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Ulcerative colitis (UC) is an inflammatory bowel disease of unknown cause that typically affects the colon and rectum. Innate
intestinal immunity, including macrophages, plays a significant role in the pathological development of UC. Using the
CIBERSORT algorithm, we observed elevated levels of 22 types of immune cell infiltrates, as well as increased M1 and decreased
M2 macrophages in UC compared to normal colonic mucosa. Weighted gene coexpression network analysis (WGCNA) was used
to identify modules associated with macrophages and UC, resulting in the identification of 52 macrophage-related genes (MRGs)
that were enriched in macrophages at single-cell resolution. Consensus clustering based on these 52 MRGs divided the integrated
UC cohorts into three subtypes. Machine learning algorithms were used to identify ectonucleotide pyrophosphatase/phosphodi-
esterase 1 (ENPP1), sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) (SLC6A14), and 3-hydroxy-
3-methylglutaryl-CoA synthase 2 (HMGCS2) in the training set, and their diagnostic value was validated in independent validation
sets. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) revealed the main biological effects, and that
interleukin-17 was one of several signaling pathways enriched by the three genes. We also constructed a competitive endogenous
RNA (CeRNA) network reflecting a potential posttranscriptional regulatory mechanism. Expression of diagnostic markers was
validated in vivo and in biospecimens, and our immunohistochemistry (IHC) results confirmed that HMGCS2 gradually decreased
during the transformation of UC to colorectal cancer. In conclusion, ENPP1, SLC6A14, and HMGCS2 are associated with
macrophages and the progression of UC pathogenesis and have good diagnostic value for patients with UC.

1. Introduction

Ulcerative colitis (UC) is a complex autoimmune intestinal
disease with unclear pathophysiological mechanisms that are
associated with factors such as genetic background, intestinal
flora, and mucosal immune dysregulation [1]. Its main fea-
ture is bloody diarrhea caused by ulceration of the mucosal
layer. The global prevalence and incidence of UC have increased
globally. For example, the prevalence of UC in the USA has
reached 263 per 100,000 persons [2]. UC is a progressive disease
that leads to intestinal stricture and dysfunction, and chronic

UC can develop into colorectal cancer (CRC). The reported
probability of patients with UC developing colitis-associated
CRC (CAC) within >30 years is 18% [3, 4]. Although the
emergence of antitumor necrosis factor-α (TNF-α) agents
has significantly improved clinical treatment, the economic
burden remains high [5]. Thus, new therapeutic targets and
potential biological mechanisms require further exploration.

Macrophages play critical roles in chronic and acute inflam-
matory processes. In particular, an unbalanced M1/M2 macro-
phage ratio can arise due to overactivated M1-type cells that
secrete enough proinflammatory factors to cause inflammatory
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storms. In contrast, M2-type cell populations reduce or remodel
themicroenvironment of chronic inflammation [6, 7]. Intestinal
macrophages are essential in innate and classical antimicrobial
immunity and regulate immune homeostasis [8]. A disrupted
intestinal barrier in patients with UC leads to massive amounts
of antigens entering the lamina propria, accompanied by a dis-
rupted balance of immune tolerance [9, 10]. This, in turn, leads
to local infiltration by numerous immune cells, such as proin-
flammatory macrophages and neutrophils. Proinflammatory
macrophages exacerbate the dextran sulfate sodium (DSS)-
induced intestinal inflammatory response in mice [11, 12].

The development of high-throughput technologies, tran-
scriptome microarray data, and sequencing has led to the
identification of biomarkers and underlying biological mechan-
isms of UC from the perspective of immune infiltration [13, 14].
However, few studies have targeted specific immune cells
such as macrophages to identify relevant biomarkers in UC.
Hence, we applied weighted gene coexpression network anal-
ysis (WGCNA) to screen for disease and macrophage-related
gene modules. We obtained 52 macrophage-related genes
(MRGs) after defining their intersections with differentially
expressed genes (DEGs). We also used machine learning
algorithms, including least absolute shrinkage and selection
operator (LASSO) regression, Ranger, sliding window sequen-
tial forward feature selection (SWSFS), and support vector
machine-recursive feature elimination (SVM-RFE) algo-
rithms. We finally identified the target genes ectonucleotide
pyrophosphatase/phosphodiesterase 1 (ENPP1), sodium- and
chloride-dependent neutral and basic amino acid transporter
B(0+) (SLC6A14), and 3-hydroxy-3-methylglutaryl-CoA
synthase 2 (HMGCS2). Correlations between disease severity
and each of these genes revealed the landscape of immune
infiltration. Moreover, we revealed the involved regulatory
molecular pathways using gene set enrichment analysis (GSEA)
and gene set variation analysis (GSVA). The expression of
diagnostic markers was validated in biospecimens and in
vivo, respectively, and that dynamic HMGCS2 expression
might be closely associated with inflammatory cancer
transformation.

2. Materials and Methods

2.1. Data Acquisition and DEG Analysis. Microarray data
downloaded from the Gene Expression Omnibus (GEO)
database using the GEOquery R package comprised the
GSE36807, GSE87466, GSE87473, GSE38713, GSE3629,
GSE16879, GSE23597, GSE53306, GSE48959, GSE75214,
and GSE13367 datasets [15–24]. All microarray datasets
are UC samples and normal except GSE3629, which contains
CRC and CAC samples. Gene expression data (transcripts
per million (TPM)) for The Cancer Genome Atlas-colon
adenocarcinoma (TCGA-COAD) cohort were downloaded
from the Genomic Data Commons (GDC) portal. Following
the guidance of previous studies, the single-cell sequencing
(scRNA-seq) dataset GSE162335 was collected and analyzed
[25]. Table 1 shows the accession numbers, platforms, and
other details of the datasets. Because of the relatively large
sample size of GSE87466, DEGs (|log2 fold change|> 1; false
discovery rate (FDR)< 0.05) were obtained using the empir-
ical Bayesian method in the limma R package [26].

2.2. Estimation of Immune Cell Infiltration and Correlations
with Genes. We used the CIBERSORT algorithm of the
multiomics Immuno-Oncology Biological Research (IOBR)
package to compare the amounts of immune cell infiltration
between UC and normal mucosal samples [27]. The perm
parameter was set to 1,000 to obtain stable results. The
CIBERSORT algorithm is a deconvolution method based
on the LM22 reference matrix such that the sum of the
calculated immune cell proportions for each sample is 1 [28].
Gene correlations with immune cells were determined using
Spearman correlation analysis and further visualized using the
ggplot2 package.

2.3. WGCNA Construction. We removed outliers, and then
GSE36807 and GSE87466 samples were included in the
WGCNA package to construct a gene expression similarity
matrix that was subsequently transformed into an adjacency
matrix by selecting the optimal soft threshold β to construct a
scale-free network [29]. A dynamic tree-cutting algorithm was

TABLE 1: Basic information of datasets.

Accession number/source Platform Number of patients Tissues

GEO:GSE36807 GPL570 22 7 controls and 15 UC
GEO:GSE87466 GPL13158 108 21 controls and 87 UC
GEO:GSE87473 GPL13158 127 21 controls and 106 UC
GEO:GSE38713 GPL570 43 13 controls and 30 UC
GEO:GSE3629 GPL570 121 53 UC, 6 CAC, and 62 CRC
GEO:GSE16879 GPL570 28 39 CD and 16 UC
GEO:GSE23597 GPL570 26 45 UC
GEO:GSE53306 GPL14951 24 12 controls and 28 UC
GEO:GSE48959 GPL6244 21 8 controls and 13 UC
GEO:GSE75214 GPL6244 108 11 controls and 97 UC
GEO:GSE13367 GPL570 27 10 controls and 17 UC
GEO:GSE162335 Illumina HiSeq 4000 11 11 UC
TCGA:COAD Illumina RNAseq 521 41 controls and 480 CRC
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used to assign 10,000 included genes (ranked from largest to
smallest according to median absolute deviation) to different
modules comprising genes with similar expression profiles.

2.4. Batch Effect Correction and Consensus Clustering for 52
MRGs. We applied the ComBat algorithm of the sva R pack-
age to reduce the possibility of batch effects caused by non-
biotechnical bias between distinct datasets [30]. Based on the
expression of 52 MRGs, an unsupervised clustering analysis
was used to identify distinct MRGs modification patterns in
UC patients and classify them for further investigation. This
analysis was performed using the unsupervised clustering
“Pam” method based on the Euclidean and Ward linkages,
conducted through the use of the “ConsensusClusterPlus”
R package and 1,000 replications to ensure stability of the
classification [31].

2.5. Screening Genes and Building Four Classifiers Using
Machine Learning. After a preliminary screening, the LASSO
algorithm was first applied with penalized parameter
adjustment by 10-fold cross-validation to select candidate
genes [32]. We then used a weighted random forest (wRF) to
assess the impact of gene expression on patient disease status
using the Ranger package in R. The variable importance scores
(VIS) of the 52 MRGs obtained from the initial screening were
estimated and ranked in descending order. The parameters
were set as described. The most important genes were
identified using SWSFS that individually incorporates RF
models according to the VIS rank of a gene [30]. When the
RF model with the lowest out-of-bundle (OBB) rate was
filtered out, the top gene in each set was identified as a
candidate gene. We also combined candidate gene filtration
using the SVM-RFE algorithm with the e1071 package in R to
focus on candidate genes [33, 34]. We then incorporated the
screened diagnostic gene markers to construct four machine
learning classifiers, including RF, SVM, extreme gradient
boosting (XGB) [35], and general linear model (GLM) [36].

2.6. GSEA and GSVA Analyses and Construction of CeRNA
Networks. We used the clusterProfiler package [37] for spe-
cific GSEA to investigate biological processes that might be
influenced by individual genes in samples from patients with
UC. The background dataset was derived from the Kyoto
Encyclopedia of Genes and Genomes (KEGG). Potential bio-
logical functions can be investigated using GSEA based on
ordered gene expression profiles in two biological states. The
enrichment of gene sets in individual patient samples can be
assessed using GSVA [38]. We evaluated differences in bio-
logical process terms between groups with high and low
expression of individual genes using the GSVA package in
R. We also downloaded h.all.v7.2.symbols fromMsigDB [39]
and a inflammation-related signature [40] (Supplementary 1)
for GSVA. Fast gene set enrichment analysis (fGSEA) was
performed according to the Gene Ontology Biological Pro-
cess (GOBP) with fGSEA R package. miRNAs targeting
the three diagnostic markers were predicted via TargetScan
(http://www.targetscan.org/), miRanda (http://www.microrna.
org/), and miRDB (http://www.mirdb.org/) [41–43]. The

lncRNAs targeting miRNAs were screened by spongeScan
(http://spongescan.rc.ufl.edu), and the competitive endogenous
RNA (CeRNA) network was constructed by Cytoscape soft-
ware [44].

2.7. Patient Samples. Fresh colon tissues were obtained from
six patients with UC who were treated by colonoscopy and
six with CRC at the First Affiliated Hospital of Anhui Medi-
cal University. Normal tissues were obtained from paracan-
cerous tissues of patients with colon cancer (CC). All samples
were coded according to local ethical guidelines (as specified
in the Declaration of Helsinki), and written informed con-
sent was obtained from all patients to participate in the
study. The study was approved by the Clinical Research
Ethics Committee of the First Affiliated Hospital of Anhui
Medical University (PJ 2022-10-41).

2.8. Immunohistochemistry (IHC). Colon tissues were
immersed in 4% paraformaldehyde for 24 hr, embedded in
paraffin, sectioned, then oven-dried at 60°C for 30min. Sub-
sequently, HMGCS2 immunohistochemically detected using
a primary anti-HMGCS2 antibody (T510043; Abmart, Shanghai,
China) and an antirabbit secondary antibody for 30min at room
temperature. The tissue sections were stained using a 3,3ʹ-diami-
nobenzidine color development kit (ZLI-9017; Zhongshan
GoldenBridge Biotechnology, Beijing, China), and then the inten-
sity of HMGCS2 staining was analyzed using IPP6.0 software.

2.9. Animal Models and Western Blotting. Animal experi-
ments were approved by the Animal Ethics and Experimen-
tation Committee of Anhui Medical University and
conducted in accordance with the Guide for the Care and
Use of Laboratory Animals. Colitis was induced in 8-week-
old female C57BL/LJ mice by the daily administration of 3%
DSS salt (MP Biomedicals, Santa Ana, CA, USA) for 7 days.

Total protein extracted from the tissue using RIPA buffer
(Beyotime Biotechnology, Shanghai, China) was resolved by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and transferred to polyvinylidene fluoride (PVDF) mem-
branes. Nonspecific antigen binding on the PVDF mem-
branes was blocked with 5% skimmed milk for 1 hr at room
temperature. The membranes were incubated overnight at
4°C with anti-HMGCS2 antibody (T510043; Abmart) fol-
lowed by horseradish peroxidase (HRP)-conjugated second-
ary antibody for 1 hr at room temperature. Protein bands
were quantified using enhanced chemiluminescence (ECL).
Antibodies against SLC6A14 and CD206 were from Abmart
(Shanghai, China). Antibodies against CD86, iNOS, and ARG1
were obtained from Proteintech Group (Wuhan, China).

2.10. Statistical Analysis. All data were statistically analyzed
using R version 4.1.2 and visualized using the ggpubr pack-
age. The normal and nonnormal distributions between two
groups of variables were assessed using independent t-tests
and Wilcoxon rank-sum tests, respectively. The results of
comparisons among three or more groups were assessed by
parametric one-way analysis of variance (ANOVA) and
nonparametric Kruskal–Wallis tests. Correlations between
groups were assessed based on the normality of the data
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using Spearman or Pearson correlation tests. We determined
the diagnostic value of individual genes by calculating areas
under ROC curves (AUC) using the pROC package [45].
Values with P<0:05 were considered significant, and data
are represented as meansÆ standard deviation (SD).

3. Results

3.1. Immune Infiltration Landscape in UC. Figure 1 shows a
flowchart of the study. Because chronic inflammatory UC is
associated with dysregulated immune infiltration, we used
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the CIBERSORT algorithm to evaluate the infiltration of
22 types of immune cells in normal and UC tissues from
the GSE87466 dataset based on the LM22 reference matrix.
We found significantly enriched M0 and M1 macrophages,
as well as neutrophils in the UC tissues and mainly enriched
M2 macrophages and activated natural killer (NK) cells in
the normal tissues (Figure 2(a)–2(d)). It follows that immune
cells, in particular macrophages, could play a key role in UC’s
development.

3.2. WGCNA Construction and DEG Analysis. In order to
gain insights into the differences between UC samples and
normal control samples, we utilized the GSE36807 dataset for
WGCNA. Cluster analyses of samples in the GSE36807 dataset
excluded two abnormal samples (GSM901353, GSM901339),
and the remaining 20 samples were subsequently analyzed
(Supplementary 2). We set β= 27 (scale-free R2= 0.85)
as the soft threshold to construct a scale-free network
(Supplementary 2). We identified UC-related modules and
merged those that were similar using the dynamic cut-tree
method to obtain five modules (Figure 3(c)). The MEblue
(cor=−0.82, P= 9e-06) and MEgreen (cor= 0.73, P= 2e-
04) modules were most relevant to UC (Figure 3(a)). The
results depicted as scatter plots of the gene significance of
the relevant modules were similar (Supplementary 2).

To identify specific genes associated with macrophage
infiltration in the UC pathological process, we expanded our
analysis by including 85 UC samples from the GSE87466
dataset. We followed a similar process for scale-free net-
work construction, applying a soft threshold β value of 16
(Supplementary 2). Heat maps of trait correlations showed
that blue, green, and turquoise modules closely correlated
with macrophage infiltration in UC (Figure 3(b)), implying
that they are associated with the development of inflamma-
tion in UC. Supplementary 2 shows scatter plots of module
relevance versus gene significance.

A comparison of UC and normal samples fromGSE87466
revealed 1,287 DEGs, of which 415 and 872 were downregu-
lated and upregulated, respectively (Figure 3(d)). The Venn
diagram, as shown in Figure 3(e), shows that the key module
genes determined by WGCNA intersected with these DEGs
and resulted in 52 candidate genes (Supplementary 1).

3.3. Validation of MRGs at Single-Cell Resolution and
Identification of Three MRGs Subtypes. We identified seven
major subpopulations using cell-specific markers, namely
T cells, plasma cells, circulating B cells, germinal center/fol-
licular cells, mast cells, T-plasma cells, andmonocytes/macro-
phages (Figures 4(a) and 4(b)). In line with our expectations,
MRGs were mainly enriched in monocytes/macrophages
(Figure 4(c)).

Four GEO datasets (GSE53306, GSE48959, GSE75214,
and GSE13367) were enrolled into one metacohort. Principal
component analysis (PCA) confirmed a reduction in
between-datasets batch effects after correction (Supplemen-
tary 2). We then performed a consensus cluster analysis to
investigate the relationship between these MRGs and UC
subtypes. Based on CDF values, we classified 155 UC patients
into three clusters (k= 3, Figure 4(d); Supplementary 2) and

we found that all patients with C1 were active UC and had
higher M1 macrophage infiltration and inflammation scores
(Figures 4(e) and 4(g)). In addition, the C1 subtype was
predominantly enriched for biological processes such as
myeloid leukocyte activation and regulation of monocyte
chemotaxis (Figure 4(f )). Besides, based on this integrated
cohort, we also found that active and inactive UC were sig-
nificantly different (Supplementary 2). Inactive UC had
higher M2 macrophage infiltration and lower inflammation
scores (Supplementary 2). Differential expression analysis
between the two groups yielded 265 DEGs (|Log2 fold
change|> 1; FDR< 0.05), which were mainly enriched in
biological processes related to inflammatory pathways (Sup-
plementary 2). We further used these DEGs to construct a
protein–protein interaction network (Supplementary 2)
based on protein interactions in the STRING database [46].

3.4. Screening Biomarkers for UC Using Machine Learning
Algorithms. We further reduced the dimensionality and fil-
tered the 52 candidate genes using three machine learning
algorithms in GSE87473. The first was LASSO regression
based on UC and normal samples. The results showed that
the contraction of genes tended to stabilize. Binomial deviance
was minimized when the following genes were included: tissue
factor pathway inhibitor 2 (TFPI2), cadherin 3 (CDH3),
SLC6A14, homeobox A3 (HOXA3), phosphodiesterase 6A
(PDE6A), high-mobility group AT-hook 2 (HMGA2),
complement factor B (CFB), V-Set and transmembrane
domain containing 2A (VSTM2A), interferon stimulated
exonuclease gene 20 (ISG20), HMGCS2, and ENPP1, and
the optimal λ was 0.0064 (Figures 5(a) and 5(b)).

Moreover, the SWSFS algorithm with random seeds set
to 5,555 identified a model containing the top five genes such
as aquaporin 8 (AQP8),HMGCS2, SLC6A14, ankyrin 3 (ANK3),
and ENPP1 (Figures 5(c) and 5(d)). Meanwhile, the SVM-RFE
algorithm identified 29 signature genes with an optimum
error and accuracy rate of 0.0281 and 0.972, respectively
(Figures 5(e) and 5(f)). Combining with the above findings,
SLC6A14, HMGCS2, and ENPP1 were selected as crucial
genes (Figure 5(g)).

3.5. Evaluation of Expression and Diagnostic Value of Potential
Macrophage-Related Genes. We analyzed receiver operating
characteristics (ROC) curves to determine the predictive value
of SLC6A14,HMGCS2, and ENPP1. The areas under the ROC
curves (AUCs) were 0.958, 0.979, and 0.960, respectively, for
GSE87473. The GSE38713 validation set revealed AUCs of
0.890, 0.869, and 0.746 for SLC6A14, HMGCS2, and ENPP1,
respectively (Figure 5(h)). We then evaluated their expression
and found that SLC6A14 was upregulated in both the training
and validation cohorts compared to that in the control, whereas
both HMGCS2 and ENPP1 were downregulated (Figure 6(a);
Supplementary 2). In addition, the expression of SLC6A14 and
HMGCS2 varied with the severity of UC (Figure 6(b)), and,
interestingly, the expression levels of these genes also changed
in infliximab treatment responders (Figures 6(c) and 6(d)), indi-
cating that they are involved in the development of UC. Based
on these three diagnostic makers using four machine learning
algorithms (SVM, RF, XGB, and GLM) to construct diagnostic
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clustering solution (k= 3) for macrophage-related genes in UC samples (e) Unsupervised clustering of the 52 ARGs divided the UC patients
in the integrated cohort into three groups. (f ) The main 10 pathways in the three subtypes were significantly activated (red) or inhibited
(green) according to fGSEA. (g) Violin plots (box plots) of macrophage infiltration levels and inflammation scores for the three subtypes.
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classifiers, we found that all three classifiers, except SVM, had
good diagnostic value in both the training and validation
cohorts (Figure 6(e)). Additionally, we evaluated the diagnostic
value of three candidate diagnostic markers in an integrated
cohort and in individual cohorts to identify the active phase
of UC (Figure 6(f); Supplementary 2).

3.6. Immune Infiltration Correlation. We further confirmed
the potential biological processes of SLC6A14,HMGCS2, and
ENPP1 by analyzing correlations with immune infiltrative
cells. The expression of SLC6A14 significantly correlated
with scores estimated for neutrophils and M1 macrophages
in GSE87473 and GSE38713, respectively. The expression of
HMGCS2 correlated significantly and positively with M2
macrophages and negatively with neutrophils. Although the
performance of ENPP1 and HMGCS2 was similar in the
GSE87473 cohort, it was not validated in GSE38713 (Figures 7(a)
and 7(b)). The heat map, as shown in Figures 7(c) and 7(d),
shows that these genes correlated with 22 types of infiltrative
immune cells identified by CIBERSORT.

3.7. Biological Process Enrichment and CeRNA Networks
Construction. We compared the GSVA scores of hallmark
signaling pathways between UC with high and low expres-
sion of these genes (Figure 8(a)–8(c); Supplementary 1). The
significantly enriched inflammation-related pathways in the
group with abundant SLC6A14 expression were INFLAM-
MATORY_RESPONSE, IL6_JAK_STAT3_SIGNALING, and
TNFA_SIGNALING_VIA_NFKB. Meanwhile, these path-
ways were substantially enriched in groups with lowHMGCS2
and ENPP1 expression. SLC6A14,HMGCS2, and ENPP1 were
also enriched in several inflammation-related pathways such
as interleukin 17 (IL-17), nuclear factor-kappa B (NF-κB), and
TNF-α signaling in the background KEGG dataset for GSEA
(Figure 8(d)–8(f)). A CeRNA network consisting of three
mRNAs, 95 miRNAs, and 74 lncRNAs was constructed based
on predicted miRNA–mRNA and miRNA–lncRNA interac-
tions (Figure 8(g); Supplementary 1).

3.8. HMGCS2 Correlates with Inflammatory Cancer
Transformation. To further validate the key diagnostic genes,
we applied a mouse model of DSS-induced acute colitis
(Figure 9(a)–9(c)). Western blotting revealed reduced expres-
sion of HMGCS2, ARG1, and CD206 and increased expres-
sion of iNOS and CD86 in colon tissues from the mouse
models of DSS-induced colitis, further validating these find-
ings (Figures 9(d) and 9(e)). In addition to this, we found that
SLC6A14 expression was elevated in colonic tissue from UC
patients compared to control tissue (Figure 9(f)). The expres-
sion of SLC6A14 and HMGCS2 was analyzed in UC, UC-
associated CRC, and sporadic CC (Figures 10(a) and 10(b)).
Compared to that in UC tissues, significantly less HMGCS2
was expressed in colorectal tumors. Besides, HMGCS2 expres-
sionwas also reduced in CC tissues relative to normal tissues in
the COAD cohort of the TCGA database (Figure 10(c)). How-
ever, our analysis through the public repositories, cBioPortal
(https://www.cbioportal.org/) found no significant differences
in the methylation status of HMGCS2 and its expression at
different staging of CRC (Supplementary 2). Moreover, IHC
revealed that HMGCS2 expression progressively decreased in
normal, UC, and CRC tissues (Figures 10(d) and 10(e)).

4. Discussion

Intestinal immune dysregulation, including macrophages,
neutrophils, and other immune cell infiltrates, is an impor-
tant pathological feature of UC [47]. Macrophages have been
extensively studied in UC due to their high plasticity and
intestinal heterogeneity [48, 49]. We compared the normal
immune landscape with that of patients with UC using the
CIBERSORT algorithm. Consistent with previous results, we
identified significantly more infiltrative M1 macrophages,
neutrophils, and activated DC cells and significantly fewer
infiltrative M2 macrophages in the patients with UC than
those without UC. We identified 52 MRGs using WGCNA
and DEG analysis.
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MRGs were subsequently validated at single-cell resolu-
tion to be predominantly enriched in monocytes/macro-
phages. Further, we first identified three subtypes of MRGs
for UC and found that patients with UC in subtype C1 were
all active while subtype C2 had mainly inactive UC. Consis-
tent with this, subtype C1 had the highest inflammation
score and M1 macrophage infiltration of the three subtypes,
while subtype C2 had the lowest inflammation score and
highest M2 macrophage infiltration.

The combination of the LASSO, SWSFS, and SVM-RFE
machine learning algorithms for variable screening led to
targeting the candidate markers, SLC6A14, HMGCS2, and
ENPP1. Subsequent correlations between immune cells and
gene expression were validated in external datasets.

Among these macrophage-associated genes, SLC6A14
was elevated in UC, compared to that in control tissues,
whereas HMGCS2 and ENPP1 expressions were decreased.
Yanai et al. [50] also found significantly elevated SLC6A14
expression in tissues from patients who developed pouchitis
after restorative proctocolectomy. In addition, inflammation-
related CRC is prevented in SLC6A14-deficient mice [51].
Based on the proteomic platform, HMGCS2 protein expres-
sion was reduced in tissues from patients with UC compared
to that in healthy controls [52]. Besides, HMGCS2 acts as a
rate-limiting enzyme for ketogenesis to alleviate TNF-α-
induced inflammation in intestinal epithelial cells [53]. How-
ever, the relationship between ENPP1 and UC has essentially
remained obscure.

Macrophages are categorized as being classically (M1) or
alternatively (M2) activated depending on their pro- or anti-
inflammatory phenotypes [7]. In the context of UC patho-
genesis, chemokines induce monocytes to travel to regions of
colonic inflammation where they differentiate into the M1 phe-
notype that promotes inflammation. However, tissue-resident
M2-likemacrophages play a tissue-repairing, anti-inflammatory

role in colitis [54, 55]. Our results indicated that SLC6A14 and
HMGCS2 correlate positively with M1 and M2 macrophages,
respectively, and with neutrophils in UC. The amount of neu-
trophil infiltration in colonic tissues increases in parallel with
UC progression [56]. In addition, evidence suggests that
neutrophils accumulate around active ulcers in UC and
that chemokine (IL-8) signals result in neutrophil degranu-
lation followed by the release of myeloperoxidase (MPO)
that mediates oxidative stress to produce cytotoxic reactive
oxygen species [57, 58]. Various evidence now suggests that
neutrophils and inflammation-induced macrophages are
involved in the development of CAC. For instance, the pro-
portions (%) of CD68+ macrophages sequentially increase
during the transition of normal mucosa into inflammatory
hyperplasia and cancer in azoxymethane (AOM)-/DSS-
induced model mice [59]. Depleting macrophages with clo-
dronate liposomes twice weekly before the final DSS cycle
(week 7) in DSS/AOM mouse models reduces the number
and size of colon tumors [60]. In addition, neutrophil infiltra-
tion is significantly increased in the mouse models of DSS-/
AOM-induced CAC [61, 62]. We also found using public
microarray data that HMGCS2 expression progressively
decreased from normal to UC to CRC and reconfirmed this
using IHC. Coincidentally,HMGCS2 knockdown exacerbates
the macrophage-activated inflammatory response in acute
pancreatitis [63]. Therefore, we speculate that HMGCS2 also
mitigates the development of inflammation in UC and even
participates in the process of inflammatory cancer transforma-
tion by limiting inflammatory macrophage infiltration.

Our findings revealed that all three genes were enriched
in the IL-17 and TNF-α signaling pathways. The proinflam-
matory cytokine IL-17 is associated with the development
and progression of UC [64]. Although IL17 is secreted by
various cells, a T-cell lineage producing IL17 that is distinct
from Th1 and Th2 has been identified in UC [65, 66]. The
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key cytokine TNF-α is elevated in patients with UC and can
significantly reduce intestinal barrier resistance, leading to a
defective intestinal barrier. Anti-TNF-α therapy is also effec-
tive for patients with UC, especially those with moderate-to-

severe disease who cannot tolerate conventional drug ther-
apy [67]. Our results also showed significant changes in
HMGCS2 and SLC6A14 in anti-TNF-α treatment respon-
ders before and after treatment. These two markers also
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correlate with the level of activity in UC. Previous study has
summarized markers related to UC activity [68], while our
analysis results differs from previous studies, possibly due to
the limitations of the datasets and sample size. Further, we
constructed a CeRNA network based on three diagnostic
marker genes in order to identify potential posttranscrip-
tional regulatory mechanisms. All these findings imply that
the macrophage-related genes determined from our screen
could be promising therapeutic targets for UC.

However, our study has several limitations. The amounts
of clinical information and samples were limited. Although
we classified UC patients into three groups based on 52 MRG
genes, this classification cannot currently be well related to
the clinical classification of UC based on this result alone.
Moreover, our findings of HMGCS2 expression and its cor-
relation with clinical features require validation in a larger
patient cohort. The number of experiments in vivo was
insufficient for us to validate the potential pathogenesis of
HMGCS2 in UC and CAC.

5. Conclusions

In summary, we identified threeMRGs subtypes for UC and the
macrophage-associated genes SLC6A14, HMGCS2, and ENPP1
and further analyzed their involvement in inflammation-related
pathways. Expression of HMGCS2 and macrophage polariza-
tion markers was verified in DSS-induced colitis mice model.
We also validated the high expression of SLC6A14 in UC in
biospecimens by IHC and associatedHMGCS2with the process
of inflammatory cancer transformation, which also reflects that
these genes could be a potential therapeutic target for UC.
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