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Background. The clinical outcomes of low-grade glioma (LGG) are associated with T cell infiltration, but the specific contribution
of heterogeneous T cell types remains unclear. Method. To study the different functions of T cells in LGG, we mapped the single-
cell RNA sequencing results of 10 LGG samples to obtain T cell marker genes. In addition, bulk RNA data of 975 LGG samples
were collected for model construction. Algorithms such as TIMER, CIBERSORT, QUANTISEQ, MCPCOUTER, XCELL, and
EPIC were used to depict the tumor microenvironment landscape. Subsequently, three immunotherapy cohorts, PRJEB23709,
GSE78820, and IMvigor210, were used to explore the efficacy of immunotherapy. Results. The Human Primary Cell Atlas was
used as a reference dataset to identify each cell cluster; a total of 15 cell clusters were defined and cells in cluster 12 were
defined as T cells. According to the distribution of T cell subsets (CD4+ T cell, CD8+ T cell, Naïve T cell, and Treg cell), we
selected the differentially expressed genes. Among the CD4+ T cell subsets, we screened 3 T cell-related genes, and the rest
were 28, 4, and 13, respectively. Subsequently, according to the T cell marker genes, we screened six genes for constructing the
model, namely, RTN1, HERPUD1, MX1, SEC61G, HOPX, and CHI3L1. The ROC curve showed that the predictive ability of
the prognostic model for 1, 3, and 5 years was 0.881, 0.817, and 0.749 in the TCGA cohort, respectively. In addition, we found
that risk scores were positively correlated with immune infiltration and immune checkpoints. To this end, we obtained three
immunotherapy cohorts to verify their predictive ability of immunotherapy effects and found that high-risk patients had better
clinical effects of immunotherapy. Conclusion. This single-cell RNA sequencing combined with bulk RNA sequencing may
elucidate the composition of the tumor microenvironment and pave the way for the treatment of low-grade gliomas.

1. Introduction

In the brain and other parts of the central nervous system,
gliomas are the most common primary malignant tumors
[1]. According to the World Health Organization, gliomas
were mainly classified into four levels and the higher grade
notified the poor prognosis [2]. According to routine histo-
pathology, low-grade gliomas are less malignant, usually in
WHO grade 2 and 3 patients [3]. The characteristics of
low-grade gliomas were their highly invasive nature, their

difficulty in surgical resection, their recurrence, and their
rapid progression to malignancy [4]. Several biomarkers
were widely used to define a subtype which was correlated
to a great prognosis like IDH1 and IDH2 [5]. LGG with both
mutation of IDH1 and IDH2 and deficiency of chromosome
of arms 1p and 19q have better therapeutic effect to radio-
chemotherapy than other LGG without these mutations
[6]. Although more and more LGG-like biomarkers have
been widely explored and applied in clinical practice, com-
mon biomarkers are still unable to effectively delineate the
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heterogeneity of tumor microenvironment [7]. Immuno-
therapy still has limited clinical benefits in LGG patients.
Therefore, it is important to find an effectively prognostic
biomarker or therapy target for the therapy of LGG patients.

TME were composed of numerous cell types including
cancer cells, bone marrow-derived inflammatory cells, lym-
phocytes, blood vessels, and the extracellular matrix which
were made up of collagen and proteoglycans [8]. The com-
ponents of TME play an important role in the progression
and invasion of tumors [9]. The alterations of TME not only
impact the development of tumor but also could become
biomarkers for prognosis and immunotherapy [10]. T cells,
a subtype of immune cells, play an important role in innate
immune and adaptive immune systems [11]. In the progres-
sion of cancer, the interactions between TME and T cells
have a great influence on the development of tumors [12].
Poor vascular differentiation and cancer cell metabolism in
the TME, which contribute to hypoxia, accumulation of
metabolic waste, and insufficient energy supply, lead to the
anergy of effector T cells to recognize and kill cancer cells
[13]. T cells are also one of the important targets for immu-
notherapy. Stromal cells of TME mediate the coexistence of
T cells and cancer cells which results in the immune escape
of cancer cells and reduces the effect of immunotherapy [14].
Therefore, the study for T cells in TME is of great signifi-
cance for the future search of tumor therapy.

Several immune cell populations in the TME can now be
revealed molecularly through single-cell RNA sequencing
(scRNA-seq) technology [15]. Previous studies have shown
that screening immune cell subsets for relevant molecular
signals based on RNA-seq data can help predict clinical out-
comes and implement personalized medicine [16]. The aim
of this study is to predict the T cell marker genes, construct
a prognostic model, and evaluate the immunotherapy effect
in patients with LGG.

2. Method

2.1. Data Collection. A total of 983 samples were enrolled in
our investigation. Ten LGG tissues with scRNA-seq data
were obtained from GSE138794 in GEO database, which
were used to identify the T cell markers of LGG. The Cancer
Genome Atlas (TCGA) transcriptome matrix (FPKM for-
mat) and clinical information of 481 LGG samples were
obtained from the TCGA-LGG cohort to construct prognos-
tic signatures. In addition, CGGA693 and CGGA325
cohorts were collected from the Chinese Glioma Genome
Atlas (CGGA) database. The cohorts contained 332 and
162 patients, respectively, which were used as external vali-
dation cohorts to verify the prognostic model. In addition,
GSE16011 was also included in this research to verify the
accuracy of the model. As in our previous study, the micro-
array data was processed [17]. To make comparisons
between samples easier, TCGA RNA sequencing data were
converted to transcripts per kilobasemillion (TPM) values.
To eliminate differences between batches, we used the
“sva” package in R software for normalization. To ensure
the availability and reliability of the data, strict inclusion
and exclusion criteria were established for this study. Inclu-

sion criteria were as follows: (1) the pathological results
showed glioma, (2) complete genomic expression level data
were included, and (3) clear reporting of pathological condi-
tions and follow-up. Exclusion criteria were as follows: (1)
other pathological types and (2) concurrent primary tumors
from other sites. In addition, three immunotherapy cohorts
(PRJEB23709, GSE78820, IMvigor210) were used to explore
the immune treatment effect.

2.2. Identification of T Cell Marker Genes by scRNA-seq
Analysis. scRNA-seq data were preprocessed, and three cells
were excluded with less than 200 genes and gene expression
only in individual cells. The different scRNA-seq datasets
were corrected by the Harmony algorithm. The FindNeigh-
bors function is used to distinguish cell subsets. The T-SNE
function is used to show the distribution of cell subsets, and
the single R package is used to annotate cell subsets. T cell
marker genes were determined by screening criteria of
adjusted p < 0:05 and jlog 2FCj > 1.

2.3. Construction of the Prognostic Model of T Cell Marker
Genes. The transcriptional profiles of T cell marker genes
were obtained based on single-cell data. LASSO algorithm
was used to reduce the correlation between T cell marker
genes and play a role in defitting. Subsequently, the multi-
variate Cox regression analysis algorithm was used to assign
the coefficient of each gene to construct the prognosis model
of T cell marker genes, in which the TCGA cohort was used
as the training group and the CGGA cohort was used as the
validation group. The risk values of key genes in the prog-
nostic model are presented by dendrogram.

2.4. Tumor Microenvironment Landscape. To observe the
overall landscape of immune cells in different T cell subsets,
we used a variety of machine learning algorithms, including
TIMER, CIBERSORT, QUANTISEQ, MCPCOUTER,
XCELL, and EPIC. These algorithms can predict the content
of immune cells based on transcriptome expression levels
and find regularities through simulation of different algo-
rithms to explain that T cell-related genes’ change in the
proportion of immune cells in TME. Expression levels of
immune regulators and HLA family genes in different T cell
subsets were examined to calculate the correlation between
RNAss, DNAss, and risk scores.

2.5. Evaluation of Immunotherapy Effect. Risk scores were
assigned to each patient in the three immunotherapy cohorts
mentioned earlier based on the formula of the model
construction. Compare the risk scores of immunotherapy
responders and nonresponders to determine whether the risk
model can be used to evaluate the effect of immunotherapy. In
addition, the bar graph shows the AUC values used to predict
the expression of individual cell subsets or molecules.

2.6. Statistics. All data analysis was analyzed with R soft-
ware. GSEA algorithm was used to calculate the abundance
of immune cell infiltration. Student’s t-test was used to
compare the differences between the two groups, and all
statistical data were normally distributed. The PCA
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Figure 1: K-M survival analysis.
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Figure 2: Continued.
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algorithm was used to render individual distribution. p <
0:05 was considered significant.

3. Results

3.1. Identification of T Cell Marker Gene Expression Profiles.
We calculated the immune cell infiltration score according
to the ssGSEA algorithm and divided the patients into high
and low immune cell infiltration groups according to the
median immune cell infiltration score. The K-M results sug-
gested that the infiltration level of T cell subsets had a great
impact on the clinical outcome of patients (Figure 1). In
addition, we calculated the content of immune cell subsets
in different WHO grades and found that T cell subsets dif-
fered significantly in G2 and G3 grades. Cell distribution
profiles of scRNA-seq data from GSE138794 are shown in
Figure 2(a). To reduce the dimension, the top 1500 variable
genes were selected and PCA was performed. A total of 15
cell clusters were identified, and cells in cluster 12 were
defined as T cells by the Human Primary Cell Atlas
(Figures 2(b) and 2(c)). Figure 2(d) shows the expression
of specific markers in various T cell subsets. TXNIP was
mainly expressed in CD4+ T cells; CTSC and IL32 were
mainly expressed in Naïve T cells; and CLU and SEC61G
were mainly expressed in Treg T cells. In the CD4+ T cell
subtype, there were 3 genes associated with T cell, and the
remaining subsets were 28, 4, and 13, respectively, which
were defined as T cell marker genes for subsequent analysis.

3.2. Prognostic Model. PCA results showed that the three
cohorts had batch effects distributed in different regions.

As shown in Figure 3(a), after the batch effect was removed,
data of three cohorts were at a consistent level. After the
LASSO regression analysis, 10 genes were finally obtained.
A multivariate Cox regression analysis screened candidate
genes for model construction and calculated coefficient
(Figure 3(b)). According to the expression values of candi-
date genes and corresponding coefficient, the model formula
was constructed as follows:

Riskscore = 0:257 ∗MX1 + 0:127 ∗ SEC61G + 0:168 ∗HOPX
+ 0:199 ∗ CHI3L1 − 0:222 ∗ RTN1
− 0:590 ∗HERPUD1:

ð1Þ

The tree map shows the risk values of candidate genes, in
which RTN1 and HERPUD1 are protective factors and
MX1, SEC61G, HOPX, and CHI3L1 are risk factors
(Figure 3(c)). The heatmap shows the expression levels of
candidate genes between the high- and low-risk groups.
RTN1 is highly expressed in the low-risk group, but MX1,
SEC61G, HOPX, and CHI3L1 are highly expressed in the
high-risk group. The expression trend of candidate genes
in TCGA and CGGA cohorts is consistent in Figure 3(d).
The dot plot shows the distribution of risk scores and clinical
outcomes for each patient. With increase of the risk score,
the mortality rate increases.

The K-M survival curve shows that patients in the high-
risk group has a shorter survival time than those in the low-
risk group (Figures 3(e) and 3(f)). The ROC curve shows
that the prediction ability of the prognostic model at 1, 3,
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Figure 3: T cell-related model construction. (a) The PCA showed the distribution of patients in each cohort. (b) The LASSO algorithm for
screening candidate genes. (c) The tree diagram shows the genes used to construct the prognostic model and their hazard values. (d)
Heatmaps show the expression of prognostic genes in different risk groups. (e) Risk score and prognostic status of patients in the TCGA
cohort. (f) Risk score and prognostic status of patients in the CGGA cohort. (g) The ROC curve for this model in the TCGA cohort. (h)
The ROC curve for this model in the CGGA cohort.
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and 5 years in the TCGA cohort is 0.881, 0.817, and 0.749,
respectively, and the prediction ability at 1, 3, and 5 years
in the CGGA cohort is 0.749, 0.751, and 0.734, respectively
(Figures 3(g) and 3(h)). In addition, we selected GSE16011

to further verify our prognostic model, and the results
showed that it was consistent with the above, with the pre-
dictive power of up to 0.903, 0.818, and 0.776 at 1, 3, and
5 years, respectively (Figure S1).
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Figure 4: Nomogram model construction and verification. (a) The univariate regression analysis verified the predictive performance of the
prognostic model. (b) The multivariate regression analysis verified the predictive performance of the prognostic model. (c) Construction of
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Univariate and multivariate Cox regression analysis
showed that the risk score model was an independent
prognostic factor (Figures 4(a) and 4(b)). Multiple factors
could be used to predict clinical outcomes. A nomogram
model was constructed with risk score, grade, and AGE
to predict clinical outcomes of patients (Figure 4(c)).
Figure 4(d) shows the relationship between the expected
results and the actual observed values. The angle close to
45% represents a high accuracy. The ROC curve shows
that the prediction ability of the prognostic model at 1,
3, and 5 years in the TCGA cohort is 0.829, 0.828, and
0.800, respectively, and the prediction ability at 1, 3, and
5 years in the CGGA cohort is 0.766, 0.794, and 0.774,
respectively. The prediction performance was significantly
improved (Figure 4(e)).

3.3. Correlation between Prognostic Models and TME. As
shown in Figure 5(a), the risk score is positively correlated
with effector cells such as B cell and T cell, as well as M2
macrophages, but it is difficult to judge whether risk score
exerted antitumor immunity or inhibited tumor immunity.
The heatmap shows higher levels of immune cell infiltration
in the high-risk group than those in the low-risk groups
(Figure 5(b)). The expression of immunomodulators such
as CD276, CTLA4, and HLA family molecules was higher
in the high-risk group than that in the low-risk group
(Figures 5(c) and 5(d)). The stemness index scores of RNAss
were obtained based on transcriptome expression data, while
those of DNAss were obtained based on methylation data.
The risk score was negatively correlated with RNAss and
positively correlated with DNAss (Figures 5(e) and 5(f)).
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Figure 5: Tumor microenvironment assessment. (a) Correlation between risk score and immune cell infiltration. Algorithms: TIMER,
QUANTISEQ, and CIBERSORT. (b) Heatmap shows the infiltration of immune cells in the high- and low-risk groups. Algorithms:
TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC. (c) The expression level of HLA gene family in the high- and
low-risk groups. (d) Expression level of immunomodulator in the high- and low-risk groups. (e, f) The correlation between risk score
and RNAss and DNAss scores.
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3.4. Immunotherapy Performance in Prognostic Models. In
the three immunotherapy cohorts of PRJEB23709,
GSE78820, and IMvigor210, it was found that high-risk
patients had better clinical effects on immunotherapy, and
the median risk value of patients who responded to immu-
notherapy was higher than that of patients who did not
respond to immunotherapy. Moreover, K-M curves
showed that the overall survival time of high-risk patients
was shorter than that of low-risk patients (Figures 6(a)–6(i)).
Figure 6(j) shows that the prediction performance of our
prognostic model for immunotherapy response was 0.67
(Custom Geneset), which was lower than that of the
immunodetection point (CD274) but higher than that of
other T cells.

4. Discussion

scRNA-seq can precisely and rapidly determine the gene
expression patterns of tens of thousands of individual cells
[18]. Traditional bulk RNA-seq technology can only reflect
the average expression level of genes in the population cells,
which is difficult to mask the expression heterogeneity
among different cells [19]. With scRNA-seq technology, all
genes in a genome can be examined at the single-cell level,
which is very helpful for studying cell expression heteroge-
neity [20]. In this study, scRNA-seq was used to process
and analyze the glioma data in the public database, and the
role of T cell marker gene in LGG was deeply explored.
Based on the selected T cell marker genes, we constructed
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Figure 6: Evaluation of immunotherapy effect. (a–c) In the PRJEB23709 cohort, the bar chart shows the proportion of patients in the high-
and low-risk groups who responded to immunotherapy. The box plot shows the risk score for different immunotherapy effects. The K-M
survival analysis shows the clinical outcome of the high- and low-risk groups. (d–i) In the GSE78820 and IMvigor-210 cohorts. The bar
chart shows the proportion of patients in the high- and low-risk groups who responded to immunotherapy. The box plot shows the risk
score for different immunotherapy effects. The K-M survival analysis shows the clinical outcome of the high- and low-risk groups. (j)
The bar chart shows the AUC values for each biomarker used to predict immunotherapy.
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a prognostic model to predict clinical outcome and immu-
notherapy effect, and its prediction performance in 1, 3,
and 5 years was 0.881, 0.817, and 0.749, respectively. In
general, for healthy tissues and organs, the higher the degree
of immune cell infiltration, the better the effect of antitumor
and targeted killing [21]. The brain has a blood-brain bar-
rier, which makes it difficult for immune cells to enter the
brain [22]. Therefore, only low-grade gliomas have the good
prognosis, but high-grade gliomas may destroy the blood-
brain barrier and infiltrate more immune cells, directly lead-
ing to the poor prognosis of high-grade gliomas. Meanwhile,
in low-grade gliomas, a high degree of immune cell infiltra-
tion is associated with poor clinical outcomes. This study
found that LGG patients with high-risk scores had a higher
degree of immune cell infiltration, and patients with high-
risk scores had poorer clinical outcomes. T cell marker genes
may serve as biomarkers to predict disease progression.

Another popular approach in immunotherapy is
immune checkpoint blockade (ICB), which makes unprece-
dented advance in cancer treatment [23]. Interactions
between ligands and receptors regulate ICBs in the immune
system [24, 25]. In addition to regulating the duration and
amplitude of physiological immune responses, it also main-
tains autoimmune tolerance. As a result, the immune system
will not damage and destroy normal tissue [26, 27]. With the
advent of immune checkpoint inhibitors (ICIs), mainly anti-
programmed cell death protein 1/programmed cell death
ligand 1 (PD-1/PD-L1) and anticytotoxic T-lymphocyte-
associated antigen-4 (CTLA-4) monoclonal antibodies have
made great progress in the field of research related to certain
types of cancer [28]. Both activated cytotoxic T lymphocytes
to enhance antitumor response [29]. There is increasing evi-
dence that molecule inhibitors that target carcinogenesis
play a role far beyond the biological behavior of tumors
[30, 31]. Our study found that the expression levels of
immune modulators (such as PD-1 and PD-L1) and HLA
family in the high-risk group were higher than those in the
low-risk group. Based on three immunotherapy cohorts,
the proportion of patients in the high-risk group who
responded to immunotherapy was higher than that in the
low-risk group. It is conceivable that a combination of T
cell-based marker gene inhibitors and immune checkpoint
inhibitors may benefit patients with LGG. In addition, bioin-
formatics methods were used to analyze the expression and
prognosis of T cell marker genes in glioma.

In our investigation, we first performed a comprehensive
study of scRNA-seq of patients with LGG to identify prog-
nostic signatures and immune environment status. We iden-
tified T cell marker gene signature (TCMGS) to establish a
survival model to evaluate the progression of LGG. Besides,
based on the expression of TCMGS, we validated our prog-
nostic model in an independent cohort which was down-
loaded from the Gene Expression Omnibus (GEO)
database. Our study identifies that TCMGS may become
the new target for the prognosis and treatment of LGG pro-
gression in the future.

There are some limitations in the study. First of all, our
research is based on the mining of existing public databases
with artificial bias. Secondly, possible pathogenic pathways

are only proposed in this study, which requires further
experimental verification. Finally, animal experiments are
needed to test the hypothesis of drug combination before
applying it to patients. Future studies of the relationship
between T cell marker genes and cancer development and
progression may focus on more discoveries of significant
prognostic and even therapeutic value.
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