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Background. Hepatocellular carcinoma (HCC) remains a challenging medical problem. Cuproptosis is a novel form of cell death
that plays a crucial role in tumorigenesis, angiogenesis, and metastasis. However, it remains unclear whether cuproptosis-related
genes (CRGs) influence the outcomes and immune microenvironment of HCC patients.Method. From The Cancer Genome Atlas
(TCGA) and International Cancer Genome Consortium (ICGC) databases, we obtained the mRNA expression file and related
clinical information of HCC patients. We selected 19 CRGs as candidate genes for this study according to previous literature.
We performed a differential expression analysis of the 19 CRGs between malignant and precancerous tissue. Based on the 19
CRGs, we enrolled cluster analysis to identify cuproptosis-related subtypes of HCC patients. A prognostic risk signature was
created utilizing univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses.
We employed independent and stratification survival analyses to investigate the predictive value of this model. The functional
enrichment features, mutation signatures, immune profile, and response to immunotherapy of HCC patients were also
investigated according to the two molecular subtypes and the prognostic signature. Results. We found that 17 CRGs
significantly differed in HCC versus normal samples. Cluster analysis showed two distinct molecular subtypes of cuproptosis.
Cluster 1 is preferentially related to poor prognosis, high activity of immune response signaling, high mutant frequency of
TP53, and distinct immune cell infiltration versus cluster 2. Through univariate and LASSO Cox regression analyses, we
created a cuproptosis-related prognostic risk signature containing LIPT1, DLAT, MTF1, GLS, and CDKN2A. High-risk HCC
patients were shown to have a worse prognosis. The risk signature was proved to be an independent predictor of prognosis in
both the TCGA and ICGC datasets, according to multivariate analysis. The signature also performed well in different
stratification of clinical features. The immune cells, which included regulatory T cells (Treg), B cells, macrophages, mast cells,
NK cells, and aDCs, as well as immune functions containing cytolytic activity, MHC class I, and type II IFN response, were
remarkably distinct between the high-risk and low-risk groups. The tumor immune dysfunction and exclusion (TIDE) score
suggested that high-risk patients had a higher response rate to immune checkpoint inhibitors than low-risk patients.
Conclusion. This research discovered the potential prognostic and immunological significance of cuproptosis in HCC,
improved the understanding of cuproptosis, and may deliver new directions for developing more efficacious therapeutic
techniques for HCC patients.
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1. Introduction

Primary liver cancer remains a serious threat to global public
health in 2020, with over 906,000 new cases and 830,000
fatalities [1]. Most liver cancer cases involve hepatocellular
carcinoma (HCC), which accounts for about 90%. Chronic
hepatitis B or C virus infection, alcohol abuse, and metabolic
syndrome induced by obesity and diabetes are the key risk
elements for the occurrence of HCC [2]. Early-stage HCC
is remediable through surgery or ablation. Nevertheless,
there are very few medicinal choices available for advanced-
stage HCC patients due to strong and broad resistance to cyto-
toxic chemotherapy [3]. Sorafenib, a multityrosine kinase
inhibitor (mTKI) with antiangiogenic and antiproliferative
properties, has been the regular first-line treatment for
advanced HCC for more than a decade [4, 5]. Nevertheless,
it is estimated that only a small ratio of HCC patients responds
to sorafenib. Up to now, significant efforts have been dedicated
to enhancing the medicinal condition of advanced-stage HCC
patients in the past few years, with the approval of four agents:
lenvatinib [6] as front-line treatment, ramucirumab [7], cabo-
zantinib [8], and regorafenib [9] as second-line treatment. By
utilizing antiprogrammed death protein 1 (PD-1) antibodies,
immune checkpoint blockade (ICB) has been licensed to treat
HCC in second-line [10, 11]. Despite a marked increase in the
choice of systemic therapies, there has been amodest improve-
ment in patient outcomes. Therefore, there is a pressing
demand for new molecular biomarkers for HCC patients in
order to guide more personalized treatment decisions.

Copper is an essential nutrient for the human body.
Meanwhile, copper can cause cell death via cytotoxicity,
which is driven by improved mitochondrial-dependent
energy metabolism and increased reactive oxygen species
(ROS). The phenomenon of cell death because of copper is
termed “cuproptosis” [12]. Specifically, cuproptosis is caused
by copper in combination with lipidated components of the
tricarboxylic acid cycle (TCA). Eventually, proteotoxic pres-
sure and cell death occur as a lack of iron-sulfur cluster pro-
teins and a result of lipoylated protein aggregation.
Cuproptosis was classified as a new kind of regulated cell
death distinct from the recognized cell death pathway, such
as apoptosis, necrosis, autophagy, ferroptosis, and pyroptosis
[12]. The process of cell death is inextricably linked to tumor
development and the immune microenvironment [13]. The
potential role of cuproptosis in clinical outcomes, as well as
its immune characterization, warrants further study. As for
cancer treatment, ionophores for copper supplementation
are the primary current therapeutic approach based on
cuproptosis, including disulfiram (DSF) and elesclomol
[14–16]. In Wilson’s disease, due to ATP7B deletion, a pro-
gressive hepatic copper overload may happen in the hepato-
cytes and lead to liver failure [17]. The improved incidence
of HCC in patients with Wilson’s disease provides evidence
that aberrant copper homeostasis may contribute to HCC
development through an unknown mechanism [18]. In both
in vitro [19] and in vivo [20], copper excess caused cell death
in hepatocytes through the intrinsic pathway. Nevertheless,
cuproptosis’s contribution to the tumorigenesis and devel-
opment of HCC has not yet been fully understood.

In our study, we identified a substantial variance in the
expression level of cuproptosis-related genes (CRGs)
between malignant and precancerous tissue, which may
reveal the close relationship between CRGs and HCC devel-
opment. Next, we performed the consensus cluster analysis
and identified two cuproptosis-associated clusters, which
were significantly likened to patient survival and immune
characterization. We then explored the prognostic value of
CRGs for the outcomes of HCC patients and built a prog-
nostic risk model containing five CRGs to predict prognosis,
somatic mutation signature, immune microenvironment,
and response to immunotherapy in HCC. According to mul-
tiple datasets, including The Cancer Genome Atlas (TCGA)
and International Cancer Genome Consortium (ICGC), this
risk model performed high accuracy in evaluating HCC
prognoses. These findings can contribute to further insight
into the importance of CRGs in HCC development and sup-
port further clinical development of cuproptosis for HCC.

2. Materials and Methods

2.1. Data Resources and Preprocessing. The TCGA (https://
portal.gdc.cancer.gov/) provided the somatic mutation
information, mRNA expression profile, and matched clinical
data for liver hepatocellular carcinoma (LIHC) cases.
Through the ICGC (https://dcc.icgc.org/), the project (code:
LIRI_JP) on liver cancer was downloaded. R (version 4.2.0)
software was enrolled to collate and annotate the somatic
mutation and RNA-sequencing data. The TCGA database
contained 50 normal tissues and 374 tumor tissues, and
the ICGC database contained 202 normal tissues and 243
normal tissues. Then, the mRNA expression files were stan-
dardized with fragments per kilobase per million mapped
reads (FPKM). To scale data among different databases, we
adopted the “scale” function in the “limma” R package [21].

2.2. Exploration of the Differentially Expressed CRGs in HCC.
The cuproptosis-related differentially expressed genes
(DEGs) were detected between malignant and precancerous
tissue of HCC patients in the TCGA with the “limma” R
package. p values <0.05 were regarded as the cutoff values
for identifying DEGs. Through the “heatmap” R package
[22], we generated a heatmap of cuproptosis-related DEG
expression levels between HCC and normal tissue. To better
know the connections among CRGs, we examined the rela-
tionship between CRGs through Pearson’s correlation anal-
ysis. The online tool STRING [23] was taken advantage to
conduct protein-protein interactions (PPI) network, and
the Cytoscape tool was enrolled to picture the network [24].

2.3. Consensus Clustering Analysis. To further investigate the
biological features of CRGs in HCC, with the “Consensu-
sClusterPlus” R package [25], the patients in TCGA were
classified into two clusters according to the 19 CRGs.

2.4. Functional Enrichment Analysis. To discover the gene
functions and biological pathways of the CRGs, we operated
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of CRGs
utilizing the R packages “limma” and “clusterProfiler” [26].
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Next, we conducted Gene Set Enrichment Analysis (GSEA)
by employing the GSEA tool [27] against gene sets from
the MSigDB. To further assess the biological function differ-
ences between the groups, GSVA enrichment analysis was
performed based on the “GSVA” R package [28].

2.5. Somatic Mutational Hotspot Analysis. Through the GDC
data portal at TCGA, we got the somatic mutation data with
the Mutation Annotation Format (MAF) for HCC patients.
The “Maftools” R package [29] in R software was utilized
for summarization and visualization of the mutated genes.

2.6. Construction and Validation of a Novel Prognostic Model
Based on CRGs. According to univariate Cox analysis, we

screened out survival-associated genes, and with the least
absolute shrinkage and selection operator (LASSO) Cox
regression, we formed a risk signature through the “glmnet”
and “survival” R packages [30] in the TCGA. The risk score
was computed as follows:

risk score = 〠
n

j=1
Coef j ∗ xj: ð1Þ

xj on behalf of the expression levels of every prognostic
CRG and Coef on behalf of the coefficient. According to
the median score, HCC patients were categorized into low-
and high-risk groups. Kaplan-Meier survival curves were
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Figure 1: Identification of cuproptosis-related DEGs and exploration of the relationship between each CRG in HCC based on the TCGA
database. (a) Cuproptosis-related DEGs expression patterns between HCC and normal tissue. The color legend represents the log2
(FPKM) value. (b) Pearson’s correlation analysis of each CRG based on the HCC samples. (c) PPI network plot displayed the
relationship between each CRG. Red and green nodes indicate up and downregulated genes, respectively. (d) The number of adjacent
nodes between each CRG in the PPI network. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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Figure 2: Continued.
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utilized to compare the two groups’ overall survival (OS) and
progression-free survival (PFS). The “timeROC” R package
was utilized to calculate the time-dependent receiver operat-
ing characteristic (ROC) curve according to the signature’s
sensitivity and specificity [31]. We employed univariate
and multivariate Cox regression analysis to test the risk
score’s independent prognostic value. Chi-square examina-
tions were utilized to measure the association between risk
levels and clinical characteristics. Next, the ICGC database
was used to verify the risk score’s predictive ability. The
same formula used for TCGA patients was enrolled to esti-
mate the risk scores of ICGC patients.

2.7. Kaplan–Meier Survival Curve Analysis. Kaplan-Meier
survival curves were adopted for survival analysis with
Mantel-Wilcox tests. We conducted a survival analysis of
HCC cases in the TCGA database based on gene clusters,
risk groups, and clinical features stratification, while HCC
patients in the ICGC were analyzed according to risk groups.

2.8. Construction of Prognostic Nomograms. Through the R
package “rms” [32], we constructed a nomogram and corre-
sponding calibration map through the risk score and other
important clinical traits. The area under the ROC curve
(AUC) was utilized to measure the diagnostic power of the
nomogram. Univariate and multivariate Cox regressions
were employed to assess whether the nomogram was an
independent predictor.

2.9. Tumor-Infiltrating Immune Cells Analysis. To compre-
hensively assess the composition of tumor-infiltrating
immune cells, we employed several methods, including
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,

MCPcounter, XCELL, EPIC, and ssGSEA. Correlation anal-
ysis was used to examine the relationship between immune
cell infiltration and risk level. Furthermore, eight critical
genes involved in immune checkpoint blockade therapy
were extracted from each case and compared between differ-
ent groups, including TIGIT, PD-L2, PD-L1, PD-1, LAG3,
SIGLEC15, TIM-3, and CTLA-4.

2.10. Immunotherapy Response Predictions. Tumor immune
dysfunction and exclusion (TIDE) [33] was enrolled to fig-
ure out how probable it was that HCC patients’ responses
to ICB.

3. Results

3.1. Exploration of Differentially Expressed CRGs in HCC.
We carefully selected a gene set of 19 genes (ATP7B, ATP7A,
DLD, DLAT, DLST, SLC31A1, FDX1, LIPT1, LIAS, LIPT2,
PDHA1, NFE2L2, NLRP3, GLS, MTF1, CDKN2A, GCSH,
DBT, and PDHB) which function closely with cuproptosis.
The screening criteria of the 19 CRGs were based on the core
literature reported by Tsvetkov et al., who first defined the
cuproptosis [12]. In the TCGA, compared to normal tissues,
17 genes were differentially expressed in HCC, including
ATP7A, DLD, DLAT, DLST, SLC31A1, FDX1, LIPT1, LIAS,
LIPT2, PDHA1, NFE2L2, NLRP3, GLS, MTF1, CDKN2A,
DBT, and PDHB (Figure 1(a)). Based on the HCC samples,
the relationship between CRGs was then revealed using
Pearson’s correlation analysis (Figure 1(b)). Next, the PPI
network was formed by the web tool STRING and pictured
through the Cytoscape program to further reveal the poten-
tial connection between the related proteins (Figure 1(c)). In
the PPI network, we counted the number of adjacent nodes
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Figure 2: Consensus clustering of cuproptosis-associated subtypes and survival analysis in the TCGA. (a) Heatmap represented the
consensus clustering solution (k = 2) for 19 CRGs among 502 HCC samples. (b, c) The consensus clustering delta area showed the
cumulative distribution function area for k = 2 to 9. (d) Boxplots represented gene expression profiles for 19 genes in the two clusters. (e)
An expression heatmap showed 19 genes grouped into two clusters. The color legend represents the log2 (FPKM) value. Red highlighted
the high expression, and blue highlighted the low expression. (f) Kaplan–Meier curves of OS in different clusters. ∗p < 0:05, ∗∗p < 0:01,
∗∗∗p < 0:001.
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Figure 3: Continued.

6 Mediators of Inflammation



(Figure 1(d)). We discovered a strong correlation between
each CRG in HCC tissues, suggesting that these CRGs may
act as a whole and perform a common function of cupropto-
sis together. These findings demonstrated that CRGs’
expression patterns between HCC and normal tissues are
remarkably different, indicating that CRGs may perform a

significant function in the tumorigenesis and development
of HCC.

3.2. Consensus Clustering Identified Two Cuproptosis-
Associated Subtypes and Survival Analysis. To reveal the
relationship between cuproptosis subtypes and HCC

0.0

0.2

0.4

0.6

Ru
nn

in
g 

en
ric

hm
en

t s
co

re

KEGG_CELL_CYCLE

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_
INTERACTION

KEGG_DNA_REPLICATION

KEGG_HEMATOPOIETIC_CELL_LINEAGE

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_
INTERACTION

Enriched in C1 group

0

4

8

5000 10000 15000
Rank in ordered dataset

Ra
nk

ed
 li

st 
m

et
ric

(e)

KEGG_FATTY_ACID_METABOLISM

KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS

KEGG_RETINOL_METABOLISM

KEGG_TRYPTOPHAN_METABOLISM

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_
DEGRADATION

Ru
nn

in
g 

en
ric

hm
en

t s
co

re

Rank in ordered dataset

Ra
nk

ed
 li

st 
m

et
ric

0.0

–0.25

–0.50

–0.75

8

4

0

5000 10000 15000

Enriched in C2 group

(f)

Figure 3: Results of functional enrichment analysis. (a) A list of the top 10 enriched GO terms. Topics contained biological processes (BP),
cellular components (CC), and molecular functions (MF). (b) The top 30 most significant enriched KEGG pathways. (c) The top 5 GSEA-
GO enrichment in cluster 1. (d) The top 5 GSEA-GO enrichment in cluster 2. (e) The top 5 GSEA-KEGG enrichment in cluster 1. (f) The
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patients’ clinical outcomes, we used 19 CRGs to cluster HCC
patients in the TCGA database. Through K-means cluster
analysis, HCC patients were clustered into two subgroups
according to the 19 CRGs with similar expression patterns
(Figures 2(a)–2(c)). The gene expression data of 19 CRGs
in two clusters showed that a high expression level of
ATP7A, CDK2A, GLS, LIPT1, LIPT2, MTF1, NLRP3, and
PDHA1 was found in cluster 1, while cluster 2 showed high
expression levels of ATP7B, DLST, and FDX1 (Figures 2(d),
2(e)). The Kaplan-Meier analysis of survival discovered that
the clusters linked with cuproptosis had distinct clinical out-
comes. Patients in cluster 1 had poorer clinical results,
whereas those in cluster 2 had a more favorable prognosis
(Figure 2(f)). These results revealed that there might be a
relationship between cuproptosis-associated subtypes and
HCC clinical outcomes.

3.3. Functional Enrichment Analysis Based on Clustering.
GO, KEGG, and GSEA analyses were conducted on the
DEGs between two clusters with cut-off criteria of p value
<0.05 and jlog 2FCj ≥ 1 in order to study the biological func-
tion variations of each cluster. We presented the top 10 GO
terms, 30 significant enriched KEGG pathways, and the top
5 normalized enrichment scores terms of GSEA. Among GO
terms, nuclear division, mitotic nuclear division, condensed
chromosomes, and single-stranded DNA helicase activity
were significantly enriched (Figure 3(a)). On the KEGG
pathway list, DNA replication, cell cycle, p53, and IL-17 sig-
naling pathways are significantly enriched (Figure 3(b)).
According to GESA, two clusters had differentially enriched
gene sets. Based on GSEA, GO terms in cluster 1 are pre-
dominantly associated with cell cycle, nuclear chromosome
segregation, organelle fission, and immunoglobulin complex
(Figure 3(c)). GO terms in cluster 2 were enriched in xeno-

biotic catabolic processes, high-density lipoprotein particles,
and microbody lumens (Figure 3(d)). The KEGG pathways
in cluster 1 were predominantly related to DNA replication,
cell cycle, and cytokine-cytokine receptor interaction
(Figure 3(e)). As for cluster 2, it was enriched in fatty acid
metabolism, bile acid production, and retinol production
(Figure 3(f)). According to these results, the two clusters dif-
fer in biological function, and the differences mainly focus
on cell cycle, cell death, and immune-related functions.

3.4. Somatic Mutations and Immune Landscape of
Cuproptosis-Related Clusters. In addition, we investigated
the mutation profile of cuproptosis-related clusters in HCC
patients. TP53, CDKN2A, TTN, MUC16, and FAT1 were
the most abundant mutant genes. The relative mutation fre-
quencies differ between the two clusters. A high frequency of
MUC16 and TP53 mutations was observed in cluster 1, with
46% and 22% of the total, respectively (Figure 4(a)). In cluster
2, CTNNB1 and TTNwere the most frequently mutated genes,
with 31% and 26% of the total, respectively (Figure 4(b)). The
tumor immunemicroenvironment in the two clusters needs to
be investigated further, then TIMER, CIBERSORT, CIBER-
SORT-ABS, QUANTISEQ, MCPcounter, XCELL, and EPIC
algorithms were used to visualize the immune cell infiltration
situation (Figure 5(a)). Immune infiltration of various
immune cells differed significantly between the two clusters
(Supplementary Table 1). We further investigated immune
checkpoint gene expression levels in the eight important
immune checkpoints across the two clusters. The expression
of CD274, TIGIT, PDCD1, HAVCR2, LAG3, and CTLA4 was
substantially different between the two clusters of HCC
patients (Figure 5(b)). Based on ssGSEA analysis, we
analyzed immune cell subpopulations and their related
functions. The results revealed that aDCs, B cells, mast cells,
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Figure 5: The immune landscape of two cuproptosis-related clusters in HCC. (a) The immune infiltration heatmap between the two clusters
using TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPcounter, XCELL, and EPIC algorithms. (b) The gene expression levels
of immune checkpoints for the two clusters. (c) The ssGSEA for examining subpopulation associations in immune cells. (d) The ssGSEA for
examining subpopulation associations in immune functions. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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neutrophils, Tfh, and type II IFN response significantly
differed between the two clusters (Figures 5(c) and 5(d)).
According to these findings, there were significant
differences between the two cuproptosis-related clusters of
HCC in terms of somatic mutations and immune landscape.

3.5. Construction of the Cuproptosis-Related Prediction
Model in HCC. To detect the key genes in cuproptosis and
explore the possibility of clinical application of cuproptosis-
related phenotype, we developed a prognostic model by differ-
entially expressed CRGs in the TCGA database. Through the
univariate Cox analysis, we found six CRGs were significantly
associated with OS (Figure 6(a)). Then, five genes were
selected in the prognostic model with LASSO Cox regression
(Figures 6(b) and 6(c)). The risk-score model is formed as the
following algorithm: risk score = ð0:6125Þ∗LIPT1 + ð0:3970Þ∗
DLAT + ð0:0013Þ∗MTF1 + ð0:0619Þ∗GLS + ð0:2198Þ∗CDK
N2A. Additionally, according to the distribution of risk scores
and survival time, we found higher risk levels were linked to
shorter survival times (Figures 6(d)–6(f)). Utilizing Kaplan-
Meier analysis, we further assessed the prognostic relevance
of this risk profile. A negative correlation was found between
risk scores with OS and PFS (Figures 6(g) and 6(h)). Using
the ROC curve, we assessed the predictive role of risk score
by computing AUC, which was 0.729, 0.637, and 0.615 for
the 1-, 3-, and 5-year survival (Figure 6(i)). In addition, we
explored the somatic mutation condition of the five model
genes. CDKN2A is mutated in 3 percent of HCC patients,
MTF1 is mutated in 1 percent of HCC patients, and fewer
mutations are found in GLS, LIPT1, and DLAT. The most
abundant mutation type is the missense mutation (Figure 6(j)).

3.6. Exploration of the Independent Prognostic Value and
Clinical Feature of the Risk Score in HCC. In the TCGA,
we conducted both univariate and multivariate Cox regres-

sion analyses to explore whether risk score and other clinical
traits were independent prognostic factors. With five param-
eters (age, gender, stage, grade, and risk score), the risk score
obtained by our formula served as an independent predictor
of survival for HCC patients (p < 0:01, Figures 7(a) and 7(b)).
Meanwhile, it was discovered that the risk score was substan-
tially associated with the tumor stage and grade (Supplemen-
tary Table 2). Besides, we compared the risk score across
different clinical traits. Interestingly, according to the risk
score, we found differences were significant between the T1
stage versus T2, T3, and T4 stage (p < 0:05, Figure 7(f)) and
tumor stage I versus stage II, and stage III (p < 0:01,
Figure 7(i)). The other clinical characteristics were also
compared separately (Figures 7(c)–7(i)). The high-risk
group patients had advanced T stage and tumor stage
compared with low-risk group patients. These results
indicated that the risk model built with these five genes is
capable of accurately predicting the prognosis of HCC.

3.7. Implication of Risk Score on the Prognosis of HCC
Patients in Different Clinical Parameters Stratification. We
carried out a stratified analysis for further data mining
(Figures 8(a)–8(h)). Following stratification by age, gender,
tumor stage, and tumor grade, the risk score based on five
CRGs signature performed as a significant prognostic indi-
cator for age ≤ 65 (Figure 8(b)), male patients with HCC
(Figure 8(d)), stages I-II (Figure 8(e)), grades 1-2
(Figure 8(g)), and grades 3-4 (Figure 8(h)).

3.8. Prognosis Model Validation in the ICGC Cohort. We
gathered comprehensive clinical information for 232 HCC
cases from the ICGC database to serve as an external valida-
tion set. The risk score for each patient in the ICGC was
computed according to the same formula created in the
TCGA. The relationship between risk scores and clinical

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

AUC at 1 years: 0.729
AUC at 3 years: 0.637

AUC at 5 years: 0.615

1 − specificity

(i)

0

1196

TM
B

DLAT

LIPT1

GLS

MTF1

CDKN2A

0%

0%

0%

1%

3%

0 10
No. of samples

Missense_mutation

Frame_shift_ins

Splice_site

Frame_shift_del

Multi_hit

Altered in 13 (3.5%) of 371 samples.

(j)

Figure 6: Formation of the risk score signature utilizing five CRGs in the TCGA. (a) Univariate Cox regression analysis selected six CRGs.
(b, c) Detection of five prognostic CRGs using the LASSO Cox regression analysis. (d) Heatmaps of the five prognostic CRGs according to
the distribution of risk scores. The color legend represents the log2 (FPKM) value. (e) The distribution of risk scores. (f) Patients’ survival
status according to the distribution of risk scores. (g) Kaplan-Meier survival analysis compared the OS between the high-risk and low-risk
groups. (h) Kaplan-Meier survival analysis compared the PFS between the high-risk and low-risk groups. (i) The ROC curves for 1, 3, and 5
years of the risk model. (j) Mutation landscape of the five CRGs of the risk model.
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traits was examined (Supplementary Table 3). The TCGA
cohort’s median risk score was utilized to separate the
ICGC cohort into high-risk and low-risk groups. 101 cases
were located in the low-risk group, while the other 131
were in the high-risk group. The distribution diagram of
risk scores and survival times displayed that the survival
times of HCC patients in the ICGC decreased with rising
risk scores, and in the low-risk group, there were more
survivors than in the high-risk group (Figures 9(a)–9(c)).
According to the Kaplan-Meier survival analysis, the
survival time of high-risk patients was shorter than that of
low-risk patients (p = 0:002, Figure 9(d)). Our risk model
was also discovered to be an independent predictor of
mortality in the ICGC (Figures 9(e) and 9(f)).

3.9. Prognostic Nomograms of HCC. To further elevate the
predictive power of our risk model, the nomograms were
constructed by utilizing the five significant independent pre-
dictors (age, gender, grade, stage, and risk score) in the
TCGA (Figure 10(a)). Good consistency between the predic-
tion by nomogram and actual observation of 1-, 3-, and 5-
year survival rates (Figure 10(b)) was confirmed by the cali-
bration plot. The nomogram model also showed good pre-

diction accuracy for the 1-, 3-, and 5-year OS rates. The
relevant AUC values were 0.758, 0.710, and 0.696.
(Figures 10(c)–10(e)). These findings suggest the preferable
precision of the nomogram. In addition, the nomogram
model could represent an independent risk factor in the
TCGA (Figures 10(f) and 10(g)).

3.10. Function and Pathway Enrichment Analyses Based on
Cuproptosis-Related Risk Score. For the assessment of the
mechanisms underlying our risk model, we analyzed DEGs
following the criteria: FDR < 0:05 and jlog 2FCj ≥ 1. 781 sig-
nificant DEGs were identified, comprising 724 upregulated
genes and 57 downregulated genes in the high-risk group.
The GO terms were substantially enriched in chromosome
segregation, nuclear division, chromosomal region, spindle,
and DNA replication origin binding (Figure 11(a)). The
majority of enriched KEGG pathways were cellular senes-
cence, HIF-1 signaling pathway, TNF signaling pathway,
apoptosis, cell cycle, and IL-7 signaling pathway
(Figure 11(b)). As we could see, both GO terms and KEGG
analysis indicated that the functional enrichment of the risk
model highly correlated with cell cycle, cell death, and
immune response. The results of GSVA revealed that low-
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Figure 7: Exploration of the independent prognostic value and clinical feature of the risk score in HCC. (a, b) Through univariate and
multivariate Cox regression analysis, the risk score was found to be an independent prognostic element for HCC patients. (c–i) The
relationship between the risk score and different clinical parameters of HCC.

13Mediators of Inflammation



p = 0.077

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Risk

High
Low

Patients with age > 65

67 34 17 13 8 6 5 2 2 1 0
71 57 34 23 15 8 4 2 2 1 0Low

High

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Ri
sk

(a)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Risk

High
Low

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Low
High

Ri
sk

p < 0.001

Patients with age < = 65

118 70 29 19 12 7 5 0 0 0 0
114 93 46 34 28 19 11 4 2 1 1

(b)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Risk

High
Low

0 1 2 3 4 5 6 7 8 9 10
Time (years)

p = 0.529

Patients with FEMALE

65 47 18 11 8 4 4 2 2 1 0
56 37 28 18 13 10 5 2 2 1 0Low

High

Ri
sk

(c)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Low
High

Ri
sk

p < 0.001

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Patients with MALE

120 57 28 21 12 9 6 0 0 0 0
129 113 52 39 30 17 10 4 2 1 1

High
Low

(d)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

5

p = 0.016

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Patients with stage I−II

116 70 30 25 16 11 8 1 1 1 0
140 117 61 45 34 21 13 5 3 1 0Low

High

Ri
sk

High
Low

(e)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

p = 0.075

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Patients with stage III−IV

56 25 11 5 4 2 2 1 1 0 0
34 24 13 10 8 5 2 1 1 1 1Low

High

Ri
sk

High
Low

(f)

Risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

p = 0.015

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Patients with G1−2

98 47 26 16 10 9 7 2 2 1 0
134 105 55 41 32 20 11 4 2 1 1Low

High

Ri
sk

High
Low

(g)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

5

p = 0.019

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Patients with G3−4

85 56 19 15 10 4 3 0 0 0 0
48 42 22 15 10 6 4 2 2 1 0Low

High

Ri
sk

High
Low

(h)

Figure 8: Kaplan-Meier analysis of the risk score in different stratifications according to clinicopathological characteristics. (a–h) HCC
patients with varying clinical features (age, gender, stage, and grade) were analyzed using the Kaplan-Meier method according to the risk
score.
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Figure 9: Verification of the five CRGs signature in the ICGC cohort. (a) Heatmaps of five prognostic CRGs in the ICGC database according
to the risk score distribution. The color legend represents the log2 (FPKM) value. (b) The risk scores distribution. (c) The survival status of
each patient is according to the risk score distribution. (d) Kaplan-Meier curves for the OS of HCC patients. (e, f) The independent survival
analysis of the risk scores and clinical traits through univariate and multivariate Cox regression analysis.
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Figure 10: Continued.
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risk group patients showed elevated expression levels of
multiple metabolism pathways, like arginine and proline,
phenylalanine, glycine, serine, and threonine, and high-risk
group patients harbored upregulated expression levels of
multiple cell cycle and tumorigeneses pathways, such as
bladder cancer, notch signaling pathway, p53 signaling path-
way, renal cell carcinoma, cell cycle, and DNA replication
(Figure 11(c)).

3.11. Immune Characteristics Based on Cuproptosis-Related
Risk Score. To further explore the immune landscape of the
cuproptosis-related risk model, we calculated the immune
responses score through TIMER, CIBERSORT, CIBER-
SORT-ABS, QUANTISEQ, MCPcounter, XCELL, and EPIC
algorithms. Then, the relationship between risk score and
tumor immune response score was analyzed by Pearson’s
correlation. We formed a forest plot to display the detailed
correlation coefficient between the immune cell infiltration
and risk score (Figure 12(a)). Then, after we performed the
ssGSEA method to explore the immune cell subpopulations
and related functions, we found that immune cell subpopu-
lations and related functions including aDCs, B cells, macro-
phages, mast cells, NK cells, Treg, cytolytic activity, MHC
class I, and type II IFN response differed between high-risk
and low-risk groups (Figures 12(b) and 12(c)). Besides, we
further investigated the relationship between the five
cuproptosis-related model genes and the ssGSEA result of
immune cell subpopulations and related functions in each
case (Figure 12(d)). We found some significantly positive
correlations, such as the correlation between MTF1 and
MHC class I (r = 0:49), and some significantly negative cor-
relations, such as the correlation between CDKN2A and
type II IFN response (r = −0:57). As a crucial negative regu-
lator of the tumor immune microenvironment, the immune
checkpoints act as an essential role in assisting tumor cells in
evading immune system attacks. Hence, we examined the
expression level of eight important immune checkpoint
genes. Between high-risk and low-risk groups, we discovered
a significant variance in the expression level of immune
checkpoints, including CD274, TIGIT, PDCD1, HAVCR2,
and CTLA4 (Figure 12(e)). Following that, a prediction of
the immune checkpoint therapy response was made using
the TIDE algorithm based on risk scores (Figure 12(f)).

Interestingly, patients in the high-risk group had a higher
likelihood of benefiting from immune checkpoint inhibitor
therapy, suggesting that the risk score has the potential to
predict whether HCC patients will benefit from immune
checkpoint therapy.

4. Discussion

Copper overload can cause cuproptosis, which is a novel
form of programmed cell death triggered by mitochondrial
TCA cycles [12]. The relationship between tumors and cop-
per has long been noted, and in fact, tumor tissue requires
higher levels of copper [34]. Copper homeostasis imbalances
can result in life-threatening conditions, such as Wilson’s
disease, in which most patients exhibit chronic liver disease
with cirrhosis [35]. Copper overload also can lead to cirrho-
sis, which is one of the well-known risk factors for HCC
[36]. Consequently, a better understanding of cuproptosis
in HCC could be meaningful for developing new therapeu-
tics. Here, through a series of analyses, we explored the rela-
tionship between cuproptosis and HCC. According to our
findings, HCC has a different expression model of CRGs
compared with normal liver tissue, and the different cupropto-
sis subtypes are strongly correlated with the clinical outcome
of HCC patients. In addition, a prognostic risk model was cre-
ated using different expressed CRGs. These findings may have
implications for possible new therapeutic approaches to treat-
ing HCC.

Based on our study, we found that most of the CRGs are
differentially expressed in HCC versus normal liver tissue.
This finding is consistent with previous reports. Bian et al.
found that most CRGs differ between clear cell renal cell
carcinoma and normal renal cell [37]. Another report also
indicated that most CRGs are differentially expressed in mel-
anoma [38]. These clues suggested that the CRGs may have
different expression patterns in tumors, including HCC,
compared with normal tissues. Consensus clustering identi-
fied two clusters with significantly different OS based on the
expressions of CRGs. We found the function, mutation, and
immune analyses were performed differently between the
two clusters, suggesting cuproptosis may be broadly related
to HCC progression. The higher mutant frequency of TP53
in cluster 1 and higher mutant frequency of CTNNB1 in

Age

Gender

Grade

Stage

Nomogram

0.181

0.328

0.368

<0.001

<0.001

p value

1.010 (0.995 − 1.025)

0.824 (0.560 − 1.214)

1.124 (0.871 − 1.450)

1.674 (1.361 − 2.059)

1.674 (1.421 − 1.972)

Hazard ratio

Hazard ratio

0.0 0.5 1.0 1.5 2.0

(f)

Age

Gender

Grade

Stage

Nomogram

0.421

0.873

0.503

0.197

0.046

p value

1.007 (0.991 − 1.023)

1.034 (0.688 − 1.554)

1.101 (0.832 − 1.457)

1.271 (0.883 − 1.829)

1.396 (1.006 − 1.938)

Hazard ratio

Hazard ratio

0.0 0.5 1.0 1.5

(g)

Figure 10: Predicting survival rates for HCC patients after one year, three years, and five years using the nomogram. (a) The nomogram
model was formed to predict the survival rates of HCC patients in the TCGA cohorts. (b) Calibration curves of the nomogram. (c–e)
The ROC curve explored the prognostic performance of the nomogram model. (f, g) Univariate and multivariate Cox analysis of the
nomogram and clinical traits.
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cluster 2 could help to elucidate the underlying molecular
mechanism of the unique tumor microenvironment. HCC
patients with TP53 mutations have poorer outcomes [39],
and the mutation status of TP53 can be used to predict
immune response to immunotherapy in a variety of cancer
types [40, 41]. Thus, we showed that CRG expression might
be closely related to HCC prognosis and tumor
microenvironment.

We next constructed and validated an effective risk
model with 5 CRGs (MTF1, DLAT, GLS, CDKN2A, LIPT1)
for separating HCC patients into high-risk and low-risk
groups. The model displayed good predictive ability in both
the training and validation dataset. We also designed the
nomogram to combine the CRGs risk score model and clin-
ical features, and the nomogram showed excellent prediction
with good calibration. All these five genes exhibited
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Figure 11: Functional enrichment analysis was performed according to the risk score. (a) A list of the top 10 significantly enriched GO
terms. (b) A list of the top 30 most significantly enriched KEGG pathways. (c) The pathway activities scored by GSVA differently for
high-risk and low-risk individuals.
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Figure 12: Continued.
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upregulated expression in HCC patients. As a classic metal
sensing transcription factor, metal regulatory transcription
factor 1 (MTF1) stimulates the expression of genes involved
in metal homeostasis after exposure to heavy metals,
including copper [42]. MTF1 regulates hepatic MT1/2 gene
expression via a synergistic effect with SIRT6. By reducing
ROS, inflammation, and tissue injury, MT1/2 protects the
liver from alcoholic liver disease [43]. Dihydrolipoamide
S-acetyltransferase (DLAT) is one of the limited human
proteins which can be lipoylated. Tsvetkov et al. discovered
that lipoylated DLAT could bind copper and knocking out
DLAT could prevent copper toxicity for cells [12]. DLAT
encodes an essential subunit E2 of pyruvate dehydrogenase
complex (PDHC), which is the critical autoantigen in pri-
mary biliary cholangitis (PBC) [44]. Cirrhosis and liver fail-
ure are associated with PBC [45]. In a recent study, it was
found that posttranslational modifications of PDHC and
GLS are involved in liver cancer metabolism and biogenesis

[46]. There are two main types of GLS: kidney glutaminase
(GLS1) and liver glutaminase (GLS2) [47]. The overexpres-
sion of GLS2 in human liver cancer cells induced significant
growth, proliferation, ectopic expression, and a G2/M arrest
[48]. CDKN2A (also known as p16) is a tumor suppressor
gene and one of the most frequently deleted genes in cancer
genomes [49]. HCCs harboring deletions of CDKN2A consti-
tute approximately 8% of cases [50, 51]. CDKN2A induces
cell cycle arrest at G1 and G2 phases and inhibits the onco-
genic effects of CDK4/6 and MDM2 [52]. In the TCA cycle,
lipoyltransferase 1 (LIPT1) activates TCA cycle-associated
2-ketoacid dehydrogenases. The lack of LIPT1 can inhibit
the TCA cycle [53]. There is little evidence that LIPT1 is asso-
ciated with tumor occurrence and development. Taken
together, these five crucial genes, except LIPT1, contribute
to the progression and development of liver disease or HCC.

Our study found that the phenotype of high-risk patients
is more advanced, and the survival time is significantly
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Figure 12: The immune landscape of cuproptosis-related risk score in HCC. (a) The forest plot displayed the connection between risk score
and immune cell infiltration through TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPcounter, XCELL, and EPIC algorithms.
(b, c) The bar graphs showed the difference in immune cell subpopulations and related functions between high-risk and low-risk groups. (d)
The heatmap displayed the relationship of immune cell subpopulations and related functions with the five prognostic genes. (e) Differences
in immune checkpoint expression between high-risk and low-risk groups. (f) The violin plots presented the TIDE scores between high-risk
and low-risk groups. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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shorter (Figures 6(g) and 6(h)). We hypothesized that
cuproptosis resistance might be observed in high-risk
patients, and cuproptosis might contribute to the poor out-
comes of the patients in the high-risk group. MTF1, GLS,
and CDKN2A were expressed at higher levels in these
patients. Despite the two procuproptosis genes, LIPT1 and
DLAT were also upregulated in HCC patients. LIPT1 is a
key upstream regulator of protein lipoylation and a compo-
nent of the lipoic acid pathway. DLAT is one of the protein
targets of lipoylation [12]. Lipoylated DLAT could bind
copper and take part in the regulation of cuproptosis. Thus,
LIPT1 and DLAT could regulate cuproptosis through post-
translational modifications, not only through the gene
expression levels. Secondly, the high-risk patients were not
enriched in fatty acid metabolism pathways. The high-risk
group patients might therefore show resistance to cupropto-
sis due to suppressed related proteins of lipoylation.

Cuproptosis might inspire novel insights to treat tumors.
Keeping intracellular copper levels within a specific range
would be an effective treatment strategy for malignancies
[54]. Copper ionophores, such as DSF and elesclomol, are
emerging treatment options for cancers and exert their ther-
apeutic effects by inducing cuproptosis. Many studies have
demonstrated that, in combination with cupric ions, DSF
may be beneficial for treating a variety of cancers in humans
[14, 55, 56]. Elesclomol is particularly effective against
tumors relying on mitochondrial metabolism [57]. The com-
bination of elesclomol with paclitaxel has been well docu-
mented in clinical trials, particularly in advanced
melanoma [58–60]. Overall, these findings suggest that cop-
per ionophore-induced cuproptosis could be an effective
therapeutic strategy for certain tumors. There is hope that
HCC patients with low-risk scores might enjoy the antitu-
mor impact of the copper ionophores. Additionally, we
found significant differences in the expression levels of the
typical immune checkpoint and TIDE score between the
high-risk and low-risk groups, suggesting our risk model
may also show good predictability of response to ICB.

Our study has some weaknesses. First, the results may be
biased since the small number of patients. Second, although
this prognostic model demonstrated robust predictive ability
in both TCGA and ICGC databases, there is no clinical data
to further validate it, which is urgently warranted in future
research. Third, these critical genes of this model require
more experiments in vitro and in vivo to verify, which is
underway in our laboratory.

5. Conclusions

In conclusion, CRGs were significantly differentially
expressed between HCC and normal liver tissues, and the
prognosis of HCC patients is significantly influenced by
cuproptosis. A novel prognostic model containing five CRGs
has been conducted for HCC prognosis prediction. High-
risk HCC patients had a poor prognosis, advanced disease
stages, and an enhanced therapeutic response. These results
may shed light on new molecular pathways involved in HCC
carcinogenesis and enable the prediction of treatment out-

comes for HCC patients. Additional in vitro and in vivo
studies to validate these results would be beneficial.
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