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Osteosarcoma (OS) is a malignant tumor with an extremely poor prognosis, especially in progressive patients. Immunotherapy
based on immune checkpoint inhibitors (ICIs) is considered to be a promising treatment option for OS. Due to tumor
heterogeneity, only a minority of patients benefit from immunotherapy. Therefore, it is urgent to explore a model that can
accurately assess the response of OS to immunotherapy. In this study, we obtained the single-cell RNA sequencing datasets of
OS patients from public databases and defined 34 cell clusters by dimensional reduction and clustering analysis. PTPRC was
applied to identify immune cell clusters and nonimmune cell clusters. Next, we performed clustering analysis on the immune
cell clusters and obtained 25 immune cell subclusters. Immune cells were labeled with CD8A and CD8B to obtain CD8+ T cell
clusters. Meanwhile, we extracted the differentially expressed genes (DEGs) of CD8+ T cell clusters and other immune cell
clusters. Furthermore, we constructed a prognostic model (CD8-DEG model) based on the obtained DEGs of CD8+ T cells,
and verified the excellent predictive ability of this model for the prognosis of OS. Moreover, we further investigated the value
of the CD8-DEG model. The results indicated that the risk score of the CD8-DEG model was an independent risk factor for
OS patients. Finally, we revealed that the risk score of the CD8-DEG model correlates with the immune profile of OS and can
be used to evaluate the response of OS to immunotherapy. In conclusion, our study revealed the critical role of CD8 cells in
OS. The risk score model based on CD8-DEGs can provide guidance for prognosis and immunotherapy of OS.

1. Introduction

Osteosarcoma (OS) is a rare and highly lethal malignancy,
accounting for more than 50% of malignant primary bone
tumors [1]. OS originates from primitive mesenchymal cells
and occurs mostly in the metaphysis of long bones, includ-
ing the distal femur and proximal tibia [2]. OS is also the
second leading cause of tumor-related deaths in children
and adolescents after lymphoma and brain tumors [3]. It is

widely recognized that environmental factors and genetic
mutations are high-risk factors for OS [4]. Given that
tumors are regulated by complex gene networks, the patho-
genesis of OS has not been fully elucidated. Surgery, chemo-
therapy, and radiotherapy are still the classic treatment
options for OS currently [5]. For patients with local OS, tra-
ditional treatment regimens can achieve a 5-year survival
rate of more than 70% [6]. However, for OS patients with
recurrence and metastasis, the 5-year survival rate does not
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exceed 20% [7]. Therefore, it is extremely urgent to explore a
new treatment method that can fundamentally improve the
prognosis of OS.

An increasing number of studies have shown that the
tumor immune microenvironment (TIM) play a vital role
in the occurrence and development of tumors, including
OS [8]. Under normal conditions, the immune function is
in a state of dynamic equilibrium, and immune suppression
and immune activation restrict each other [9]. However, the
TIM of tumor tends to be immunosuppressive, thereby
prompting tumor cells to evade immune surveillance [10].
How to relieve the immunosuppressive state of tumors is
the focus and difficulty of tumor immunotherapy. The
immune process of tumors is regulated by a variety of
immune cells, and the killing of tumors by CD8+ T cells is
the core of the whole process [11]. Therefore, elucidating
the functional mechanism of CD8+ T cells is the key to the
success of immunotherapy.

In recent years, a variety of immunotherapy drugs, such
as PD-L1/PD-1 monoclonal antibody and CTLA4 monoclo-
nal antibody, have been used in the treatment of malignant
tumors and achieved satisfactory therapeutic effects, includ-
ing OS [12]. However, in the application of immunotherapy,
only a minority of patients benefit from immunotherapy
[13]. It is currently believed that the cause of this dilemma
is due to the abnormal immune microenvironment and
immune cell function [14]. Therefore, developing a model
that can accurately predict the efficacy of immunotherapy
is crucial for patients of OS.

In this study, we obtained CD8+ T cell clusters and dif-
ferentially expressed genes (DEGs). Next, we constructed a
prognostic model based on the DEGs of CD8+, which was
proved to have excellent predictive performance for the
prognosis of OS patients. Moreover, we further revealed that
the risk score of this model is closely related to the immune
microenvironment of OS and multiple immune checkpoints,
which can be used to predict immunotherapy response.

2. Materials and Methods

2.1. Acquisition of OS Single-Cell Sequencing Data and
Transcriptome Data. Single-cell osteosarcoma data, includ-
ing 11 OS patients, were obtained from the GEO dataset
(https://www.ncbi.nlm.nih.gov/geo/, GSE152048). The OS
transcriptome data TARGET-OS was downloaded from
XENA (http://xenabrowser.net), including 88 OS samples.

2.2. Single-Cell RNA-Seq Data Quality Control and Data
Processing. Single-cell samples of OS were processed by the
R package Seurat package. Three-dimensional controls were
applied to the original matrix of each cell: nFeature RNA
> 200 and percent:mt < 10 and nCount RNA > 3. 3000
highly variable genes were identified using the FindVariable-
Features function, and principal component analysis- (PCA-
) based dimensionality reduction was performed using
RunPCA. Batch effects were removed on a sample-by-
sample basis by the Harmony package. The distribution of
cell components is mapped with R package “UMAP” with
resolution = 0:5. Immune cells are distinguished from non-

immune cells based on the expression level of PRPDC
(CD45). The resolution of cluster analysis of immune cells
was 0.9. Findmarkers were used to screen signature genes,
log 2FC > 1 and p < 0:05.

2.3. Construction of Random Forest Prognostic Model. The
characteristic genes we screened were firstly subjected to
univariate prognostic analysis in TARGET-OS, and 6 genes
were screened for inclusion in the prognostic model. Next,
in this study, we randomly defined 70% of the TARGET-
OS cohort as the training cohort and 30% as the validation
cohort. The random forest prognostic model generates
1000 binary survival trees by default. When the number of
survival trees increases to a certain number, the error rate
curve tends to be stable.

2.4. Evaluation of the Predictive Power of the Model.We con-
ducted the timeROC package to draw ROC curves to evalu-
ate the predictive ability of the model. Next, patients were
divided into high- and low-risk cohorts according to the
model score best cutoff value, and the KM survival curve
was used to compare the prognostic differences between
the high-risk group and the low-risk group. Finally, univar-
iate prognostic analysis was performed with model scores
and clinical characteristics, and ROC curves were drawn.

2.5. GO and KEGG Enrichment Analysis. In this study, we
carried out the GO analysis and KEGG to explore the value
of our model risk score. The Database for Annotation, Visu-
alization, and Integrated Discovery was used to integrate
functional genomic annotations.

2.6. Evaluation to Immunotherapy Reactions. The Cluster-
Profiler package was used to perform GO and KEGG enrich-
ment analysis of high- and low-risk patients [15]. OS
immune cell infiltration analysis was performed by the
ESTIMATE and XCELL algorithms [16]. The TIDE algo-
rithm was used to evaluate the immune evasion ability of
OS patients and predict the sensitivity to immunother-
apy [17].

2.7. Statistics. In this study, R software (4.2.2) was used for
calculation and statistical analysis of all data. We applied
univariate and multivariate Cox regression analyses to assess
the association of each factor with overall survival. The Stu-
dent’s t-test was conducted to compare the mean of different
dataset. p < 0:05 were considered statistically significant.

3. Results

3.1. Identification of Immune Cells in OS Tissue. To reveal
the cellular heterogeneity of OS tissue, we collected single-
cell RNA-sequencing (RNA-seq) datasets from 11 OS
patients from the GEO database. We eliminated low-
quality cells and identified 34 cell clusters from OS tissue
by the dimensional reduction and clustering analysis
(Figure 1(a)). PRPDC (CD45) is widely used as a character-
istic marker of immune cells [18]. To clearly identify
immune cells and nonimmune cells in OS tissue, we applied
PRPDC to label immune cell clusters, and the results are
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Figure 1: Identification of cell types in OS scRNA-seq sample. (a) UMAP plot of OS scRNA-seq data with 34 clusters (resolution = 0:5). (b)
Expression of immune marker PTPRC (CD45) across all clusters, shown by UMAP plot. (c) Clustering of OS tissue via immune markers to
obtain immune and nonimmune cells. (d) Heatmap of marker gene expression levels in different clusters.
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Figure 2: Identification of CD8+ T cell clusters and extraction of differentially expressed genes (DEGs). (a) UMAP plot of leukocyte scRNA-
seq data with 25 clusters. (b) UMAP plots of single-cell expression levels of different marker genes. (c) Expression of different marker genes
in immune cell subsets. (d) Analysis of DEGs between the 1st subset of immune cells and other cells.
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shown in Figures 1(b) and 1(c). Finally, we further analyzed
the signature genes of immune cell clusters and nonimmune
cell clusters and found that immune cells highly expressed
immune signature genes, which suggested that immune cells
are well characterized by PTPRC (Figure 1(d)).

3.2. Definition of CD8+ T Cell Clusters and Extraction of
Differentially Expressed Genes (DEGs).We previously labeled
OS tissues with corresponding marker genes and obtained
immune cell clusters. We performed cluster analysis on the
previous immune cell clusters and finally obtained 25 cell
clusters (Figure 2(a)). Next, we applied CD8A and CD8B
to label CD8+ T cell clusters, CD4 to label CD4+ T cell clus-
ters, and CD3G, CD3D, and CD3E to label T cell clusters,
respectively. The results indicated that the cluster analysis
had good clustering performance (Figure 2(b)). In addition,
to further isolate CD8+ T cells, we analyzed the expression
levels of marker genes in different immune cell clusters.
The results suggested that cluster1 could represent the opti-
mal choice for CD8+ T cell clusters (Figure 2(c)). We per-

formed differentially expressed gene (DEG) analysis on the
obtained CD8+ cell clusters and the remaining cells
(Log2FC > 1, p < 0:05) and finally obtained 59 genes with
statistical significance (Figure 2(d) and Supplementary
Table 1).

3.3. Construction of Risk Score Model Based on DEGs in
CD8+ T Cells (CD8-DEGs). Given the DEG analysis by
CD8+ T cells, we finally obtained 59 genes. We performed
univariate analysis in the TARGET-OS dataset and finally
obtained 6 genes (RPS27, LTB, CD3E, GZMB, RPS29, and
IL2RG). The results showed that RPS27 and RPS29 were
high-risk factors, while LTB, CD3E, GZMB, and IL2RG were
low-risk factors in OS (Figure 3(a)). In addition, we divided
the TARGET-OS patients into training cohort and valida-
tion cohort by 70% and 30%. We adopted these 6 genes
and constructed a random survival forest model (CD8-
DEGs model) based on the DEGs of CD8+ T cells. As shown
in Figure 3(b), our model exhibited high accuracy, and
GZMB and IL2RG play a major role in this model. We
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Figure 3: Construction of risk models. (a) Univariate regression analysis of CD8-DEGs. (b) Plot of the out of bag (OOB) prediction error
rate for each tree constructed in the CD8-DEG model (left panel). Plot of variable importance in the CD8-DEG model (right panel). (c, d)
ROC curves showed the predictive efficiency of the CD8-DEG risk score for 1-, 3-, and 5-year survival in the training and validation cohorts.
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Figure 4: Evaluation of risk models for CD8-DEGs. (a) OS patients were divided into high- and low-risk groups according to the optimal cutoff
(2.97) value. (b, c) Comparison of OS between high- and low-risk scores in the training and validation cohorts. (d) Univariate analysis of CD8-
DEG risk scores and clinical characteristics. (e, f) Comparison of the predictive power of CD8-DEG risk models and their clinical characteristics.
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further evaluated the accuracy of our model by ROC curve,
and the results demonstrated that in the training cohort,
the ROC curve area reached 0.75, 0.879, and 0.918 at 1, 3,
and 5 years (Figure 3(c)). Likewise, in the validation cohort,
the ROC curve areas reached 0.778, 0.768, and 0.775 at 1, 3,
and 5 years (Figure 3(d)).

3.4. Evaluating the Performance of the CD8-DEG Model. To
further investigate the value of CD8-DEGs model, we
assessed the predictive power of this model by various mea-
sures. As shown in Figure 4(a), we took 2.97 as the cutoff
value to classify the TARGET-OS cohort patients into high-
and low-risk cohorts. The results demonstrated that high-
risk patients had worse prognosis in both the training and
validation cohorts (Figures 4(b) and 4(c)). In addition, we

further adopted the corresponding clinical characteristics
(gender and age) and their risk scores for univariate analysis.
We found that risk score was a high-risk factor for OS
patient prognosis (=1.362) (Figure 4(d)). Meanwhile, the
area under the ROC curve of the risk score reached 0.793
(Figure 4(e)). Finally, C-index analysis showed that risk
scores had higher AUC curve values compared to gender
and age (Figure 4(f)). These data strongly indicated that
the CD8-DEG model has good performance in predicting
the prognosis of OS patients.

3.5. Pathway Enrichment Analysis of Risk Scores for the CD8-
DEG Model. The CD8-DEG model showed excellent ability
in predicting the prognosis of OS patients. To initially
revealed the mechanism, we performed GO and KEGG
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Figure 5: Pathway enrichment analysis of high- and low-risk scores in CD8-DEG model. (a) GO analysis of CD8-DEGs model. (b) KEGG
analysis of CD8-DEG model.
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enrichment analysis. The results of GO analysis showed that
the risk score of the CD8-DEGs model was closely related to
multiple immune functions, such as leukocyte-mediated
immunity, activation of immune response, MHC complexes,
and antigen binding (Figure 5(a)). KEGG analysis revealed
that the risk score of the CD8-DEGmodel was associated with
multiple immune-related pathways, such as Th1 and Th2 cell

differentiation, intestinal immune network for IgA produc-
tion, cell adhesion molecules, cytokine-cytokine receptor
interactions and NF-kappa B pathway (Figure 5(b)).

3.6. Correlations between Risk Scores and OS Immune
Profiles. The previous results indicated that the risk score
of CD8-DEG model is closely related to multiple immune
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Figure 6: Correlation of risk scores with immune profiles of OS. (a) Comparison of the stromal score, immune score, and ESTIMATE score
between high-risk and low-risk groups. (b) Comparison of immune cell infiltration between high-risk and low-risk groups. (c) Comparison
of TIDE value between high-risk and low-risk groups. (d) Comparison of the response to immunotherapy in patients with OS in high-risk
and low-risk groups.
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Figure 7: Correlation of risk scores with immune checkpoints and validation of risk genes. (a) Correlation analysis of immune checkpoints
and risk scores. (b) Expression of GZMB and IL2RG in UMAP plots of OS scRNA-seq data. (c) Expression of GZMB and IL2RG in UMAP
plots of leukocyte scRNA-seq data.
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pathways. We analyzed the association of risk scores and OS
immune profile. As shown in Figure 6(a), low-risk patients
had higher scores in stromal score, immune score, and ESTI-
MATE score. We applied CIBERSORT to assess the effect of
risk score on immune cell infiltration. It was found that
high-risk patients negatively regulate the infiltration of vari-
ous immune cells, such as CD8+ T cells, macrophages, and
M1-like macrophages (Figure 6(b)). In recent years, TIDE
has been widely used as an indicator for tumor immune eva-
sion ability. As presented in Figure 6(c), high-risk patients
had lower TIDE scores. Finally, we further assessed whether
risk scores could be used as a predictor of response to immu-
notherapy in OS. The results showed that OS patients with
high-risk scores tended to be insensitive to immunotherapy
(Figure 6(d)).

3.7. Correlation of Risk Scores with Immune Checkpoints and
Validation of Risk Genes. Due to the immune checkpoints
play an important role in regulating immune cell function,
we further analyzed the relationship between risk scores
and immune checkpoints. As shown in Figure 7(a), the risk
score was negatively correlated with the expression of multi-
ple immune checkpoints, including CTLA4, PDCD1, TIGIT,
CD80, CD86, KDR, HAVCR2, and CD274. Finally, we fur-
ther verified the expression of GZMB and IL2RG in OS
scRNA-seq and leukocyte scRNA-seq data. The results
revealed that GZMB and IL2RG similarly clustered in the
UMAP plot of OS scRNA-seq data (Figure 7(b)). Similarly,
GZMB and IL2RG were clustered in UMAP plots of leuko-
cyte scRNA-seq data (Figure 7(c)).

4. Discussion

The poor prognosis of OS has plagued and threatens the
physical and mental health of human beings. Immunother-
apy is considered a promising treatment for improving OS
prognosis [19]. Given the current dilemma of immunother-
apy for OS, it is urgent to develop an effective method to pre-
dict the response to immunotherapy. In this study, we first
downloaded and processed the single-cell sequencing data
of OS from the GEO database. Next, we clustered the above
data and further marked it by specific markers to obtain
immune cell clusters and nonimmune cells. In addition, we
performed cluster analysis on the obtained immune cell
clusters, while applying specific markers to extract CD8+ T
cell clusters, and obtained DEGs of CD8+ T cells by gene dif-
ferential analysis. Furthermore, we combined TCGA-OS
cohort data to perform univariate regression analysis on
DEGs to obtain prognostic-related genes. A random forest
model (CD8-DEG model) was constructed for the above-
mentioned prognosis-related genes, and further verification
found that it has good predictive performance. Moreover,
we revealed that the risk score of CD8-DEG model was sig-
nificantly associated with the immune profile and could also
be used as a predictor of OS immunotherapy response.
Finally, we demonstrated the correlation between risk score
and the expression of multiple immune checkpoints.

Prognostic models based on various functional gene sets
of tumors, such as ferroptosis, pyroptosis, and autophagy,

have gradually become a research hotspot in recent years.
Tang et al. constructed a ferroptosis-related lncRNA prog-
nostic model in head and neck squamous cell carcinoma,
and the area under the ROC curve of the model risk score
reached 0.782 [20]. Zhang et al. analyzed the expression
levels of pyroptosis-related genes in human endometrial
cancer and constructed a prognostic model based on
pyroptosis-related genes. The ROC value of the model was
0.613 [21]. Duan et al. analyzed the expression levels of
autophagy-related gene lncRNAs in colorectal cancer,
obtained 11 lncRNAs related to autophagy, and further con-
structed a prognostic model. The ROC area of this model
reached 0.808 [22]. In this study, constructed a prognostic
model based on the differentially expressed genes of CD8+

cells, the area under the ROC curve was 0.793. The prognos-
tic model of DEGs based on CD8+ T cells we established has
a predictive ability that is not inferior to other previous
prognostic models of functional gene sets, which provided
a valuable reference for evaluating the prognosis of OS.

Single-cell transcriptome sequencing is performed by ana-
lyzing the mRNA expression level of each cell in a sample. In
this study, we performed two cluster analyses. We first per-
formed cluster analysis on the single-cell data of OS, resulting
in 34 cell clusters. Then, we defined immune cell clusters by
PTPRC. Next, we again performed cluster analysis on the
immune cell clusters. In this study, we applied two clustering
analyses to more precisely define CD8+T cells. This is more
reliable than previous analysis of BULK sequencing data.

The model we established has a high application pros-
pect, but there are also some obvious shortcomings. First,
all data are derived from public data and lack in vivo and
in vitro validation. Second, the specific mechanisms by
which the model predicts immune signatures and immuno-
therapy have not been further explored. These are worthy of
further clarification in our follow-up research.

In conclusion, the CD8-DEG model can not only be used
to analyze the immune profile of OS but also can be used as a
marker to evaluate the efficacy of OS on immunotherapy.
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