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Background. Patients with low-grade glioma (LGG) have wildly varying average lifespans. However, no effective way exists for
identifying LGG patients at high risk. Cuproptosis is a recently described form of cell death associated with the abnormal
aggregation of lipid acylated proteins. Few investigations have been conducted on cuproptosis-associated genes and LGG thus
far. The purpose of this research is to establish a predictive model for cuproptosis-related genes in order to recognise LGG
populations at high risk. Methods. We analyzed 926 LGGs from 2 public datasets, all of which were RNA sequencing datasets.
On the basis of immune scores, the LGG population was split into different risk categories with X-tile. LASSO and Cox
regressions were employed to filter cuproptosis-associated genes and construct prediction models. The accuracy of the
predictive models was measured by using TCGA internal validation set and the CGGA external validation set. In addition,
LGG immune cell infiltration was viewed using CIBERSORT and ssGSEA algorithms and correlation analysis was done with
cuproptosis-related genes. Finally, immune escape capacity in LGG low- and high-risk groups was evaluated using the TIDE
method. Results. The prediction model constructed by four cuproptosis-related genes was used to identify high-risk
populations in LGG. It performed well in training and all validation sets (AUC values: 0.915, 0.894, and 0.774). Meanwhile, we
found that FDX1 and ATP7A in the four cuproptosis-related genes were positively correlated with immune response, while
GCSH and ATP7B were opposite. In addition, the high immune score group had a lower TIDE score, indicating that their
immune escape capacity was weak. Conclusion. High-risk individuals in LGG can be reliably identified by the model based on
cuproptosis-related genes. Furthermore, cuproptosis is closely related to tumor immune microenvironment, which gives a
novel approach to treating LGG.

1. Introduction

As an important subtype of glioma, LGG accounts approxi-
mately for 20% of intracranial tumors. Currently, the
median survival time of LGGs is between 5.6 and 13.3 years
[1]. LGG appears to have a good prognosis compared to the
shorter survival of glioblastoma. However, it has a high
potential to evolve into malignant tumor, and seventy per-
cent or more of LGGs can mutate into secondary glioblas-
toma or anaplastic gliomas [2]. Thus, given the high
incidence and high malignant transformation rate of LGG,
the search for reliable prognostic indicators is of the utmost
importance.

The 2016 revision of the WHO classification includes a
number of biomarkers—IDH-1, TP53, MGMT, and 1p/19q
codeletion—that are important in determining the outcome
of LGG patients [3]. However, these markers are expressed
in specific pathological types of LGG and do not allow for
a correct and comprehensive risk stratification of LGG. As
a result, there is a pressing need to create efficient models
for pinpointing high-risk LGG groups.

The immune microenvironment is closely related to
tumor progression and has been used to predict cancer prog-
nosis [4]. It was found that low level of infiltrating immune
cells might be an element in the better prognosis of LGG
than glioblastoma. The LGG prognosis was highly variable
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based on the level of immune cell infiltration, showing that
the prognosis of glioma was closely related to immunity [5,
6]. In order to more visually reflect immune cell infiltration
within the tumor, a calculation method called immune score
has been introduced [7]. Recently, a new cell death pathway
called cuproptosis has come into people’s view. Copper
binding to lipid acylated components of the tricarboxylic
acid cycle leads to proteotoxic stress and, eventually, cell
death, a process known as cuproptosis [8]. Genes involved
in cuproptosis were found to have a strong correlation with
the degree of immune infiltration in patients with clear cell
renal cell carcinoma, according to research by Bian et al.
[9]. As of yet, cuproptosis and LGG immune infiltration
have not been studied. It is also important to investigate
whether this novel cell death pattern influences LGG prog-
nosis. This finding holds promise as a potential new bio-
marker for assessing LGG patients’ prognoses.

In this paper, we first used cuproptosis-related genes to
construct a model to identify immune high-risk LGG popula-
tions and to explore the relevance and possible mechanisms
of cuproptosis-related genes to immune regulation. Here, we
used immune score as a filter to identify high-risk people in
The Cancer Genome Atlas (TCGA) LGG cohort. A model
was then developed to predict this high-risk group of patients
based on cuproptosis-related genes using the LASSO regres-
sion. In addition, we evaluated the accuracy of the model’s pre-
dictions against both TCGA and the China Glioma Genome
Atlas (CGGA) databases. Subsequently, we evaluated the vari-
ations in immune cell infiltration across groups with varying
immune score using the CIBERSORT and ssGSEA algorithms
and further explored the relevance of cuproptosis-related genes
to these immune cells and immune function. Finally, the TIDE
method was utilised to predict the possible efficacy of immuno-
therapy in this subset of high-risk LGG sufferers.

Table 1: Clinical characteristic of the LGG patient used in this study.

TCGA CGGA Total
Low immune
score (N = 438)

High immune
score (N = 68)

Low immune
score (N = 344)

High immune
score (N = 76)

Low immune
score (N = 782)

High immune
score (N = 144)

Sex

Female 196 (44.7%) 31 (45.6%) 151 (43.9%) 34 (44.7%) 347 (44.4%) 65 (45.1%)

Male 242 (55.3%) 37 (54.4%) 193 (56.1%) 42 (55.3%) 435 (55.6%) 79 (54.9%)

Age (years)

Median [min,
max]

41.0 [14.0, 87.0] 44.0 [22.0, 75.0] 40.0 [12.0, 69.0] 40.0 [11.0, 72.0] 41.0 [12.0, 87.0] 41.0 [11.0, 75.0]

Status

Alive 341 (77.9%) 39 (57.4%) 193 (56.1%) 30 (39.5%) 534 (68.3%) 69 (47.9%)

Dead 97 (22.1%) 29 (42.6%) 151 (43.9%) 46 (60.5%) 248 (31.7%) 75 (52.1%)

Grade

II 232 (53.0%) 14 (20.6%) 144 (41.9%) 28 (36.8%) 376 (48.1%) 42 (29.2%)

Ill 206 (47.0%) 54 (79.4%) 200 (58.1%) 48 (63.2%) 406 (51.9%) 102 (70.8%)

Follow-up time
(months)

Median [min,
max]

22.3 [0.0300, 211] 21.5 [0.100, 105] 50.6 [1.70, 158] 33.3 [2.23, 168] 31.2 [0.0300, 211] 26.6 [0.100, 168]

Characteristics
Age
<= 40
41−50
51−60
>60
Histological_diagnosis
Astrocytoma
Oligoastrocytoma
Oligodendroglioma
Grade
G2
G3
Immune_score
Low
High

Number (%)

248 (49.0)
104 (20.6)
93 (18.4)
61 (12.1)

191 (37.7)
127 (25.1)
188 (37.2)

246 (48.6)
260 (51.4)

438 (86.6)
68 (13.4)

HR (95%CI)

1.82 [1.08, 3.07]
3.51 [2.05, 6.01]

7.52 [4.49, 12.58]

0.71 [0.43, 1.16]
0.58 [0.37, 0.91]

2.39 [1.59, 3.61]

1.97 [1.25, 3.09]

P.value

0.025
<0.001
<0.001

0.175
0.019

<0.001

0.003

0.4 3 5 7 10
HR

TCGA

(a)

Characteristics

Age
Gender
Female
Male
Grade
WHO II
WHO III
Immune_score
Low
High

Number (%)

185 (44.0)
235 (56.0)

172 (41.0)
248 (59.0)

344 (81.9)
76 (18.1)

HR (95%CI)

1.00 [0.99, 1.02]

1.15 [0.86, 1.53]

2.72 [1.96, 3.76]

1.75 [1.25, 2.43]

P.value

0.723

0.34

<0.001

0.001

0 1 3 5
HR

CGGA

(b)

Figure 1: Results of multivariate Cox regression analysis on the OS of (a) LGG cohort in TCGA and (b) LGG cohort in CGGA.

2 Mediators of Inflammation



2. Materials and Methods

2.1. LGG Datasets. RNA-seq data and clinical information of
LGG were obtained from TCGA (https://portal.gdc.cancer
.gov/) and CGGA (http://cgga.org.cn/) databases, respectively.
LGG patients with information on survival status, survival
time, pathology, age, gender, and tumor grade were brought
into this study. The gene expression results obtained were
fragments per kilobase transcript per million mapped reads
(FPKM), which were subsequently transformed into subse-
quent transcripts per million (TPM). In particular, to validate
the external applicability of the model, we did not debatch the
two datasets. Each LGG participant’s immune scores were cal-
culated using the ESTIMATE methodology [7].

2.2. Identify High-Risk Groups. The immune score was com-
bined with other clinical information of the patients in a
multivariate Cox regression analysis to identify whether
LGG patients’ immune scores were an independent predic-
tive factor for prognosis. Among LGG patients in TCGA,
we used X-tile to obtain cutoff values according to their
immune scores and segregated them into those with high
immune scores and those with low ones [10]. Subsequently,
survival curves were constructed using the Kaplan–Meier
method to compare whether survival rates varied across
LGG subgroups based on immunological score. The same
method was used to process data from LGG patients
included in this research in GCGA.

2.3. Predictive Model Building and Evaluation. Cuproptosis-
related genes were obtained through Tsvetkov et al.’s study
[8]. To begin with, we analyzed whether cuproptosis-
related genes’ expression differed between immune score
groups. By univariate Cox analysis, the cuproptosis-related
gene strongly linked to LGG patient survival was screened
according to the p value less than 0.05. Based on survival-
related cuproptosis-related genes and different immune
score groups, the R package “glmnet” was used to run

LASSO regression analysis to further choose the most rele-
vant markers for distinguishing distinct immunological
score groups. In order to stabilise the results as much as pos-
sible, we used 5-fold cross-validation and determined the
optimal penalty parameter λ based on 1 − SE (standard
error). At the same time, we calculated the risk score based
on the coefficients of cuproptosis-related genes included in
the model and their expression levels. With the “survival-
ROC” R package, we adopt the receiver operator characteris-
tic curve (ROC) and the area under the curve (AUC) for the
predictive model’s internal and external validation.

2.4. Immune Cell Infiltration and Analysis. Using the
CIBERSORT approach, we mapped the distribution of 22
immune cells throughout LGG tissues [11]. Cases with p
values less than 0.05 were retained for subsequent differen-
tial analysis of immune cell infiltration in different immune
score groups. In addition, the acquired significantly differ-
ently expressed immune cells were then sorted into high
and low expression groups based on the median value of
their expression levels, and the KM curve was used to ana-
lyze their impact on the prognosis of LGG patients. Finally,
we used the “corrplot” package for immune cell correlation
analysis.

2.5. Correlation Analysis of Cuproptosis-Related Genes with
Immune Cells and Immune Function. Based on previous lit-
erature, a gene set containing 29 immune signatures was
found [12]. The LGG cohort of TCGA was then subjected
to a single-sample gene set enrichment analysis (ssGSEA)
to see how enriched the 29 immune signatures were in each
LGG sample [13, 14]. Finally, the “ggcorrplot” package was
used to analyze the association of cuproptosis-related genes
with immune cells and immune function, and a heat map
was made to show the results.

2.6. Evaluation of Immune Escapes. Immune escape is a chal-
lenge for immunotherapy. A tumor’s ability to evade the
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Figure 2: Kaplan–Meier curves for OS of patients in the high and low immune score groups in (a) TCGA and (b) CGGA.
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Figure 3: Continued.
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immune system is measured using a scale called the Tumor
Immune Dysfunction and Exclusion (TIDE) score. The
TIDE algorithm, on the basis of simulating two mechanisms
of tumor immune evasion: T cell dysfunction induction in
cancers with high cytotoxic T lymphocyte (CTL) infiltration
and T cell infiltration prevention in tumors with low CTL
levels, is used to assess the potential for tumor immune eva-
sion [15]. TIDE scores were performed on different immune
score groups to assess their immune escape ability.

2.7. Statistical Analysis. All data analysis in this study was
implemented based on the R software (version 4.1.1), except
for the use of X-tile (3.6.1) software to obtain optimal
immune score cutoff values. Descriptive analyses of baseline
characteristics of TCGA and CGGA datasets were per-
formed, with continuous variables shown as mean ±
standard deviation and categorical variables shown as fre-
quencies. Univariate and multivariate COX regression anal-
yses were used to screen for prognosis-related risk factors.
LASSO regression is used to screen cuproptosis-related

genes further and build prediction models. The ROC curves
were used to evaluate the model’s predictive accuracy. The
OS of LGG patients was compared across groups with vari-
ous immunological scores using the Kaplan–Meier method
with a log-rank test. To evaluate the degree of association,
we turned to Spearman’s correlation analysis. p values for
significant differences were set at less than 0.05.

3. Results

3.1. Patients’ Characteristics. The study comprised 926 LGG
patients, 506 from TCGA database and 420 from the CGGA
database. Immune score threshold was 303.4, and patients
were then separated into categories with high and low
immune scores (X-tile plots are shown in Supplementary
Figure 1). There were 782 patients in the group with a low
immune score, and 248 of them passed away over a
median of 31.2 months of follow-up. 144 LGG patients
were assigned to the high immune score group, and 75
patients died during a median of 26.6 months of follow-up.
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Figure 3: Cuproptosis-related gene screening and prediction model construction by LASSO regression. (a) Cuproptosis-related gene
expression in the high and low immune score groups in TCGA cohort. (b) Cuproptosis-related gene expression in the high and low
immune score groups in the CGGA cohort. (c) Forest plot of hazard ratios demonstrating the prognostic values of cuproptosis-related
genes. (d) LASSO coefficient profiles of the 8 genes in LGG. (e) A coefficient profile plot was generated against the log (lambda)
sequence. Selection of the optimal parameter (lambda) in the LASSO model for LGG. (f) Association between immune score and risk
score. Adjusted p values were showed as ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Additional clinical information of patients in both databases
is shown in Table 1.

3.2. Multivariate Cox Analysis for OS. Figure 1 shows the
results of the multivariate Cox analysis. It was clear that
grade and immune score were LGG patients’ independent
prognostic factors in both datasets, and high immune score
was a prognostic risk factor (hazard ratios (HR): 1.86, 95%
confidence interval (CI), 1.18-2.94, p = 0:008; hazard ratios
(HR): 1.75, 95% confidence interval (CI), 1.25-2.43, p =
0:001). And the median survival for LGG patients with a
high immune score was dramatically lower than that of
those with a low immune score (Figure 2).

3.3. Construction of Predictive Model from TCGA. In TCGA
and CGGA datasets, most cuproptosis-related genes showed
substantial expression differences between immunological
groups (Figures 3(a) and 3(b)). Using univariate Cox regres-
sion, we identified eight cuproptosis-related genes (FDX1,

DLD, DBT, GCSH, DLAT, SLC31A1, ATP7A, and ATP7B)
with prognostic significance (Figure 3(c)). Further screening
was then performed using LASSO regression, and four genes
were identified to build the predictive model based on the
optimal λ (lambda.min) (Figures 3(d) and 3(e)). The for-
mula for the calculation of risk score is shown in detail: ð
0:950∗ FDX1Þ + ð−1:328∗ GCSHÞ + ð0:607∗ ATP7AÞ + ð−
1:495∗ ATP7BÞ. The immune score was positively associated
with the risk score, with higher risk score in the high
immune score group (Figure 3(f)).

3.4. Internal and External Validation of Predictive Models.
Training and internal validation datasets were randomly
generated from TCGA database’s LGG cohort at a 7 : 3 ratio.
The internal validation group has an AUC value of 0.8937
(Figure 4(a)), demonstrating a good predictive power. With-
out removing the batch effect, the external validation group’s
(CGGA) AUC was 0.7736 (Figure 4(b)), indicating that the
model has good external predictive power.
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Figure 4: Internal and external validation of predictive models. (a) AUC of ROC curves in TCGA cohort (internal validation set). (b) AUC
of ROC curves in CGGA cohort (external validation set).
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Figure 5: Continued.
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3.5. Immune Cell Infiltration. As shown by the vioplot in
Figure 5(a), there were statistically significant differences in
most of the 22 infiltrating immune cells between groups with
high and low immune scores. M2-type macrophages were
the most significantly enriched. Compared to the low
immune score group, those with a high immune score had
a greater number of memory B cells, CD8+ T cells, activated
memory CD4+ T cells, regulatory T cells, M2-type macro-
phages, and resting mast cells. In contrast, the low immune
score group had considerably larger amounts of naive B
cells, resting memory CD4+ T cells, activated mast cells,
eosinophils, and naive B cells. We further investigated the
prognostic impact of these immune cells with significant dif-
ferences in infiltration on LGG and ultimately found that
activated mast cells (Figure 5(b)) and monocytes
(Figure 5(c)) were prognostically beneficial, while M2 mac-

rophages (Figure 5(d)) and CD8 T cells (Figure 5(e)) were
prognostically detrimental. Subsequently, we performed cor-
relation assays on 22 immune cells and found that M2 mac-
rophages were negatively correlated with resting memory
CD4 T cells, monocytes, and naive B cells and positively cor-
related with memory B cells and CD8 T cells (Figure 5(f)).

3.6. Correlation between Cuproptosis-Related Genes and
Immunity. Immune cell subpopulations and immune func-
tion enrichment varied significantly between the two distinct
LGG immune score groups. As shown in the box plot
(Figures 6(a) and 6(b)), the enrichment of 13 immune func-
tions was significantly higher in the high immune score
group, and the immune cells showed similar results. Subse-
quently, we did a correlation analysis of cuproptosis-
related genes with immune cells and functions. As seen in
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Figure 5: Demonstration of immune cell infiltration in LGG by CIBERSORT algorithm. (a) Violin plot comparing the proportion of
infiltrating immune cells between LGG samples with low and high immune scores. Kaplan–Meier plot for the infiltration of (b) mast
cells, (c) monocytes, (d) M2 macrophages, and (e) CD8 T cells and overall survival. (f) Association between different immune cells.
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the corrplot (Figure 6(c)), the four cuproptosis-related genes
included in the prediction model were closely associated
with immune regulation, with FDX1 and ATP7A showing
positive regulatory relationships, while ATP7B and GCSH
showed negative regulatory relationships.

3.7. TIDE Score. Finally, we used the TIDE algorithm to
obtain scores of immune escape ability in disparate
immune-score LGG patients (Supplementary Material 2).
As shown in the vioplot (Figure 7), significantly higher TIDE
scores were seen in the low immune group compared to the
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high immune group, suggesting that the LGG population at
high risk, the group with the high immune score, had a low
immune escape potential.

4. Discussion

In this study, we separated LGG into groups with high and
low immune scores and discovered that patients with a high
immune score had a shorter OS. Subsequently, we con-
structed a concise and efficient prediction model based on
cuproptosis-related genes for the first time, which can better
identify LGG patients with high immune scores in both the
internal dataset (TCGA) and the external dataset (CGGA).
Moreover, we found a very different immune landscape in
varied risk LGG patients. The cuproptosis-related genes
involved in the construction of the prediction model were
found to be closely related to immune function by correla-
tion analysis.

The immune score responds to the degree of immune
cell infiltration around the tumor and also to the level of
immunity. Our study showed that LGG patients in the group
with a high immune score had a worse prognosis, which is
consistent with the results of a previous study [5]. Cupropto-
sis has just recently been proposed as a new mode of cell
death, and there is still a brand new field of research on
the relevance of genes associated with cuproptosis to the
OS of LGG patients. Interestingly, significant differences in
the expression of most cuproptosis-related genes were found
between LGG groups with high and low immune scores
(Figures 3(a) and 3(b)), and eight cuproptosis-related genes
were connected to OS in a univariate Cox analysis. These
results suggest the involvement of cuproptosis in LGG pro-
gression and the possibility of building predictive models
with these cuproptosis-related genes.

This study’s predictive model was composed of four
cuproptosis-related genes (FDX1, GCSH, ATP7A, and
ATP7B). FDX1 is a key gene mediating cuproptosis. FDX1
converts Cu2+ to the more toxic Cu+, which can contribute
to aberrant oligomerization of thioctylated proteins in the
TCA cycle, and FDX1 destabilises Fe-S cluster proteins [8].

Glycine cleavage system protein H (GCSH) is central to this
system through its lipid acyl arm that functionally connects
all other glycine cleavage system enzymes [16]. In addition,
GCSH is a lipid acylated modifier protein, an essential com-
ponent of the PDH complex that regulates the entry of car-
bon into the tricarboxylic acid cycle and is essential for the
induction of cuproptosis [8, 17]. ATP7A and ATP7B are
copper transport proteins responsible for copper transfer
out and maintaining intracellular copper homeostasis. If
intracellular copper homeostasis is dysregulated, an excess
of intracellular copper will induce cuproptosis [8, 18]. In
conclusion, two genes (ATP7A, ATP7B) in the prediction
model can protect cells from cuproptosis, while two genes
(FDX1, GCSH) are opposite.

Therefore, from the perspective of cuproptosis alone,
FDX1 and GCSH should be the protective factors for LGG
patients, while ATP7A and ATP7B are the opposite. How-
ever, we found that FDX1 and ATP7A were prognostic
risk-related genes, while GCSH and ATP7B were protective
genes by Cox regression analysis. Why is the theoretical
inference not entirely consistent with our actual results?
Let us return to the LGG risk stratification. Most
cuproptosis-related genes (including the key gene FDX1)
were expressed higher in the high immune score group than
in the low immune score group, yet the prognosis of patients
in the high immune group was significantly worse than in
the low immune score group. This suggested that we need
to consider immune factors in addition to cuproptosis to
influence the prognosis of LGG. Unlike other tumors, glio-
mas with a strong immune response have a poorer prognosis
[5]. Recent studies have found that M2 macrophages are sig-
nificantly enriched in LGG, with a proportion of up to 30-
50% in the glioma microenvironment [19]. The prognostic
role of immune cells has also been reported, and the current
study suggests that M2 macrophages are a poor prognostic
factor in glioma [20]. Our results also showed that M2 mac-
rophages accounted for the highest proportion of 22
immune cells, and they were significantly higher in the high
immune score group than in the low immune score group.
This answered our previous suspicion. Therefore, it was
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Figure 7: Comparison of the TIDE scores between different immune score groups in LGG.
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reasonable to speculate that cuproptosis might strengthen
the local immune response.

We believed that these cuproptosis-related genes might
play a role in immunological modulation in addition to the
regulation of cuproptosis. The previous correlation analysis
also proved our view that FDX1 and ATP7A showed a sig-
nificant positive correlation with immune function, while
GCSH and ATP7B showed the opposite. FDX1 is a mito-
chondrial electron transport chain- (ETC-) associated gene
that participates in the reduction of mitochondrial cyto-
chromes and serves a crucial function in energy metabolism
[21]. The initiation of antitumor immune response
undoubtedly requires the involvement of energy metabolism
[22]. It had been found that FDX1 was closely associated
with the infiltration of a variety of immune cells, and in par-
ticular, it showed a high positive correlation with macro-
phage infiltration [23]. ATP7A and ATP7B are both
copper transport proteins, but their functions are not the
same. ATP7A is significantly more efficient than ATP7B in
transporting copper and is the main force of intracellular
copper excretion, while ATP7B is closely related to the syn-
thesis of copper cyanobactin [24–26]. Lower copper levels
have been shown to result in lower levels of bone marrow-
derived suppressor cells and enhanced immune responses
[27]. As a ferroxidase, ceruloplasmin is also associated with
tumor progression. In the study of breast cancer, it was dis-
covered that the level of ceruloplasmin expression was
closely connected to immune cell infiltration, and M2 mac-
rophages were negatively correlated with ceruloplasmin
[28]. However, so far, we had found no studies on GCSH
related to immunity. To sum up, FDX1 and ATP7A could
promote the infiltration of M2 macrophages, while ATP7B
was the opposite. Taken together, we believed that most
cuproptosis-related genes were highly expressed in the
LGG high immune score group, thus enhancing the local
immune response of tumors. Nevertheless, glioma with high
immune status was an unfavourable prognostic factor, and
the final result was to cover up the beneficial effect of
cuproptosis on LGG.

Gliomas were considered to be “cold tumors,” and it was
now believed that “hot” tumors are more likely to respond to
immunotherapy [19, 29]. However, high-immune LGG
patients demonstrated weaker immune escape than low-
immune individuals, which might indicate that this high-
risk group could benefit from immunotherapy. Therefore,
it was necessary to use our prediction model to select high-
risk LGG patients for prospective studies of immunotherapy
in the future.

There are also caveats to this study. First, the patient data
we used are retrospective data from public databases, and it
is necessary for our model to be validated in future prospec-
tive trials. However, this study also has its unique advan-
tages. Our model is based on TCGA and has strong
prediction power in the CGGA database without removing
batch effects. This demonstrates that our model has good
clinical application across different racial groups. Second,
using a single gene set to construct a prediction model inev-
itably excludes some genes that affect the prognosis of LGG.
However, our study is the first to point out that cuproptosis-

related genes are closely associated with the prognosis of
LGG. Finally, the conclusions of this investigation need to
be further demonstrated by in vivo and in vitro experiments.

5. Conclusions

In this study, the prediction model based on four
cuproptosis-related genes could accurately identify the
high-risk LGG patients. High expression of cuproptosis-
related genes might lead to high immune response and poor
prognosis in LGG patients, but such high-risk populations
might benefit from immunotherapy. In this study, we took
a first pass at dissecting the connection between
cuproptosis-related genes and the tumor immune microen-
vironment in LGG, but the specific mechanism remains
poorly understood and deserves further study.
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