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Colorectal carcinoma (CRC) is a malignant tumor of the digestive system. Cancer-associated fibroblasts (CAFs) are important
cellular elements in the tumor microenvironment of CRC, which contribute to CRC progression and immune escape. To
predict the survival outcome and therapeutic responses of CRC patients, we identified genes connected with stromal CAF and
generated a risk model. In this study, we used multiple algorithms to reveal CAF-related genes in the Gene Expression
Omnibus and The Cancer Genome Atlas datasets and construct a risk model composed by prognostic CAF-associated genes.
Then, we evaluated whether the risk score could predict CAF infiltrations and immunotherapy in CRC and confirmed the
expression of the risk model in CAFs. Our results showed that CRC patients with high CAF infiltrations and stromal score had
worse prognosis than those with low-CAF infiltrations and stromal score. We obtained 88 stromal CAF-associated hub-genes
and generated a CAF risk model consisting of ZNF532 and COLEC12. Compared with low-risk group, the overall survival in
high-risk group was shorter. The relationship between risk score, ZNF532 and COLEC12, and stromal CAF infiltrations and
CAF markers was positive. In addition, the effect of immunotherapy in the high-risk group was not as good as that in the
low-risk group. Patients with the high-risk group were enriched in chemokine signaling pathway, cytokine-cytokine
receptor interaction, and focal adhesion. Finally, we confirmed that the expressions of ZNF532 and COLEC12 in risk
model were widely distributed in fibroblasts of CRC, and the expression levels were higher in fibroblasts than CRC cells.
In conclusion, the prognostic CAF signature of ZNF532 and COLEC12 can be applied not only to predict the prognosis of
CRC patients but also to evaluate the immunotherapy response in CRC patients, and these findings provide the possibility
for further development of individualized treatment for CRC.

1. Introduction

As a common malignant tumor, the risk of colorectal carci-
noma (CRC) is related to individual characteristics or habits
such as age, history of chronic diseases, and lifestyle [1].
Currently, there are various screening methods for CRC,
such as colonoscopy, fecal occult blood test, multitarget stool
DNA test, and fecal immunochemical test [2]. Although
early screening can improve the curability of CRC, it is nec-
essary to improve the screening methods and accuracy of
CRC because of its slow growth and easy to be confused with
other cancers [3, 4]. As a consequence, identification new

markers of tumor metastasis are important for improving
CRC diagnosis and prognosis.

Tumor microenvironment is the cellular environment in
which cancer cells exist, including fibroblasts, immune cells,
and extracellular matrix (ECM) [5]. The acquisition and
maintenance of tumor markers depend on the role of tumor
microenvironment to varying degrees. There are a large
number of tumor-associated fibroblasts in the tumor micro-
environment, which actively participate in cancer progres-
sion through complex interactions with other cell types [6].
Clinically, cancer-associated fibroblast (CAF) markers are
associated with poor prognosis in many types of cancer

Hindawi
Mediators of Inflammation
Volume 2023, Article ID 3781091, 18 pages
https://doi.org/10.1155/2023/3781091

https://orcid.org/0000-0002-6940-0892
https://orcid.org/0009-0005-4505-3629
https://orcid.org/0000-0002-1069-5737
https://orcid.org/0000-0002-5478-3392
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3781091


[7]. Researchers have identified the heterogeneity of CAFs in
breast cancer by single-cell RNA sequencing, and the identi-
fication of CAF-specific markers provides support for the
development of drugs targeting CAFs [8]. Nowadays, CAF-
derived key genes have diagnostic efficacy for gastric cancer
[9]. Factors secreted by CAFs can promote the progression
of CRC [10]. However, whether stromal CAF-related gene
expression signatures could predict clinical outcomes of
CRC remains unknown.

Herein, we collected stromal CAF-related factors datasets
from the Gene Expression Omnibus (GEO) and The Cancer
Genome Atlas (TCGA) databases. Next, we performed
weighted gene coexpression network analysis (WGCNA)
for identifying the hub-genes of stromal CAFs and construct
a risk model composed ZNF532 and COLEC12 by univariate
and the least absolute shrinkage and selection operator
(LASSO) Cox regression to predict CRC prognosis and treat-
ment effects. Our results offer new markers and therapeutic
approaches for the diagnosis and prognosis of CRC.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. The microarray and
clinical data were obtained from GEO database (GSE39582,
566 tumor samples). The RNA sequence and single-
nucleotide polymorphism (SNP) mutation data were obtained
from TCGA COAD database (TCGA-COAD, 476 tumor
samples). We picked GSE39582 as the training cohort, and
TCGA-COADwas chosen for validation cohort. Additionally,
the single-cell RNA sequencing data was obtained from
GSE132465 from the GEO database.

2.2. CAF and Stromal Score Calculation, Survival Analysis.
According to other reports [11–14], “EPIC,” “MCPcounter”
and “xCell” R packages, and “TIDE” algorithm (http://tide
.dfci.harvard.edu/) were applied to evaluate CAF abun-
dances in tumor samples. The “estimate” package was

utilized to evaluate the stromal score. Survival analysis of
tumor patients was using “survminer” R package based on
CAF and stromal scores.

2.3. WGCNA. According to previous report [9], the
weighted coexpression analysis was performed using the
“WGCNA” package to analyze the coexpression modules
associated with CAF and stroma. The hub-genes were
selected from the most relevant modules according to the
threshold criteria (modulemembership > 0:8 and gene
significance > 0:4) (Figure S1A and B).

2.4. Functional Enrichment Analysis of Hub-Genes. The
“clusterProfiler” package was utilized to analyze functional
enrichment information of hub-genes. The graphics were
drawn using “enrichplot” package.

2.5. Risk Model Construction and Validation. Univariate Cox
analysis was utilized to identify prognostic genes. Next, the
risk model was built by LASSO Cox regression analysis.
Then, the patient’s risk score was calculated. The “survmi-
ner” R package was utilized to analyze the survival outcomes
of different risk groups.

2.6. Association Analysis between Risk Score and CAF Score.
The Cor function was utilized to calculate the correlation
between risk score and CAF score, and the “GGally” package
was utilized to analyze the pairwise correlation map. The
“Pheatmap” package was utilized to analyze the cluster maps
of risk genes and CAF known marker genes. The Cor func-
tion was utilized to calculate the relationship between risk
genes, risk scores, and CAF marker genes.

2.7. Immunotherapy Prediction. The effect of each sample
tumor immunotherapy was predicted by the TIDE algorithm.
The pROC package was utilized to identify the accuracy of the
model’s predictions.

The microarray and clinical data from GSE39582

CAF infiltration & stromal score

WGCNA

MEturquoise module

88 CAF & stromal-related co-expression genes

RNA sequence and SNP mutation data from TCGA-COAD

GO & KEGG Two-gene CAF risk signature by 
univariate & LASSO Cox analyses

Prognostic value in GSE39582
& TCGA-COAD Predictive value for immunotherapy GSEA analysis 

TMB analysis

Correlations with CAFs infiltrations
Correlations with CAF markers
Validations in single-cell RNA sequencing analysis 
(GSE132465), CCLE database & q-PCR

Figure 1: The schematic diagram of the workflow.
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Figure 2: Continued.
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2.8. Gene Set Enrichment Analysis (GSEA). The GSEA was
utilized to analyze the pathways enriched in different risk
groups by the “clusterProfiler” package.

2.9. SNP Analysis. The “Maftools” package was applied to
analyze high- and low-risk mutant genes, mutation types,
and maps waterfalls and then compare whether there was a
difference in tumor mutation burden (TMB) between the
high- and low-risk groups.

2.10. Single-Cell RNA Sequencing Analysis. In this study, the
CRC single-cell sequencing dataset was obtained from the
GEO database (GSE132465, 10 normal samples and 23
tumor samples). The effect of cell cycle on subsequent results
was removed using the SCTransform function. A standard-
ized “SCT” method was used to integrate different samples
to eliminate batch effects. Cells were reduced in dimension
by principal component analysis (PCA), and then, cell clus-
tering was displayed by uniform manifold approximation
and projection (UMAP) method. Cells were then annotated
by BlueprintEncodeData dataset and known cell markers in
the singleR and celldex packages. The gene set variation
analysis (GSVA) R package was used to assess potential
changes in pathway activity in each CAF subcluster.

2.11. Validation of ZNF532 and COLEC12 Expression on
CAFs. The mRNA expressions of the Cancer Cell Line
Encyclopedia (CCLE) database were used to analyze the
expression of ZNF532 and COLEC12 in fibroblasts and
CRC cells. Human colorectal fibroblast CCD-18-co was
purchased from ATCC (Manassas, UAS), and SW480 cells
were provided by the Shanghai Academy of Biological
Sciences. Cells were cultured in DMEM medium with 10%
fetal bovine serum. Total RNA was extracted by TRIzol
reagent (Invitrogen, USA). Then, cDNA was prepared using
the PrimeScript RT kit (Takara, Nanjing, China). AceQ Uni-
versal SYBR qPCR Master Mix (Vazyme, Nanjing, China)

was used on an ABI StepOnePlus™ real-time quantitative
PCR (q-PCR) instrument (Applied Biosystems, CA, USA)
for q-PCR. Primer information was given in Table S1.
GAPDH was the internal parameters of q-PCR.

2.12. Statistical Analysis. The overall survival (OS) of high-
and low-risk groups was displayed by Kaplan–Meier curves.
GraphPad Prism 8.0 was performed for statistical analyses.
Student’s t-test was used for comparison between two groups.
Statistical significance was regarded as p values < 0.05.

3. Results

3.1. Higher CAF Infiltrations and Stromal Scores Had Poor
OS in Patients with CRC. Figure 1 displayed the work chart
of our study. We used the EPIC, MCP-counter, xCell, and
TIDE methods to evaluate the infiltration of CAFs in tumor
microenvironment, and the stromal score was a displayed
estimate algorithm. Subsequently, the prognostic values of
CAFs on CRC were predicted by Kaplan-Meier curves. As
depicted in Figure 2(a), high CAF infiltrations had a shorter
OS in patients with CRC in GSE39582 cohort compared
with low CAF infiltrations. Similar results were obtained in
TCGA-COAD (Figure 2(b)). Additionally, the prognosis of
CRC patients with high stromal score was bad both in
GSE39582 and TCGA-COAD cohorts (Figures 2(c) and
2(d)). Collectively, the above information highlighted the
importance of the relationship between CAF infiltration
and CRC prognosis.

3.2. WGCNA Analysis Performed for Identifying the Hub-
Genes of CAFs. To filtrate the key genes related to stromal
CAFs, we performed WGCNA analysis. We used the soft
threshold power of 5 in GSE39582 (Figure 3(a)) and 6 in
TCGA-COAD (Figure 3(b)) to construct a scale-free topol-
ogy network. For GSE39582, 17 coexpression models were
clustered by hierarchical clustering tree (Figure 3(c)), and
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Figure 2: High CAF and stromal scores in CRC had a bad prognosis. High CAF immune infiltration level was associated with poor
prognosis in GSE39582 (a) and TCGA-COAD (b) cohorts. High stromal score was associated with poor prognosis in GSE39582 (c) and
TCGA-COAD (d) cohorts.
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Figure 3: Continued.
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the MEturquoise module was significantly positively associ-
ated with the CAF proportion (Correlation = 0:89, p = 3e −
194) and stromal score (Correlation = 0:95, p = 5e − 280)
(Figure 3(e)). There were 16 coexpression models in
TCGA-COAD (Figure 3(d)), in which the MEturquoise
module was positively associated with the CAF propor-

tion (Correlation = 0:78, p = 2e − 93) and stromal score
(Correlation = 0:89, p = 2e − 156) (Figure 3(f)). Thus, a total
of 119 and 307 hub-genes, which have the highest correlation
with CAF and stromal scores, were screened out in the
MEturquoise module of GSE39582 and TCGA-COAD,
respectively.
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Figure 3: WGCNA was used to explore stromal CAF-related hub-genes and perform functional enrichment analysis. The soft-thresholding
power in GSE39582 (a) and TCGA-COAD (b) cohorts. Clustering dendrograms exhibiting hub-genes with alike expression profiles were
converged into coexpression modules in GSE39582 (c) and TCGA-COAD (d) cohorts. MEturquoise module was most closely connected
with the CAF proportion and stromal score in GSE39582 (e) and TCGA-COAD (f) cohorts. (g) Venn diagram showed the shared
hub-genes in GSE39582 and TCGA-COAD cohorts. (h) GO enrichment analysis of 88 shared hub-genes. (i) KEGG enrichment
analysis of 88 shared hub-genes.
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3.3. Functional Enrichment Analysis. Eighty-eight hub-genes
were acquired by taking the intersection of 2 hub-gene sets
from GSE39582 and TCGA-COAD (Figure 3(g)). Subse-
quently, we performed functional enrichment analysis of
these common hub-genes. Gene Ontology (GO) term analy-
sis demonstrated that “extracellular matrix organization,”
“collagen-containing extracellular matrix,” and “extracellu-
lar matrix structural constituent” were the noteworthy terms
in biological process (BP), cellular component (CC), and
molecular function (MF), respectively (Figure 3(h)). More-
over, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways exhibited that these common hub-genes were
mainly focused on “ECM-receptor interaction” and “PI3K-
Akt signaling pathway” (Figure 3(i)). Studies have shown
that the ECM acts as a physical barrier that contributes to
cancer cell invasion, inhibits the infiltration of antitumor
immune cells, and ultimately promotes tumor deterioration
and treatment resistance [5, 15]. In addition, the PI3K-Akt
signaling pathway promotes tumorigenesis by regulating
cell metabolic reprogramming and invasion and metastasis
[16]. Together, these results indicated that these hub-genes
have a correlation with tumor progression and immune
escape.

3.4. Generation of a Stromal CAF-Related Gene (CAFG)
Predictive Model. First, univariate Cox regression analysis
was performed to study the relationship between the 88
hub-genes and prognosis and obtained that 25 prognostic
hub-genes were finally selected in GSE39582 (Figure 4(a)).
Next, LASSO Cox analysis was utilized to generate a risk
model with 2 genes (ZNF532 and COLEC12) (Figure 4(b)).
Then, we figured the risk score as follows: risk score =
expression of ZNF532∗ 0:017205958 + expression of COLEC
12∗ 0:158665214. The CRC patients were separated into
high- and low-risk groups depending on the median risk

score. The OS of patients in the high-risk group was shorter
in the GSE39582 cohort than that of low-risk group
(p < 0:001; Figure 4(c)). This is equally true of TCGA-
COAD cohort (p = 0:027; Figure 4(d)). These results sug-
gested that the signature of stromal CAFGs was as prognos-
tic marker in CRC.

3.5. Stromal CAFGs Have a Strong Correlation with CAF
Infiltrations and CAF Markers. To further verify whether
our CAF model could predict CAF infiltration, we per-
formed Spearman’s correlation analyses. As depicted in
Figure 5(a), the risk score was significantly positively associ-
ated with the CAF infiltrations and stromal score in
GSE39582 cohort, which was similar to those in TCGA-
COAD cohort (Figure 5(b)). Meanwhile, the expressions of
CAF markers in high-risk group were increased comparing
to low-risk group both in GSE39582 (Figure 5(c)) and
TCGA-COAD (Figure 5(d)) cohorts. Furthermore, all
CAF markers were positively associated with the risk core,
ZNF532, and COLEC12 in GSE39582 (p < 0:001; Figure 5(e)),
as well as in TCGA-COAD cohort (p < 0:001; Figure 5(f)).
Overall, the predictive model composed of ZNF532 and
COLEC12 may predict the state of CAF infiltrations in tumor
microenvironment.

3.6. The Relationship between Risk Score and Immunotherapy.
Due to the complexity of tumor immune microenvironment,
the effect of immunotherapy in CRC patients is relatively poor
[17]. Therefore, we further evaluated whether the risk score
could be used as a predictor of immunotherapy in CRC
patients. For GSE84437, the high-risk group (28%) was less
sensitive to immunotherapy than low-risk group (69%)
(p < 0:001; Figure 6(a)); compared with low-risk group, the
CAF score was elevated in the high-risk group (Figure 6(b));
the area under curve (AUC) value of rick score was 0.770
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Figure 5: Risk score was positively connected with CAF infiltrations and CAF markers. Risk score was positively associated with CAF
abundances in GSE39582 (a) and TCGA-COAD (b) cohorts. CAF markers, ZNF532 and COLEC12, were highly expressed in high-risk
group, both in GSE39582 (c) and TCGA-COAD (d) cohorts. CAF markers were positively connected with risk score, ZNF532, and
COLEC12 in GSE39582 (e) and TCGA-COAD (f) cohorts.
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(95% CI: 0.729–0.808) (Figure 6(c)). For TCGA-COAD, these
results were the same as for GEO (Figures 6(d)–6(f)). Briefly,
our prognostic model has predictive power for immunother-
apy of CRC.

3.7. GSEA Enrichment Analysis. As shown in Figure 7(a), the
high-risk group was mainly focused on cytokine-cytokine
receptor interaction, chemokine signaling pathway, and
focal adhesion. The low-risk group was mainly focused on
aminoacyl tRNA biosynthesis, DNA replication, and retinol
metabolism (Figure 7(b)).

3.8. Correlation between Risk Score and TMB. The waterfall
plots have displayed top 20 genes with the highest muta-
tional frequencies in the high- (Figure 8(a)) and low-risk
(Figure 8(b)) groups, respectively. Surprisingly, these contin-
ual mutational genes were shared in the two risk groups.
Besides, the risk score has a positive correlation with the
TMB value (correlation = 0:13, p = 0:0098, Figure 8(c)).
Meanwhile, the TMB values were upregulated in the high-
risk group compared with low-risk group (p = 0:0045;
Figure 8(d)). Thus, patients in the high-risk group may ben-
efit more from immune microenvironment with high TMB.
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Figure 6: Multidimensional validation for risk score. Comparison of the effect of immunotherapy between the high- and low-risk groups in
GSE39582 (a) and TCGA-COAD (d) cohorts. Comparison of the TIDE level between the high-and low-risk groups in GSE39582 (b) and
TCGA-COAD (e) cohorts. Receiver-operating characteristic curves of the risk score in forecasting treatment effects in GSE39582 (c) and
TCGA-COAD (f) cohorts.
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3.9. ZNF532 and COLEC12 Identified in Single-Cell Gene
Expression Patterns of Fibroblasts. To describe the expression
of ZNF532 and COLEC12 at fibroblasts, we collected single-
cell RNA sequencing data from patients with CRC. After pre-
liminary quality control confirmation, 62,716 cells can be
used for subsequent analysis. As shown in Figure 9(a),
there were 23 kinds of cell clusters in CRC patients, which
were mainly divided into B cells, CD4+/8+T cells, den-
dritic cells (DC), fibroblasts, mast cells, endothelial cells,

macrophages, epithelial cells, monocytes, and plasma cells
(Figure 9(b)), according to the expression level of marker
genes (Figure S2). Not surprisingly, ZNF532 and
COLEC12 were highly expressed in fibroblasts (Figure 9(c)).
In addition, ZNF532 was distributed in endothelial cells,
while COLEC12 also belonged to macrophage, speculating
CAF signature affecting tumor progression by regulating
tumor matrix formation and immune infiltration of CRC.
Next, we explored the expression of ZNF532 and COLEC12
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Figure 7: GSEA showing possible associations between high- (a) and low-risk (b) groups and disease phenotypes.

11Mediators of Inflammation



ABCA13
DNAH11

FBXW7

RYR2

RYR3

CSMD3
DNAH5

ZFHX4
FAT4

MUC16
SYNE1

TP53

0
0

67%
54%
54%
39%
31%
33%
33%
23%
23%
24%
25%
24%
21%
19%
20%
21%
17%
20%
21%
19%

Risk

130

7165
Altered in 187 (96.89%) of 193 samples.

KRAS
TTN

APC

PIK3CA

OBSCN

PCLO

USH2A

LRP1B

Nonsense_mutation
Missense_mutation
Frame_shif_ins
Frame_shif_del
In_frame_del
Multi_hit

Low
Risk

High

(a)

Altered in 187 (95.41%) of 196 samples.

ABCA13
DNAH11

FBXW7

RYR2

RYR3

CSMD3
DNAH5

ZFHX4
FAT4

MUC16
SYNE1

TP53

0
0

77%
52%
40%
49%
29%
24%
23%
23%
17%
16%
14%
12%
13%
15%
13%
10%
14%
12%
11%
13%

Risk

150

6791

KRAS
TTN

APC

PIK3CA

OBSCN

PCLO

USH2A

LRP1B

Nonsense_mutation

Missense_mutation

Frame_shif_ins
Frame_shif_del

In_frame_del
In_frame_ins
Multi_hit

Low
Risk

High

(b)

Figure 8: Continued.
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in fibroblast subpopulations. There were 8 subpopulations of
fibroblasts (Figure 9(d)), including cluster 0 (high expressed
genes: CTHRC1 and COL1A1), cluster 1 (CCL13), cluster 2
(MGP), cluster 3 (NDUFA4L2), cluster 4 (PLP1), cluster 5
(FRZB), cluster 6 (TK1), and cluster 7 (ACTG2)
(Figure 9(e)). GSVA analysis showed that clusters 5 and 6
were mainly enriched in pathways regulating the tumor
microenvironment, such as oxidative phosphorylation, TNF-
α signaling via NF-Kβ, and endothelial-mesenchymal
transition (Figure 9(f)). Furthermore, ZNF532 was mainly
distributed in cluster 6, and COLEC12 was mainly
distributed in cluster 5 (Figure 9(g)), which that suggested
cluster 6 and cluster 5 in fibroblasts were mainly involved in
tumor progression and immunotherapy of CRC.

3.10. Validation of ZNF532 and COLEC12 in Fibroblasts and
CRC Cells. Both ZNF532 and COLEC12 were highly
expressed in fibroblasts compared to large intestine
(Figures 10(a) and 10(b)). To further validate this result,
we performed q-PCR validation. Consistently, the mRNA
expressions of ZNF532 and COLEC12 were highly expressed
in fibroblasts than those in CRC cell line (SW480)
(Figure 10(c)). These results indicated that ZNF532 and
COLEC12 might be CAF-specific markers.

4. Discussion

CRC, as the third cancer incidence rate in worldwide, has yet
to be successfully and completely treated with multiple ther-
apeutic options [18, 19]. In the tumor microenvironment,
CAFs were the most abundant stromal cells, which regulated
the malignant progression and immunotherapy resistance of
CRC by secreting cytokines to control cell proliferation and
ECM deposition and remodeling [15, 20]. However, limited
studies have investigated the function of stromal CAF-

related factors on CRC. Here, we found that high levels of
CAF and stromal score lead to poor prognosis in CRC. Sub-
sequently, we generated a prognostic CAF model including 2
genes (ZNF532 and COLEC12). Patients in the high-risk
group in this model had shorter OS, low sensitivity to immu-
notherapy, and high levels of TMB. Besides, the risk genes
were high expressed in fibroblasts.

CAFs are the major cellular component of desmoplastic
stroma characteristic that contribute to tumor progression
and immune escape [21]. Consistently, we confirmed that
higher CAF and stroma scores were interrelated with worse
prognosis in CRC. However, whether CAFGs could be as
novel treatment targets in CRC is still unknown. Studies have
reported that risk signature composed CAF-secreted cytokines
can predict the clinical prognosis of breast cancer patients
[22]. CAF-related genes had great and prognostic value for
hepatocellular carcinoma prognosis [23]. Consistently, we
constructed a CAFG prognostic model of CRC by applying
WGCNA and univariate and LASSO Cox regression methods.
Based the risk score of each patient, CRC patients with high-
risk scores had OS survival than CRC patients with low-risk
scores. The signature of high CAF score with poor OS can
be used to predict the prognosis of patients with gastric can-
cer [9]. In view of this, our CAF model had good value for
applying to predict CRC prognostic.

In addition to the interaction between CAF and cancer
cells, the intricate crosstalk between CAFs and tumor
immune microenvironment (TIME) is also the key to pro-
mote tumor progression [24]. Infiltrated CAFs interact with
other immune cells in TIME to promote the formation
of immunosuppressive tumor microenvironment, thereby
allowing cancer cells to evade the surveillance of the immune
system [25]. In the risk model, CAF abundances in tumor
microenvironment were positively connected with the risk
score and the levels of ZNF532 and COLEC12. Besides,
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Figure 8: SNP analysis. The top 20 mutational genes in high- (a) and low-risk (b) groups. (c) Analysis of correlation between TMB and the
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Figure 9: Single-cell RNA sequencing analysis of CRC. UMAP map of cell clusters (a) and types (b). (c) Distribution of ZNF532 and
COLEC12 in each cell type. (d) Fibroblasts were divided into 8 subpopulations. (e) The expression of top 5 genes in each fibroblast
subpopulation. (f) GSVA analysis of fibroblast subpopulations. (g) Distribution of ZNF532 and COLEC12 in each fibroblast subpopulation.
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patients with high-risk scores had lower sensitivity to immu-
notherapy than patients with low-risk scores. Referring to
other similar studies, this means that our CAF risk score
has an important predictive effect on immune infiltration of
CAF and may regulate the formation of immunosuppressive
tumor microenvironment [26]. Meanwhile, the levels of
ZNF532 and COLEC12 were increased in fibroblasts com-
pared to CRC cells. These results indicated that ZNF532
and COLEC12 can be CAF-specific markers for CRC, and
the CAF risk model can evaluate the level of CAF infiltration
in tumor microenvironment.

With respect to ZNF532 and COLEC12 in the model,
elevated expression of COLEC12 had a worse prognostic
outcome and increased inflammation in osteosarcoma
[27]. Moreover, COLEC12 as a cancer stemness-related
signature could predict colon adenocarcinoma prognosis
[28]. At an epithelial cellular level, activation of ZNF532
could promote the epithelial-to-mesenchymal transition
in laryngeal squamous cell carcinoma cells [29]. We
observed that COLEC12 and ZNF532 were highly
expressed in macrophages and endothelial cells, respec-
tively, which was consistent with the findings that

COLEC12 expression was correlated with immune-related
molecules [30], and ZNF532 altered the biological activity
of endothelial cells [31]. However, their function in CAFs
of CRC remains unclear, so further studies of the mecha-
nisms of these CAF markers are needed to explore the
progression, resistance, and immunosuppression of CRC.

5. Conclusion

In conclusion, higher infiltration of stromal CAFs in tumor
microenvironment was associated with poor prognosis in
CRC, and ZNF532 and COLEC12 could be as novel prog-
nostic CAF biomarkers by producing the prediction model.
Our CAF prediction model could forecast CRC prognosis,
CAF infiltrations, and treatment effects, which might offer
new targets and potential treatment strategies of CRC.

Data Availability

The datasets analyzed in this study could be found in
GSE39582, TCGA-COAD, and GSE132465.
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Figure 10: Multidimensional expression validation. The levels of ZNF532 and COLEC12 in the fibroblasts and large intestine were
compared by Wilcoxon analysis (a) and exhibited in the heat map (b). (c) q-PCR was applied to verify the expression of ZNF532 and
COLEC12 in fibroblasts and SW480. ∗∗p < 0:01.
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