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Pancreatic cancer (PC) is a malignant tumor of the digestive system that has a bad prognosis. N6-methyladenosine (m6A) is
involved in a wide variety of biological activities due to the fact that it is the most common form of mRNA modification in
mammals. Numerous research has accumulated evidence suggesting that a malfunction in the regulation of m6A RNA
modification is associated with various illnesses, including cancers. However, its implications in PC remain poorly
characterized. The methylation data, level 3 RNA sequencing data, and clinical information of PC patients were all retrieved
from the TCGA datasets. Genes associated with m6A RNA methylation were compiled from the existing body of research and
made available for download from the m6Avar database. The LASSO Cox regression method was used to construct a 4-gene
methylation signature, which was then used to classify all PC patients included in the TCGA dataset into either a low- or high-risk
group. In this study, based on the set criteria of jcorj > 0:4 and p value < 0.05. A total of 3507 gene methylation were identified to
be regulated by m6A regulators. Based on the univariate Cox regression analysis and identified 3507 gene methylation, 858 gene
methylation was significantly associated with the patient’s prognosis. The multivariate Cox regression analysis identified four gene
methylation (PCSK6, HSP90AA1, TPM3, and TTLL6) to construct a prognosis model. Survival assays indicated that the patients
in the high-risk group tend to have a worse prognosis. ROC curves showed that our prognosis signature had a good prediction
ability on patient survival. Immune assays suggested a different immune infiltration pattern in patients with high- and low-risk
scores. Moreover, we found that two immune-related genes, CTLA4 and TIGIT, were downregulated in high-risk patients. We
generated a unique methylation signature that is related to m6A regulators and is capable of accurately predicting the prognosis for
patients with PC. The findings might prove useful for therapeutic customization and the process of making medical decisions.

1. Introduction

Pancreatic cancer (PC) is among the deadliest malignancies,
with a mortality rate that ranks among the top four world-
wide [1]. At the moment, less than 10% of patients with

PC are diagnosed in the early stage of the disease [2, 3].
Due to the fact that most patients are detected at a later
stage, they are unable to undergo surgical therapy because
this treatment option is not available [4, 5]. The high death
rate is mostly attributable to a number of factors, including,
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but not limited to, the medical history of the family, genetics,
the intake of cigarettes, and chronic pancreatitis [6]. PC has
continued to have a poor clinical prognosis due to its late
presentation with vague symptoms and its early metastatic
tendency, despite the breakthroughs in cancer treatments
that have occurred during the past few decades [7, 8]. When
compared to all other types of solid tumors, the probability
of surviving PC for five years is the lowest, at 8% [9, 10].
Therefore, in order to better the prognosis for patients with
PC, there is an urgent need to discover new biomarkers for
early diagnosis and prospective therapeutic strategies to
combat the progression of cancer.

Previous research has demonstrated that mutated genes
are the primary cause of cancerous growths. Epigenetic
modifications like DNA methylation, histone acetylation,
and RNA modification have all been proven to play a role
in the development and progression of tumors [11, 12].
These epigenetic modifications have been recognized as
new treatment and prognostic targets as a result of the
expansion of research into the subject. To this day, researchers
have discovered an increasing number of posttranscriptional
changes of RNA. It was not until the 1970s that researchers
discovered N6-methyladenosine, also known as m6A, which
is now thought to be the most common and prolific posttran-
scriptional modification found in eukaryotic mRNA [13, 14].
Although just 0.1-0.4% of all adenosine in mammals is meth-
ylated as a result of m6A RNA, this type of RNA is responsible
for around 50% of all methylation ribonucleotides. The alter-
ation of m6A is involved in virtually every stage of the RNA
metabolic process, from splicing to decay [15, 16]. There is a
growing body of research that acknowledges the significant
role that m6A alteration plays in the progression of a variety
of disorders, including hypertension, cardiovascular diseases,
and acute myeloid leukemia, among others [17, 18]. Emerging
research suggests that m6A regulators may be able to mediate
gene expression levels in a variety of biological processes, such
as the formation, progression, invasion, and metastasis of can-
cer, and may also be able to function as prognostic indicators
[19–22]. In addition, a study demonstrated that there are four
distinct types of RNAmodification writers, each of which may
play an important part in the tumor microenvironment
(TME), targeted therapy, and immunotherapy in PC [23,
24]. However, it is not yet known how important the m6A-
related genes are in PC from a functional standpoint.

Gene expression profiles have been utilized as a means of
locating prognostic genes as novel biomarkers for many
types of cancer since the emergence of genome sequencing
and screening tools [25, 26]. Several research over the past
several years have established a variety of predictive models
based on m6A-related genes, m6A-related lncRNAs, and
m6A-related eRNAs [27, 28]. RNA methylation is an impor-
tant epigenetic modification that is involved in the regula-
tion of gene expression in a variety of biological processes
[29, 30]. This regulation takes place without any alterations
to the fundamental nucleotide sequence. In carcinogenesis,
aberrant RNA methylation takes place, and numerous meth-
ylation biomarkers have been exploited to predict the prog-
nosis of patients with PC [31, 32]. RNA methylation profiles
can be used to provide an accurate prediction as well as

suggest potential treatments for cancers. Therefore, research
into the predictive significance of m6A-related epigenetic
characteristics such as DNA methylation in PC is required.

2. Methods

2.1. Data Preparation. The level 3 RNA sequencing data,
methylation data, and clinical information of pancreatic
cancer patients were downloaded from TCGA datasets
(TCGA-PAAD, https://portal.gdc.cancer.gov/). m6A RNA
methylation-related genes were collected from the known
literature and were downloaded from the m6Avar database
(http://m6avar.renlab.org/). The m6Avar database was a col-
lection of information pertaining to functional variants that
were involved in the m6A alteration process. For the pur-
pose of measuring the DNA methylation data, an Illumina
Human Methylation 450 Beadchip (450K array), was uti-
lized. Across the entirety of the genome, a total of 482,421
CpG sites are going to be analyzed. The association of mean
methylation and expression of specific genes in pancreatic
cancer was compared via MEXPRESS (https://mexpress.be/).

2.2. Identification of m6A Regulator-Related Methylation. To
identify methylation regulated by m6A regulators, Pearson’s
test was performed to examine the correlation between gene
methylation value and m6A regulator expression. Pearson’s
R > 0:3 was considered to be statistically significant.

2.3. Differentially Expressed Gene (DEG) Analysis. DEG
analysis was performed based on the limma package in R
software with the set standards.

2.4. Gene Set Enrichment Analysis (GSEA). We tested for the
overrepresentation of differentially methylated genes or
genes linked with differential methylation risk scores by
using gene sets from the Molecular Signatures Database ver-
sion 6.2 (MSigDB). The reference gene sets were Hallmark,
Gene Ontology (GO), and Kyoto Encyclopedia of Genes
and Genomes (KEGG). GSEA was carried out with the help
of the fgsea package (version 1.4.1), and 10,000 permutations
were used in order to locate enriched pathways that were
shared by the high-risk group and the low-risk group. jNESj
values greater than one and a false discovery rate of less than
0.05 percent were regarded as statistically significant.

2.5. Prognosis Model Construction. Firstly, for the input gene
methylation data, univariate assays were utilized to identify
the gene methylation tightly correlated with patient survival.
Then, LASSO Cox regression of overall survival (OS) was
carried out to identify survival-related gene methylation.
Multivariate assays were used for prognosis model con-
struction (Risk score =Methylation level of geneA × coef A
+Methylation level of geneB × coef B +⋯+Methylation
level of geneN × coef N), and the risk score of each sample
in all the datasets was calculated based on the signature.
For survival analysis, the samples were divided into a high-
risk group and a low-risk group based on the median cutoff
value of the risk score. Kaplan-Meier (KM) and receiver oper-
ating characteristic (ROC) curves were used to explore the
prognostic significance of the prognosis signature.
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Figure 1: Continued.
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2.6. Immune-Related Analysis. Comparisons were made
between the CIBERSORT, ESTIMATE, MCPcounter, EPIC,
Xcell, and TIMER algorithms in order to evaluate the differ-
ences in cellular components or cellular immune responses
between the high-risk group and the low-risk group based
on the prognostic signature [33–36]. A heatmap was used
to uncover the changes in the immune response that
occurred under the influence of several algorithms. In addi-
tion, the potential response of patients to immunotherapy
was inferred by the tumor immune dysfunction and exclu-
sion (TIDE) score. Generally, a lower TIDE score indicates
a better response to immunotherapy, in which the patients
with TIDE score < 0 were regarded as immunotherapy
responders, otherwise, nonresponders. For the purpose of
quantifying the differences in tumor-infiltrating immune cell
subgroups between the two groups, the single sample gene
set enrichment analysis (ssGSEA) algorithm was utilized.

2.7. Statistical Analysis. Data were analyzed using Biocon-
ductor packages in R software(version 4.0.2, R Core Team,
Massachusetts, USA). The differences between clinical tis-

sues were tested by Student’s t-test. Log-rank test and
Kaplan-Meier analysis were used to compare the OS between
groups. The Cox proportional hazards model was used to
examine the independent significance of relevant clinical fac-
tors. A p < 0:05 was considered statistically significant.

3. Results

3.1. Identification of m6A Regulators in PC. It has been con-
firmed that the dysregulation of m6A methylation was
involved in the progression of various tumors. Thus, our
group extracted the expressions of identified m6A regulator,
including METTL3, METTL14, WTAP, RBM15, ZC3H13,
ALKBH5, FTO, HNRNPC, YTHDF2, YTHDF1, YTHDC2,
and YTHDC1. The result indicated that all these m6A regu-
lators showed an aberrant expression pattern in pancreatic
cancer (Figure 1(a)). The expression distribution of all these
m6A regulators was shown in Figures 1(b)–1(d). Based on
the set criteria of jcorj > 0:4 and p value < 0.05. A total of
3507 gene methylation were identified to be regulated by
m6A regulators (Figure 1(e)).

METTL14

FTO

ALKBH5

RBM15

YTHDF1

YTHDF2 YTHDC1
ZC3H13

METTL3

HNRNPC

YTHDC2

WTAP

(e)

Figure 1: Identification of the gene methylation regulated by m6A regulators. (a) The expression level of the m6A regulator in pancreatic
cancer and normal tissue; (b–d) the expression level of m6A regulators in TCGA-PAAD; (e) the gene methylation regulated by the m6A
regulators. ∗∗∗p < 0:001, ∗∗p < 0:01, ∗p < 0:05.
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Figure 2: Continued.
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3.2. Prognosis Model Construction. Based on the univariate
assays and identified 3507 gene methylation, 858 gene methyl-
ation was distinctly related to the clinical outcome of PC
patients. Among which, the top 50 prognosis-related gene
methylations were selected for visualization and further anal-
ysis (Figure 2(a)). LASSO regression algorithm was used for
data dimension reduction (Figures 2(b) and 2(c)). Finally,

the multivariate assays identified four gene methylation to
construct a prognosis model with the formula of Risk score
=Methylation level of PCSK6 × 11:54 +Methylation level of
HSP90AA1 × −12:68 +Methylation level of TPM3 × −7:24 +
Methylation level of TTLL6 × −17:35 (Figure 2(d)). The over-
view of our prognosis signature was shown in Figure 3(a), in
which a higher percentage of dead cases was observed in the
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Figure 2: Screening of prognosis-related gene methylation. (a) The top 50 gene methylation tightly correlated with patients’ prognosis; (b, c)
LASSO regression analysis; (d) multivariate Cox regression analysis. ∗∗p < 0:01, ∗p < 0:05.
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high-risk group. Survival assays indicated that the patients in
the high-risk group tend to have a worse prognosis
(Figure 3(b), HR = 2:82, p < 0:001). ROC curves showed
that our prognosis signature had a good prediction ability
on patient survival (Figures 3(c)–3(e)) (1-year AUC = 0:68,
3-year AUC = 0:809, and 5-year AUC = 0:806).

3.3. Clinical Correlation Analysis. To better understand the
prognosis differences between high- and low-risk patients,
we then performed a clinical correlation analysis. Results
indicated that no significant differences were observed in
patients with different ages (Figure 3(f)); PCSK6 was upreg-
ulated in female patients (Figure 3(g)); PCSK6 was overex-
pressed in G1-2 patients (Figure 3(h)); no significant
differences were observed in patients with different clinical
stages (Figure 3(i)); the T3-4 patients tend to have a lower
HSP90AA1, while a higher risk score level compared to the
T1-2 patients (Figure 3(j)); no significant differences were
observed in patients with different N stages (Figure 3(k)).

Finally, we evaluated the roles of the novel model and other
clinicopathologic parameters on the prognosis of PC with
univariate and multivariate assays. As shown in Figures 4(a)
and 4(b), we confirmed that the novel prognostic model
was an independent prognostic factor for overall survival
in PC patients.

3.4. Biological Enrichment Analysis. Underlying biological
pathway difference can lead to different prognosis perfor-
mance. For the GSEA analysis based on GO, the terms pos-
itive regulation of chromosome segregation, cysteine-type
endopeptidase inhibitor activity, structural constituent of
chromatin, phosphatidylserine metabolic process, and posi-
tive regulation of chromosome separation were the top five
enriched terms (Figure 5(a)). For the GSEA analysis based
on KEGG analysis, the cell cycle, systemic lupus erythemato-
sus, base excision repair, DNA replication, and ether lipid
metabolism were the top five enriched terms (Figure 5(b)).
For the GSEA analysis based on the Hallmark gene set, the
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Figure 3: Prognosis signature. (a) The overview of the prognosis model; (b) KM survival curve of high- and low-risk patients; (c–e) the ROC
curve of 1-, 3-, and 5-year survival; (f–k) clinical correlation of model gene methylation and risk score.
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terms interferon alpha response, MYC targets, mTORC1 sig-
naling, oxidative phosphorylation, and Notch signaling were
the top five enriched terms (Figure 5(c)).

3.5. Immune-Related Analysis. The tumor immune microen-
vironment plays an important role in tumor progression.
We next quantified the tumor immune microenvironment
based on multiple algorithms, including CIBERSORT,
ESTIMATE,MCPcounter, EPIC, Xcell, and TIMER. The result
indicated a different immune infiltration pattern in patients
with high- and low-risk scores (Figure 6(a)). Moreover, we
found that two immune-related genes CTLA4 and TIGIT were
downregulated in high-risk patients (Figure 6(b)). Also, we
explored the underlying effect of risk score on TIDE, immune
dysfunction, and immune exclusion, while no significant differ-
ence was found (Figures 6(c)–6(e)).

4. Discussion

PC is one of the most dangerous types of malignant tumors
[37]. According to the latest statistics on cancer in 2019, the
incidence and mortality rates of pancreatic cancer are only
second to those of colorectal cancer among malignancies

that affect the digestive tract [38, 39]. Studies conducted in
clinical settings have indicated that resistance to chemother-
apy is the single most important factor that restricts treat-
ment options for pancreatic cancer. This factor also adds
to the disease’s low survival rate and bad prognosis [40,
41]. The TNM staging system is typically applied in practice
for the purposes of classifying cancer patients and choosing
appropriate treatments for them [42]. Yet, due to the wide
variety of cancers, even those at the same stage may respond
differently to therapy. High-throughput sequencing has
grown increasingly prevalent in cancer diagnosis and treat-
ment in recent years. In addition, there has been a significant
number of research conducted on the process by which RNA
is altered in cancer. The various m6A signatures have been
identified as predictive prognosis models in many cancers,
such as hepatocellular carcinoma, renal cell carcinoma, lung
adenocarcinoma, breast cancer, and glioma [43–45].

DNA methylation, as a major epigenetic alteration, has
been implicated in the regulation of gene expression by
DNA methyltransferase (DNMT) [46, 47]. In addition, the
importance of DNA methylation in the development and
progression of cancers has been established beyond a rea-
sonable doubt. The prognosis of patients with PC has been
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Figure 4: Prognostic factors for overall survival by univariate (a) and multivariate (b) analysis.
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predicted using a variety of methylation indicators. In PC,
the prognostic prediction model that was based on the
DNA methylation site demonstrated greater prediction
effectiveness. In a previous study, an unsupervised consistent
clustering approach was used to identify two PAAD methyl-
ation subtypes, which were dubbed Cluster1 and Cluster2.
Cluster2 was shown to be linked with a more favorable prog-
nosis than Cluster1, which was found to be more common.
Fourteen methylation genes that are exclusive to each PAAD
subtype were found, and these genes might be used as
molecular markers to describe the different methylation pat-
terns that are associated with the two PAAD subtypes [48].
However, the DNA methylation signature of m6A regulators
has not been investigated in the prognostic prediction of PC.
In this study, based on the set criteria of jcorj > 0:4 and p
value < 0.05. A total of 3507 gene methylation were identi-
fied to be regulated by m6A regulators. The LASSO regres-
sion algorithm was used for data dimension reduction.
Finally, the multivariate Cox regression analysis identified
four gene methylation(PCSK6, HSP90AA1, TPM3, and
TTLL6) to construct a prognosis model. Survival analysis
indicated that the patients in the high-risk group tend to
have a worse prognosis. ROC curves showed that our prog-
nosis signature had a good prediction ability on patients’
survival. Our findings highlighted the potential of the novel
model used as a novel prognostic biomarker for PC patients.

Immunotherapy has only very recently been recognized
as a potential new treatment for PC [49]. The extracellular
matrix (ECM), stromal cells, tumor vasculature, and numer-
ous immune system cells all contribute to the TME, which is
what encourages the development and progression of cancer
[50, 51]. It is common knowledge that immune-suppressing
cells might play a role in the development of immune eva-

sion in the TME, which in turn helps tumor spread and pro-
gression. Tregs are a well-known kind of immunosuppressive
cells, and it has been demonstrated that their number is con-
nected with the prognosis of patients [52, 53]. This suggested
that the number of Tregs may be an efficient marker for deter-
mining the clinical outcome of patients with PC. Immune sup-
pression is one of the most recognizable symptoms of PC,
which is caused by the oncogenic drivers. Because of the met-
abolic reprogramming of tumor cells, which allows them to
facilitate the aerobic glycolysis process in order to adapt to
their heterogeneous microenvironment, the majority of solid
tumors depend heavily on aerobic glycolysis as a source of
energy production [54]. TME consists of more than just the
tumor cells themselves; it also contains the immune cells,
fibroblasts, and fibroblasts that surround the tumor [55]. PC
cells are difficult to penetrate and exist in a low-perfusion envi-
ronment, both of which favor metabolic rearrangement in the
PC [56]. This is because the PC is composed of dense connec-
tive tissue and has a vascular milieu. Then, we found a differ-
ent immune infiltration pattern in patients with high- and
low-risk scores. In addition, we discovered that macrophage
M0 cells were significantly different between high-risk and
low-risk signatures. This suggests that macrophage M0 cells
might be directly associated to the signature; however, the
mechanism behind this relationship has to be researched in
more depth. Thus, we came to the conclusion that the tumor
immunosuppressive microenvironment might be to blame
for the dismal prognosis that high-risk PC patients experience.

In addition, the expression and control of immune
checkpoint molecules (such as PD-1, PD-L1, PD-L2, and
CTLA-4) also play a vital role in the regulation of the
immune response [57]. This is accomplished by inhibiting
the activation of protective immune cells and enhancing
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Figure 5: Biological enrichment analysis. (a) GSEA analysis based on the GO gene set; (b) GSEA analysis based on the KEGG gene set;
(c) GSEA analysis based on the Hallmark gene set.
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immune surveillance [58]. Thus, it is not difficult to compre-
hend why the expression of immune checkpoint molecules
was found to be higher in the high-risk group in our study.
Immune checkpoint drugs are typically more effective in
cases with higher expression of immune checkpoint mole-
cules (ICIs) [59, 60]. In this study, we found two immune-
related genes CTLA4 and TIGIT were downregulated in
high-risk patients. The results need to be further studied. I
suggested that the function of CTLA4 and TIGIT in
advanced PC may be different from patients with early stage.

Several limitations exist in this study. Firstly, the clinical
data that was obtained from the TCGA databases was scant
and lacked essential details. Secondly, this was a retrospec-
tive study, and therefore, it lacked novel clinical samples
and data.

5. Conclusion

We generated a unique methylation signature that is related
to m6A regulators and is capable of accurately predicting
patients’ prognoses when they have PC. This model can be
used to aid doctors in the selection of the therapy that is
most appropriate for different individuals, and it can, thus,
optimize the clinical outcome for patients’ PC.
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