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Intervertebral disc degeneration (IDD) is a major contributor to back, neck, and radicular pain. It is related to changes in tissue
structure and function, including the breakdown of the extracellular matrix (ECM), aging, apoptosis of the nucleus pulposus, and
biomechanical tissue impairment. Recently, an increasing number of studies have demonstrated that inflammatory mediators play
a crucial role in IDD, and they are being explored as potential treatment targets for IDD and associated disorders. For example,
interleukins (IL), tumour necrosis factor-α (TNF-α), chemokines, and inflammasomes have all been linked to the pathophysiology
of IDD. These inflammatory mediators are found in high concentrations in intervertebral disc (IVD) tissues and cells and are
associated with the severity of LBP and IDD. It is feasible to reduce the production of these proinflammatory mediators and
develop a novel therapy for IDD, which will be a hotspot of future research. In this review, the effects of inflammatory
mediators in IDD were described.

1. Introduction

Intervertebral disc degeneration (IDD) is a disease of the
discs that link adjacent vertebrae, with structural damage
leading to a degeneration of the discs and surrounding areas.
The intervertebral disc (IVD) is a fibrocartilage tissue that
joins the adjacent vertebral bodies in the spine. The nucleus
pulposus (NP) is the central component of the IVD and is
rich in elastic colloidal compounds, including proteoglycans
and type II collagen [1]. IDD can be diagnosed and graded
by conventional T2-weighted magnetic resonance images,
in which the colour and homogeneity of the disc, distinction
of nucleus and annulus, disc signal intensity, and disc height
are the basis for grading [2]. IDD is associated with disc
herniation, spondylosis, lumbar spinal stenosis, sagittal
imbalance of the spinal-pelvic complex, and neurological
symptoms, such as low back pain (LBP), limb numbness,
and decreased muscle strength [3–5]. The most common
symptom of IDD is LBP, which impacts the quality of life
of middle-aged and elderly individuals while increasing the
economic burden on families and society [6, 7]. Although
current evidence-based medicine has identified IDD as the

result of a variety of genetic, traumatic, inflammatory, life-
style, aging, and nutritional variables, the pathogenic pro-
cesses implicated in the development of IDD remain
unclear [8–14]. Currently, treatment options include nonin-
vasive therapy such as medications, multiple physical modal-
ities, and multidisciplinary biopsychosocial rehabilitation;
interventional treatments, such as intradiscal radiofrequency
and epidural injections; regeneration by injecting solutions of
papain and methylene blue into the disc; and surgical
approaches, such as intervertebral fusion or artificial disc
replacement. Despite advances in pain relief therapies, they
provide only temporary relief and are associated with com-
plications [15].

IDD progresses due to cellular and biochemical changes
in the IVD microenvironment, resulting in progressive func-
tional and structural damage. The main pathological features
of IDD include the production of proinflammatory media-
tors, progressive loss of ECM, increased cellular senescence
and apoptosis, and phenotypic changes in healthy NP cells
[13, 14, 16, 17]. Many molecular biology studies have dem-
onstrated increased expression of inflammatory mediators
such as IL-1β, TNF-α, IL-6, IL-8, and IL-20 in degenerative
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IVD [18–23]. Increased plasma inflammatory mediator con-
centrations are related to the degree of IDD and the severity
of LBP [24]. Advances in inflammatory mediator mecha-
nisms will significantly promote the translation of molecular
research into clinical practice, offering new paths for devel-
oping IDD medication. This review is aimed at discussing
the research on the potential function of inflammatory
mediators in IDD.

2. Upstream and Downstream
Regulatory Networks

Disc degeneration was derived from several initializing fac-
tors, such as genetics, mechanical stress, aging, trauma, and
environmental factors [25–29]. These initializing factors lead
to morphological changes in the disc tissue and surrounding
structures, including a series of changes such as rupture of
the annulus fibrosus (AF), NP herniation, and calcification
of the cartilage endplates (CE). Since the intervertebral disc
is a nearly wholly enclosed avascular tissue with few sources
of nutrition, accumulation of degraded organelles and waste
materials that are difficult to metabolize occurs, and a closed
acidic environment gradually develops, leading to an imbal-
ance in the internal and external environment, which prop-
agates inflammatory signals and causes a massive release of
inflammatory mediators [1], including IL-1α, IL-1β, IL-2,
IL-6, IL-8, IL-9, IL-10, IL-17, TNF-α, chemokines, the
NLRP3 inflammasome, and nitric oxide. These inflamma-
tory mediators can activate signalling pathways, such as
the NF-κB, PI3-K/Akt/mTOR, TGF-β, JAK-STAT, Wnt/β-
catenin, and MAPK pathways, resulting in a range of patho-
logical responses within the IVD, including an enhanced
inflammatory response, promote ECM degradation, acceler-
ate cellular senescence, increased intracellular ROS, promo-
tion of apoptosis or pyroptosis, regulation of NP cell
proliferation, and increased angiogenesis and neoinnerva-
tion. Ultimately, this process exacerbates the development
of IDD. A schematic diagram of this pathological process
is shown in Figure 1.

3. Sources of Inflammatory Mediators

Inflammatory mediators can be secreted by endogenous
intervertebral disc cells and exogenous immune cells [30].
The normal aging process associated with genetic suscepti-
bility leads to degeneration of the IVD, causing alterations
in the ECM, such as a reduced number of functional cells,
reduced proteoglycan content, malnutrition, dehydration,
matrix breakdown, and calcification. Modifications in the
ECM affect the typical response of the IVD to mechanical
loading. The IVD becomes prone to microfissures and con-
sequent ingrowth of nerve tissue and blood vessels. Frag-
ments and microcrystals of the ECM may internally cause
an inflammatory response, stimulating endogenous IVD
cells to produce proinflammatory mediators such as IL-1β,
IL-6, and IL-8, further promoting a chain reaction of tissue
degeneration. In addition, NP is recognized by the immune
system as nonself when exposed to tissues, such as through
microfissures or protrusions, thereby recruiting inflamma-

tory cells such as macrophages, endothelial cells, B cells,
and T cells. These inflammatory cells can secrete inflamma-
tory mediators. A brief overview of the various cells express-
ing different cytokines is presented in Figure 2.

4. Inflammatory Mediators

Table 1 shows the inflammatory mediators associated with
IDD.

4.1. Interleukin (IL)

4.1.1. IL-1α. IL-1α is a critical inflammatory mediator pri-
marily released by monocytes, macrophages, dendritic
cells, and endothelial cells [31]. IL-1α and IL-1β act in
the same way, and their receptors share the same ligand
binding and signal transduction pathways [32]. However,
unlike IL-1β, IL-1α activity is not dependent on the
inflammasome caspase-1 pathway [33]. Several studies
have found that IL-1α levels in degenerative lumbar disc
tissue are elevated compared with those in normal lumbar
disc tissue and that IL-1α levels are positively associated
with the severity of IDD [31, 34]. Previous meta-analyses
revealed that the IL-1α (+889C/T) polymorphism was
related to the increased incidence of IDD in Caucasian
and Chinese Han populations [35, 36]. IL-1α has been
found to accelerate IDD development by increasing extra-
cellular matrix-degrading enzyme production and inhibit-
ing extracellular matrix synthesis [37, 38]. IL-1α may
also play a role in cartilage endplate degeneration by reg-
ulating MMP-3 and TIMP-3[39]. Furthermore, IL-1α
could contribute to LBP by inducing IVDs to produce
prostaglandin E2 and other inflammatory chemicals [40].
The sensitivity of bradykinin can be enhanced by IL-1α,
which directly irritates nerve roots and hence contributes
to IDD-induced neuralgia [41]. The synthesis and signal
transduction pathways of IL-1α and IL-1β are shown in
Figure 3. In conclusion, IL-1α is of paramount importance
in the development of IDD.

Two distinct genes encode IL-1α and IL-1β. Both pro-
teins are produced as propeptide precursors (pro-IL-1α
and pro-IL-1β). Pro-IL-1α is a physiologically active mole-
cule with intracellular and extracellular effects. Pro-IL-1α
has a nuclear localization sequence at its N-terminus and
exists in high quantities in the nucleus. Pro-IL-1α is also
produced as a membrane-bound cytokine after myristoyla-
tion, where it is most likely engaged in cell–cell interactions.
Less frequently, the precursor form can be cleaved by a
calpain-like protease to generate secreted IL-1α and an N-
terminal peptide. Pro-IL-1α and the N-terminal peptide
can be physiologically active after nuclear translocation. Cas-
pase 1 cleaves pro-IL-1β into IL-1β, which may be released
as a soluble, functional protein. Pro-IL1α, IL-1α, and IL-1β
can all bind to IL1R1, allowing the recruitment of the
IL1RAcP coreceptor. A series of events downstream of the
IL-1R complex activate essential signalling proteins, such
as mitogen-activated kinases (JNK, p38, and ERK1/2) and
transcription factors, such as NF-κB (p65 and p50 subunits)
and c-Jun (an AP-1 subunit), which regulate the expression
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of several inflammatory and catabolic genes. Signalling
through the IL-1R complex can be modulated by the inhib-
itory effects of IL-1R2, sIL-1R2, sIL-1RAcP, and IL-1Ra.

4.1.2. IL-1β. IL-1β is a crucial inflammatory mediator with a
wide range of actions and activities on various cells that can
lead to various inflammatory processes. Systemically, IL-1β
signalling generates an acute phase response, hypotension,
vasodilation, and fever; locally, IL-1β signalling leads to an
increase in adhesion molecules, which increases lymphocyte
recruitment and amplifies the inflammatory response [42].
IL-1β expression has been demonstrated to be significantly
increased in degenerative IVDs and is related to symptoms
of LBP [43–46].

As shown in Figure 4, IL-1β may influence the develop-
ment of IDD through several mechanisms. First, IL-1β can
enhance the inflammatory response of the IVD by increasing
the production of inflammatory mediators, such as IL-6, IL-
8, IL-17, prostaglandin E2, chemokines, and the NLRP3
inflammasome [47–50]. Second, IL-1β regulates ADAMTS
andMMP production in the IVD, resulting in ECM degrada-
tion [38, 51–53]. Third, the output of senescence-associated-

galactosidase (SA-β-Gal) can be enhanced by IL-1β, indicat-
ing that this inflammatory mediator may accelerate IDD
development by hastening cellular senescence [54–57].
Fourth, IL-1β can promote apoptosis and pyroptosis in NP
cells by regulating the NF-κB and MAPK pathways, which
hastens the development of IDD [50, 53, 58, 59]. Fifth, it
was demonstrated that IL-1β regulated NP cell proliferation
leading to the development of IDD [56, 60]. Additionally,
IL-1β increases intracellular reactive oxygen species (ROS),
and excessive ROS accumulation can lead to oxidative stress
and the progression of IDD [61–63]. Finally, IL-1β might
increase angiogenesis and neoinnervation inside IVDs by
increasing the synthesis of vascular endothelial growth factor
(VEGF), nerve growth factor (NGF), and BDNF [64, 65]. In
conclusion, IL-1β plays a significant role in IDD and may
be a promising therapeutic target.

4.1.3. IL-2. IL-2, found on 4q27, is mainly generated by
mature T cells and acts as a growth factor for T and B cells,
playing a role in their growth. IL-2 is increased in individ-
uals with lumbar disc herniation and influences human
NPC proliferation, apoptosis, and ECM degradation through
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Figure 1: Diagram of IDD upstream and downstream regulation networks.
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the MAPK pathway [66]. Furthermore, IL-2 gene variations
have been revealed as susceptibility factors for IDD, indicat-
ing that IL-2 may play a role in the development of IDD
[67]. In conclusion, IL-2 has a function in IDD, but the exact
mechanism is still unclear.

4.1.4. IL-4. IL-4 is a cytokine produced by T cells that regu-
lates the activity of various immune cells. IL-4 is primarily
generated by immune cells, but its receptors are found in var-
ious cell types and promote cell proliferation and differentia-
tion, tissue regeneration, and neurological function. It was
discovered that IL-4 expression was significantly higher in
IDD patients than in healthy controls [68–70]. Interestingly,
unlike IL-1, IL-4 exhibits direct anti-inflammatory actions by
binding to the IL-4RA receptor on 16p12.1 and blocking the
induction pathway of IL-1 and TNF-α [71–75]. In conclu-
sion, IL-4 performs an anti-inflammatory function in IDD
and can be used to treat this disorder.

4.1.5. IL-6. IL-6 is an important cytokine that can be secreted
by T cells, macrophages, and NP cells. According to
research, patients with disc degeneration have higher serum
IL-6 levels than healthy controls [76, 77]. It has also been
demonstrated that increased serum IL-6 levels are associated
with disc degeneration-related LBP [78, 79]. Furthermore,
IL-6 levels are linked to the degree of disc degeneration
and pain intensity [80–83]. There are multiple potential
mechanisms for IL-6 involvement in IDD. IL-6 accelerates
the course of IDD by increasing the catabolic effects of IL-
1β and TNF-α on NP cells through the JAK/STAT signalling
pathway [84]. Moreover, IL-6 promotes apoptosis of neu-

rons in the dorsal root ganglion, resulting in sensory impair-
ment [85]. Furthermore, IL-6 promotes the degeneration of
NP cells by blocking miR-10a-5p and hence the IL-6R
signalling pathway, which in turn encourages chondrocyte
ferrogenesis [86]. In conclusion, IL-6 plays an essential role
in IDD and may be a target for future therapy.

4.1.6. IL-8. IL-8 is a chemokine with a distinct CXC amino
acid sequence [87]. IL-8 expression is considerably higher
in the disc tissue of IDD patients, indicating that it may have
a role in the disease [88–90]. IL-8 can activate microglia in
the spinal cord, promote the upregulation of neuroinflam-
matory markers such as IL-1β and TNF-α, and exacerbate
the inflammatory response, aggravating the development of
IDD [91]. IL-8 can also regulate angiogenesis by enhancing
extracellular matrix survival, proliferation, and MMP-2 pro-
duction through the MAPK signalling pathway, thereby
affecting IDD progression [87, 92, 93].

4.1.7. IL-9. IL-9 is a polymorphic cytokine that regulates the
Th2 inflammatory response [94]. IL-9 was shown to upreg-
ulate TNF-α and PGE2 production in NP cells, and its blood
levels were positively associated with the degree of disc
degeneration in IDD patients [95]. Therefore, IL-9 may play
a role in the autoimmune inflammatory process in IDD, but
the exact mechanism is not yet clear.

4.1.8. IL-10. Interleukin-10 (IL-10) is an important immune
system regulator that regulates inflammation and tissue
hemostasis [96]. IL-10 SNPs have been linked to IDD,
suggesting that genetic alterations in IL-10 may lead to
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intervertebral disc imbalances and degeneration [97]. The
expression of IL-10 is considerably higher in IDD patients,
indicating the close relationship between this inflammatory
cytokine and the disorder [70, 77]. Furthermore, in IDD
animal models, IL-10 expression levels in several spinal com-
ponents (bone, discs, and ligaments) were dramatically
upregulated [98]. According to previous studies, IL-10 may
hasten IDD development by intensifying the inflammatory
response [99, 100]. To summarize, IL-10 plays a role in the
degenerative process of IDD and can potentially be a new
therapeutic target.

4.1.9. IL-17A. IL-17 is a cytokine primarily generated by the
T helper 17 subsets of CD4+ T cells and plays a vital role in
various inflammatory disorders [101, 102]. It has six mem-
bers in its family, from IL-17A to IL-17F [103]. IL-17A,
one of the most important members of the IL family, has
been related to a range of degenerative illnesses [104, 105].
It has been demonstrated that IL-17A is more abundant in
degenerative disc tissue than in normal tissue [96, 106,
107]. There are various probable theories for the mechanism
of action. In NP cells, IL-17A can increase the production of
inflammatory markers, such as IL-6, COX-2, MMPs, IFN-γ,
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and TNF-α [106, 108–110]. IL-17A has been found to regu-
late the development of IDD by modulating the ECM
metabolism balance linked with ADAMTS-7 expression
[107, 111, 112]. In addition, IL-17A may accelerate the
development of IDD by blocking autophagy in human
degenerative NP cells through stimulation of the PI3K/Akt/
Bcl-2 signalling pathway [113, 114]. To summarize, the
involvement of IL-17 in IDD is significant, and it may be
an essential target for IDD treatment.

4.2. TNF-α. Tumour necrosis factor-alpha (TNF-α), located
at 6p21.33, is mainly synthesized as a transmembrane pro-
tein and is turned into an active molecule following process-
ing by specific enzymes, including TNF-α converting
enzymes [115]. TNF-α is a proinflammatory cytokine linked
to some pathological illnesses, including infections, autoim-
mune diseases, cancer, atherosclerosis, Alzheimer’s disease,
and inflammatory bowel disease [116–121]. TNF-α also reg-
ulates various developmental and immunological processes,
including inflammation, differentiation, lipid metabolism,
and apoptosis [122–124]. TNF-α has been linked to almost
every component of the human immune system [125].

Studies have shown that TNF-α expression is upregulated
in degenerative disc tissue more than in normal tissue
[126–129]. TNF-α levels were also found to be positively
associated with the severity of IDD [129–131]. In the absence
of substantial deterioration, transgenic mice overexpressing
human TNF-α exhibited early onset spontaneous disc herni-
ation [132]. In a porcine model, lumbar discs treated with
exogenous TNF-α displayed degenerative alterations, includ-
ing annular fissures, loss of NP matrix, vascularization, and
expression of IL-1β in the outer annulus, indicating that
TNF-α is a driver of disc degeneration [133].

As shown in Figure 5, TNF-α binds to two receptors:
TNF receptor type 1 (TNFR1) and TNF receptor type 2

(TNFR2). TNF-α may be implicated in IDD in many ways.
TNF-α has been demonstrated in multiple studies to trigger
IVDs by releasing many proinflammatory cytokines, includ-
ing IL-1, IL-6, IL-8, IL-17, NO, and PGE2, and chemokines,
which further exacerbate the inflammatory response of discs
[134–137]. TNF-α also increases the synthesis of substance P,
NGF, and VEGF, all of which can cause pain by sensitizing
the nervous system and driving neurovascular development
toward IVD [138, 139]. Furthermore, TNF-α stimulates
ECM breakdown mostly via the NF-κB/MAPK signalling
pathway [140–144]. TNF-α also interacts with its receptor
and affects the JNK/ERK-MAPK and NF-κB signalling path-
ways in NPCs during IDD, upregulating proapoptotic pro-
teins and downregulating antiapoptotic proteins, resulting
in apoptosis [145–149]. Furthermore, TNF-α has been
shown to cause premature senescence in NPCs [150, 151].
Additionally, TNF-α can affect the proliferation of NP cells
via the JNK, NF-κB, Notch, UPR/XBP1, and p38 MAPK
signalling pathways [152–156].

TNF-α is generally found as a stable homotrimer known
as mTNF-α. TACE, a metalloproteinase, can convert mTNF-
α to sTNF-α. TNF-α works via two distinct receptors,
TNFR1 and TNFR2. sTNF-α or mTNF-αmay bind to trans-
membrane TNFR1, resulting in a conformational shift and
release of the inhibitory SODD protein. Bound TNFR1
recruits several factors, including TRADD, RIP1, TRAF2,
and cIAP 1 and 2, to form complex I, which signals via the
NF-κB or MAPK pathway, and activate p65 or AP1. Com-
plex I signalling causes inflammation (through chemokines
and cytokines) and activates stromal catabolic genes (MMPs
and ADAMTSs), as well as survival-promoting genes (cIAP1
and 2, cFLIP, TRAF1, and TRAF2). In addition, mTNF-α
may also activate TNFR2, resulting in a similar complex
and downstream signaling cascade. In specific circum-
stances, TNFR1 bound to sTNF-α may be internalized into

TNF-𝛼Inflammatory, catabolic,
and survival genesNucleus

p50

p50

I𝜅B

IKK MAPK

TRAF3
TRAF2TRAF2

TRAF2
FADD

Procaspase-8

Caspase-8

Caspase-3

Apoptosis

DDTNFR 1

TRADD

TRADD

RIP-1

RIP-1

SODD
TNFR 2

TRAF1
cIAP1

cIAP1

p65

p65

AP1

mTNF-𝛼sTNF-𝛼/mTNF-𝛼 sTNF-𝛼 mTNF-𝛼
TACE

Cell membrane

Cytoplasm

Complex I

Complex II

Figure 5: TNF-α signalling pathway.

8 Mediators of Inflammation



complex II, causing procaspase 8 to be converted into cas-
pase 8 and then caspase 3 to be activated, eventually leading
to apoptosis.

4.3. Chemokines. Chemokines are significant second-order
cytokines produced in response to stimuli and play an essen-
tial role in acute and chronic inflammation [134]. Based on
the primary cysteine residues involved in disulphide bond-
ing, chemokines have been categorized as C, CC, CXC, and
CX3C [157]. According to a bioinformatics study, numerous
chemokine genes may have a role in the development of
IDD caused by inflammatory reactions [158]. CCL2, CCL5,
CXCL6, CXCL12, CXCL20, C-X-C receptor 4 (CXCR4),
and stromal cell-derived factor 1 (SDF1) expression is con-
siderably elevated in IDD tissues [159–163]. Serum CCL3,
CXCL12, and SDF1 levels have also been demonstrated to
be positively associated with the degree of IDD [137, 162,
164, 165]. Chemokines may have a role in IDD through a
variety of pathways. Zhang et al. [166] discovered that the
CCL20/CCR6 pathway attracts IL-17-producing cells to
degenerate IVDs and that IL-17 is implicated in the autoim-
mune process of IDD in a rat model. Furthermore, CXCL12
promotes ECM disintegration and enhances MMP produc-
tion in human disc endplate chondrocytes [167]. SDF1/
CXCR4 was discovered to be higher in degenerating inter-
vertebral discs, and it promotes apoptosis of NPCs via the
NF-B pathway, leading to IDD [168]. Furthermore, the
SDF1/CXCR4 axis, via the PI3K/AKT pathway, can regulate
VEC survival, migration, tube formation, and angiogenesis
in human degenerative discs [169–171].

4.4. The NLRP3 Inflammasome. The NLRP3 inflammasome
is a multiprotein complex in the cytoplasm that consists of a
receptor, adaptor, and effector [172]. NLRP3 expression in
IDD was observed to be considerably higher than that in
normal disc tissue [173, 174]. There is further evidence from
MRI and histology that NLRP3 is linked to the progression
of IDD [175]. It has been demonstrated that overactivation
of the NLRP3 inflammasome results in the overproduction
of downstream IL-1, which is vital in the development of
IDD [173]. Activation of the NLRP3 inflammasome can also
cause apoptosis in NP cells [176, 177]. In addition, Propioni-
bacterium acnes can activate the NLRP3 inflammasome via
the TXNIP-NLRP3 pathway, causing pyroptosis of NP cells
and IDD [178]. In summary, the NLRP3 inflammasome
plays a crucial role in IDD, and more research is needed to
discover its mechanism of action.

4.5. Nitric Oxide. NP cells can create nitric oxide (NO), and
it was shown that NO production is enhanced in IDD and
that its synthesis relies on nitric oxide synthase (NOS)
[131]. TNF-α, IL-1β, lipopolysaccharide, and interferon-γ
were discovered to promote NO production [89, 179]. Nitric
oxide has proinflammatory effects, and its role as a vasodila-
tor promotes vascular leakage, inhibits proteoglycans, and
induces neuropathic pain, all of which contribute to IDD
[180]. In addition, NO is regarded as a member of the
ROS superfamily due to its similar effects to those of ROS,

and ROS hasten intervertebral disc degeneration. The spe-
cific mechanism is shown in Figure 6.

ROS alter the ECM of IVDs through oxidative modifica-
tion, eventually impairing the structure of IVDs. ROS acti-
vate multiple signaling pathways, such as the MAPK and
NF-κB pathways, thereby regulating autophagy, apoptosis,
senescence, and the phenotype of IVD cells, thus reinforcing
matrix degradation and inflammation and enhancing the
decrease in the number of functional IVD cells. Ultimately,
ROS/oxidative stress promotes the progression of IDD.

5. Therapeutic Prospects for IDD by
Targeting Inflammation

The inflammatory response that mediates the degenerative
cascade in IVDs is being targeted as a potential therapeutic
or prognostic strategy. Currently, the main goals of therapies
are to manage degenerated IVDs and relieve symptoms. The
conventional approaches include systemic medicine and sur-
gical decompression/discectomy. However, these methods
are not aimed at the pathogenesis of IDD. In this section,
we focused on reviewing and providing more information
on novel anti-inflammation therapies for IDD, including
intradiscal injections, gene therapies, MSC-based therapies,
and exosome-based therapies.

5.1. Intradiscal Injections. Injecting medications into the
IVD is one of the most straightforward ways to regulate
inflammation in IVDs. TNF-α inhibitors are examples of
medications administered in this way [181]. TNF inhibitors,
such as infliximab and Atsttrin, have been shown to decrease
the inflammatory response [182, 183]. Infliximab is an anti-
body against TNF-α. Injecting infliximab into the IVD of
rats alleviated discomfort compared with the control groups
[184]. Atsttrin is an inflammatory-related growth factor
consisting of three pieces of progranulin. In a mouse model,
this protein inhibited TNF-initiated inflammatory signaling
by binding directly to TNF-α receptors [185]. Additionally,
Atsttrin suppressed TNF-induced inflammatory cytokine
production, including production of MMP-13, COX-2,
iNOS, and IL-17, causing concomitant catabolic alterations
in cartilage, disc height, and NP cells in ex vivo cultured
rat discs [183].

The IL-1 inhibitor, IL-1 receptor antagonist (IL-1Ra),
binds to the IL-1 receptor (IL-1R) and blocks the transmis-
sion of inflammatory signals [141]. IL-1Ra may have a ther-
apeutic role in IDD, according to previous studies [38, 186,
187]. Injection of IL-1Ra into both degenerative and nonde-
generative human IVD tissues reduced the production of
matrix breakdown proteases, such as type II collagenase,
gelatinase, and caseinase [38]. Another study revealed the
therapeutic efficacy of IL-1Ra by applying polylactic-co-
glycolic acid (PLGA) microspheres as a delivery vehicle. In
NP cell cultures, IL-1Ra-PLGA microspheres attenuated
the degradative effects of IL-1β on NP cells by suppressing
NO production while restoring the levels of iNOS, IL-6,
ADAMTS-4, and MMP-13 [186].

COX-2, which controls PGE2 production in inflamma-
tory circumstances, is also a target for suppressing
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inflammation in IVDs [188]. In a rat model of disc hernia-
tion, epidural injections of COX-2 inhibitors resulted in sat-
isfactory pain relief [189]. Additionally, the inhibitor of IkB
kinase-b (IKKb), which is involved in NF-kB activation, is
a novel candidate for treating inflammation in IVD. Intra-
discal injection of IKKb downregulated the expression of
TNF-α, IL-1β, and IL-6 in degenerative discs and neuropep-
tides in dorsal root ganglion neurons [190]. Despite promis-
ing results, injection of such molecules in IVDs may be
ineffective owing to their short half-life and the complicated
microenvironment of degenerative IVDs [30]. Furthermore,
the potential risk of IDD caused by puncturing should be
noted.

The injection of phytochemicals derived from medici-
nal plants has been researched in recent years because of
its cost-effectiveness and biological functions. According
to previous in vivo and in vitro studies, various phyto-
chemicals, including resveratrol [191], mangiferin [192],
epigallocatechin-3-gallate [177], chlorogenic acid [193],
celastrol [194], isofraxidin [195], higenamine [196], sesamin
[197, 198], honokiol [176], naringin [199, 200], baicalein
[201], berberine [53], wogonin [52], and luteoloside [202].
Most of these phytochemicals inhibit the IL-1β-induced or
TNF-α-induced inflammatory response and extracellular
matrix degradation in NP cells. Although satisfactory thera-
peutic effects of phytochemicals in IDD have been reported,
the metabolic processes, organ distribution, and toxicity of
different doses still need to be investigated.

5.2. Gene Therapies.With the ability of locally modifying the
expression of a certain gene and production of the corre-
sponding protein, gene therapy offers longer sustained
effects in IDD [203]. A study published in 1997 proposed

genetic modifications as a positional treatment for IDD
[204]. In this study, a retrovirus vector was developed to
transduce IL-1Ra into bovine chondrocyte cells. Injection
of cells overexpressing IL-1Ra significantly downregulated
MMP3 for 14 days in degenerative IVD tissue, reducing
IL-1-mediated matrix degradation and halting the deteriora-
tion of IDD. In a rabbit model, NP cells transfected with
TGF-β1 demonstrated increased proteoglycan production
[205]. Consistent with this finding, TGF-β1-transfected
senescent NP cells of humans also enhanced the synthesis
of proteoglycan and collagen [206, 207].

The safety of gene therapy may restrict its application in
clinical settings. For the treatment of chronic IDD, high dos-
age exposure and long-term usage may induce oncogenesis,
which is a critical concern [208]. Improvement in the reli-
ability of viral vector designs and expression control of
transgenes might allow the safe use of gene therapy.

5.3. MSC-Based Therapies. In recent years, many cell-based
treatments to regenerate IVDs have been developed [209,
210]. Among the candidates, MSCs have the best potential
for IVD regeneration, which is attributed to their autologous
transplantation ability [211]. MSCs boosted collagen type II
expression and slowed the apoptosis process of NP cells
[212]. Additionally, IVD tissue survived for 6 months in
rabbits with the concomitance of MSCs [213]. However,
the number of transplanted MSCs is important [214]. In
addition to their multidifferentiation capability, the immu-
nomodulatory role of MSCs has been revealed [215, 216].
MSCs participate in inflammation by releasing cytokines,
which directly interact with degenerative NP cells [217]. In
vitro studies showed that MSCs cocultured with rat NP cells
inhibited the expression of proinflammatory cytokines,
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Figure 6: The role of ROS/oxidative stress in the development of IDD.
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including IL-3, IL-6, IL-11, IL-15, and TNF-α [218]. In a clin-
ical trial, LBP was significantly alleviated by three months of
MSC injection, and the authors concluded that MSCs stimu-
lated the regeneration of IVD and had immunomodulatory
characteristics [219]. In another 2-year follow-up study, after
the injection of umbilical cord-derived MSCs into IVDs, LBP
and lumbar function were improved and maintained during
the duration of follow-up [220]. Although benefits and
promising outcomes of MSC-based therapies have been
observed, the mechanisms have still not been clearly eluci-
dated by animal experiments, and most of the clinical studies
were case reports with limited sample sizes.

5.4. Exosome-Based Therapies. Exosomes and exosomal
miRNAs have been the focus of IDD therapy in recent years.
The potential mechanisms reported in previous studies
could be categorized as angiogenesis of the ECM, senes-
cence, metabolic homeostasis, proliferation, apoptosis, and
oxidative stress [221]. Additionally, exosomes and exosomal
miRNAs also play an important role in the regulation of
inflammation in IVDs [222]. By downregulating LRG1,
BMSC-derived exosomal miR-129-5p attenuated the activa-
tion of the p38 MAPK pathway to inhibit macrophage polar-
ization from the M1 to M2 phenotype, which resulted in the
release of anti-inflammatory mediators and prevented apo-
ptosis of NP cells as well as degradation of ECM [223].
NLRP3, a member of the inflammasome, is a crucial compo-
nent of innate immunity and participates in several proin-
flammatory processes [224]. NLRP3 can be extremely
upregulated in the development of IDD [225]. By blocking
the NLRP3/caspase-1 pathway, MSC-derived exosomal
miR-410 reversed the expression of IL-1β and IL-18, reduc-
ing LPS-induced pyroptosis in NP cells [226]. Similarly,
human umbilical cord mesenchymal stem cell- (hucMSC-)
derived miR-26a-5p affected mRNA methyltransferase
(METTL14) and m6A methylation in NP cells, which down-
regulated the expression of NLRP3, leading to the inhibition
of pyroptosis and the release of proinflammatory cytokines
[227]. As a novel therapy, more studies focused on the role
of exosomes in IDD treatment are expected.

6. Conclusion

IDD is a prevalent musculoskeletal illness that produces
LBP and negatively impacts quality of life. Recent research
has revealed that various inflammatory mediators, such as
IL-1β, TNF-α, IL-6, IL-17, chemokines, and the NLRP3
inflammasome, play an essential role in IDD. Most
research has found that inflammatory mediators have a
role in the development of IDD primarily through the
control of the inflammatory response, IVD cell prolifera-
tion, senescence, apoptosis, pyroptosis, autophagy, ECM
degradation, and oxidative stress. Targeting these inflam-
matory mediators may lead to future optimum IDD treat-
ment. Clinical investigations have recently revealed that
inhibiting IL-1β and TNF-α is a promising future therapy
for IDD. More research into IDD-related inflammatory
mediators is needed to help us understand the molecular

pathophysiology of IDD and provide novel ideas for future
IDD therapy based on inflammatory mediators.
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