7: Comprehensive analysis of the AAM Score in GC. (a, b) The waterfall plot of somatic mutation features established with high and
low AAM scores. (c) TMB in different AAM score groups. (d) Spearman’s correlation analysis of the AAM score and TMB. (e) The Kaplan–
Meier curves were used to perform survival analyses for patients with low and high TMB. (f, g) Relationships between AAM score and MSI.
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low and high AAM scores. Elevated TMB was correlated
with a better prognosis in GC patients, which is consistent
with our results [28]. Clinical outcomes were substantially
better in the low AAM score group compared to the low
TMB group, indicating that the AAM score was a reliable
predictor of immunotherapy performance. Immune check-
point inhibitor treatment markedly enhanced outcomes in
a comparatively higher percentage of MSI-H cancers than
MSI-L/MSS tumors, providing significant and long-lasting
reactions and survival advantages [29]. In this investigation,
more MSI-H patients were found in the groups with a low
AAM score and a better prognosis. AAM meets the cellular
demands for maintaining redox homeostasis, energy genera-
tion, and biomass production and has been recognised as a
key determinant of drug resistance in tumors [30, 31]. There
is growing evidence that drug resistance in cancer cells can
be overcome by suppressing or enhancing AAM and by
depleting or supplementing amino acid availability [11,
32]. Currently, GC is slowly developing chemotherapeutics
resistance. Finally, we explored the relationship between
AAM score and chemotherapeutic drugs, which identified
a novel insight for exploring tumor therapy treatment and
avoiding the resistance of GC. The study identified drugs

that may be effective for patients in various AAM score
groups. Combining these drugs with the targeted AAM score
may help reduce drug resistance and enhance clinical results.
Our work uncovered the potential for repurposing “stale”
chemotherapy drugs for new oncology indications.

We acknowledge that our research has several limita-
tions. The first one was that all studies relied only on data
obtained from public sources, and all samples were acquired
retroactively in this research. The second limitation was that
most datasets lacked data on crucial clinical characteristics
like surgery, neoadjuvant chemotherapy, and chemoradio-
therapy. The third was that more experimental studies
should be conducted to confirm our findings.

5. Conclusion

In this study, we researched and identified several AAM
genes that regulate TME, clinicopathological aspects, and
prognosis. We also developed an AAM score to anticipate
the prognosis and treatment sensitivity of GC patients,
which assisted the development of more effective therapy
regimens and paved the pathway for further research on
the relationship between AAM-related genes and GC.
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Figure 8: Relationships between AAM score and chemotherapeutic sensitivity. High IC50 of indicated chemotherapeutics drugs in low (a)
and low (b) AAM score groups, respectively.
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