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Background. Colorectal cancer (CRC) has been the 3rd most commonly malignant tumor of the gastrointestinal tract in the world. 5-
Methylcytosine (m5C) and long noncoding RNAs (lncRNAs) have an essential role in predicting the prognosis and immune response
for CRC patients. Therefore, we built a m5C-related lncRNA (m5CRlncRNA) model to investigate the prognosis and treatment
methods for CRC patients. Methods. Firstly, we secured the transcriptome and clinical data for CRC from The Cancer Genome
Atlas (TCGA). Then, m5CRlncRNAs were recognized by coexpression analysis. Then, univariate Cox, least absolute shrinkage and
selection operator (LASSO), and multivariate Cox regression analyses were utilized to build m5C-related prognostic characteristics.
Besides, Kaplan-Meier analysis, ROC, PCA, C-index, enrichment analysis, and nomogram were performed to investigate the model.
Additionally, immunotherapy responses and antitumor medicines were explored for CRC patients. Results. A total of 8 m5C-related
lncRNAs (AC093157.1, LINC00513, AC025171.4, AC090948.2, ZEB1-AS1, AC109449.1, AC009041.3, and LINC02516) were
adopted to construct a risk model to investigate survival and prognosis for CRC patients. CRC samples were separated into low-
and high-risk groups, with the latter having a worse prognosis. The m5C-related lncRNA model helps us to better distinguish
immunotherapy responses and IC50 of antitumor medicines in different groups of CRC patients. Conclusion. The research may
give new perspectives on tailored therapy approaches as well as novel theories for forecasting the prognosis of CRC patients.

1. Introduction

In terms of cancer-related deaths, colorectal cancer (CRC) is
the third most frequent malignant tumor worldwide [1].
The recent epidemiological surveys showed that CRC con-
tributes to 10% of all diagnosed cancers and 9.4% of
cancer-related deaths [2]. The high incidence and low sur-
vival rate of CRC imposed a heavy economic burden and
enormous public health pressure on the government. At
present, the main clinical treatment strategies for CRC
include surgery, chemotherapy, and radiotherapy, but with
poor prognosis, easy recurrence, and significant side effects
[3]. In order to better understand CRC, it is urgently needed
to select key CRC-related genes, elucidate the potential path-

ogenesis of CRC, and develop novel diagnostic and thera-
peutic strategies for CRC.

Numerous studies have found that RNA modifications
in epigenetic changes are intimately related to the progres-
sion of different types of tumors [4, 5]. At present, more
than 150 RNA modifications have been recognized, such as
N1-methyladenosine (m1A), 5-methylcytosine (m5C), N6-
methyladenosine (m6A), 7-methylguanosine (m7G), micro-
RNA, and long noncoding RNA (lncRNA) [6]. With the
in-depth study of RNA modification, m5C has received
increasing attention from scholars around the world. As a
widespread RNA modification of noncoding and coding
RNAs, m5C has a crucial function in the regulation of phys-
iological and pathological processes in the organism [7]. A
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study demonstrated that m5C regulators were linked to the
occurrence and progression of cancer [8]. In bladder cancer,
the m5C modification writer NSUN2 modulates HDGF
expression in a m5C-dependent manner in order to promote
cancer development [9].

lncRNA is the nonprotein-coding RNA fraction of over
200 nucleotides in length that cannot be translated into pro-
tein [10]. It has been shown that RNA methylation of
lncRNAs could impact cancer progression [11]. With the
advancement of sequencing technology, m5C was found to
be extensively distributed in lncRNAs. However, the utility
of m5C in lncRNAs is still uncertain. Therefore, identifying
m5C-related lncRNAs (m5CRlncRNAs) in CRC pathogene-
sis may help provide a rational basis for targeted therapy
and prognosis.

In this study, bioinformatics analysis was used to
examine the potential contribution of m5CRlncRNAs to
CRC. The Cancer Genome Atlas was used to obtain a
database of m5C genes and lncRNAs (TCGA). Then, using
Pearson’s correlation analysis, we were able to identify the
m5CRlncRNA. Additionally, a brand-new risk model for
the m5CRlncRNA was developed to forecast overall sur-
vival (OS) in CRC patients. We also created a nomogram
incorporating clinical data to predict the overall survival of
CRC patients. Finally, we looked for the connection between
immunotherapy responses.

2. Materials and Methods

2.1. Data Acquisition. TCGA database was utilized to
retrieve RNA transcriptome data, relevant clinical informa-
tion, and mutation data from CRC samples. We used the R
package to process the downloaded files. To reduce statistical
bias, we excluded CRC patients with absent OS values and
short OS values (<30 days).

2.2. Identification m5C Genes and m5CRlncRNAs. Based on
previous publications [12, 13], we extracted 17 m5C regula-
tors from TCGA-CRC, including expression data on 11
writers, 2 readers, and 4 erasers (Supplementary Table 1).
Then, we screened m5CRlncRNA by Pearson correlation
analysis, and we derived 2,028 m5CRlncRNA. jRj > 0:5 and
p < 0:001 were the threshold criteria.

2.3. Construction of a Risk Model. TCGA dataset was ran-
domly distributed into a training set and a testing set (ratio:
0.7 : 0.3; sample: 355 : 148). We used the entire set to con-
struct a m5CRlncRNA risk model, and the training set and
testing set were employed to verify the risk model. No signif-
icant differences were found in the clinical features of CRC
patients between the two sets (Table 1). We utilized univar-
iate Cox analysis of the filtered 14 m5CRlncRNA in combi-
nation with CRC survival information (p < 0:01). Besides,
we adopted the least absolute shrinkage and selection opera-
tor (LASSO) and Cox regression analyses to construct a risk
assessment model that consisted of 8 m5CRlncRNAs via the
R package “glmnet” [14]. According to median risk scores,
the CRC patients were assigned to low- and high-risk groups
[15]. And the risk score was calculated as follows: ∑k

i=1βiSi.

2.4. Validation of the Risk Signature. By using the “survmi-
ner” and “survive” packages in the R programming lan-
guage, Kaplan-Meier survival analysis was employed to
compare the clinical outcomes of the two groups. The
time-dependent receiver-operating characteristic curves
(ROC) and the area under the curve (AUC) were employed
to confirm the accuracy of the model. We also grouped
patients according to clinical characteristics to assess the
ability of the model to predict prognosis across clinical charac-
teristics. Principal component analysis (PCA) was employed
for effective dimension reduction, model recognition, and
exploratory visualization of high-dimensional data of the
whole gene expression profiles, m5C genes, m5CRlncRNAs,
and a risk model on the basis of the expression patterns of
the m5CRlncRNAs. A consistency index (C-index) was
applied to determine the accuracy of the model compared to
the traditional clinical features.

2.5. Construction of Predictive Nomogram. We developed a
nomogram to predict the clinical features for the 1-, 3-,
and 5-year OS of CRC patients via the R package of “rms.”.

2.6. Evaluation of Enrichment Analysis. A clusterProfiler R
package was used to perform GO enrichment analysis and
KEGG pathway analysis to explore possible biological func-
tions. p < 0:05 indicated that the functional pathways had
significant enrichment.

2.7. Assessment of the Prognostic Features in the Tumor
Immune Microenvironment. Studying how the model inter-
acts with the tumor microenvironment, we measured the
infiltration values for TCGA-CRC dataset samples on the
basis of these algorithms: XCELL [16], TIMER [17], QUAN-
TISEQ [18], MCPCOUNTER [19], EPIC [20], CIBERSORT-
ABS [21], and CIBERSORT [22]. Additionally, we adopted
single-sample GSEA (ssGSEA) for scoring CRC-infiltrating
immune cells to quantify the tumor-infiltrating immune
cells between different groups. Furthermore, we also evalu-
ated the immune checkpoint activation among different
groups.

2.8. Investigation of Immunotherapy Response. The mutation
data was assessed and summarized by the “maftools” of R
package. Based on tumor-specific mutated genes, we calcu-
lated the tumor mutational burden (TMB). In addition, the
tumor immune dysfunction and exclusion (TIDE) algorithm
was performed to estimate the probability of an immuno-
therapeutic response.

2.9. Exploration of Antitumor Agents. To predict therapeutic
response, the “pRRophetic” R package was employed to deter-
mine the half-maximal inhibitory concentration (IC50) of
commonly used antitumor drugs in different risk groups.

3. Results

3.1. Screen of m5CRlncRNAs in CRC Patients. A total of 17
m5C genes and 16,876 lncRNAs were selected from TCGA
datasets. We found 2,028 lncRNAs that were strongly linked
to one of the 17 m5C genes (jRj > 0:5 and p < 0:001)
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(Supplementary Table 2). As shown in Figure 1(a), the m5C-
lncRNA expression network was visualized via the Sankey
diagram. Figure 1(b) depicts the relationship between m5C
genes and m5CRlncRNAs in TCGA datasets.

3.2. Construction and Validation of a Risk Model. We
adopted univariate Cox regression analysis to select 14
prognostic m5CRlncRNAs (Supplementary Figure S1A).
The LASSO-Cox regression algorithm was performed to
construct the risk signature, including 8 m5CRlncRNAs
(AC093157.1, LINC00513, AC025171.4, AC090948.2,
ZEB1-AS1, AC109449.1, AC009041.3, and LINC02516) in
CRC (Figures 2(a)–2(c)). In addition, Kaplan-Meier
analysis revealed a significant difference between distinct
groups (p < 0:05, Figure 2(d)). In Figure 2(e), the 1-, 3-,
and 5-year AUC values were 0.746, 0.717, and 0.792,

which demonstrated that CRC patients have a better
prognosis. Furthermore, the AUC value of the signature
was 0.792, which was notably higher than that of
clinicopathological characteristics, including age (0.646),
gender (0.481), and stage (0.737; Figure 2(f)). The Kaplan-
Meier analyses and ROC curves of training set and testing
set indicated that the prediction accuracy of the model is
satisfactory (Supplementary Figure S1B-E).

Next, we studied the differences in clinical outcomes
among distinct groups stratified by clinical characteristics.
Kaplan-Meier survival analysis demonstrated that our model
can be applied to a variety of clinical characteristics
(Figure 3(a)). The PCA analysis showed that the distribu-
tions of the two groups were relatively dispersed, which indi-
cated diverse groups had different distributions on the basis
of the signature (Figure 3(b)). And the C-index of the model

Table 1: The clinical characteristics of the different sets.

Covariates Type Total set Training set Testing set p value

Age
≤65 227 (45.13%) 161 (45.35%) 66 (44.59%) 0.9543

>65 276 (54.87%) 194 (54.65%) 82 (55.41%)

Gender
Female 225 (44.73%) 157 (44.23%) 68 (45.95%) 0.7985

Male 278 (55.27%) 198 (55.77%) 80 (54.05%)

Race

Asian 9 (1.79%) 6 (1.69%) 3 (2.03%) 0.9398

Black or African American 246 (48.91%) 175 (49.3%) 71 (47.97%)

White 248 (49.3%) 174 (49.01%) 74 (50%)

Radiation
No 466 (92.64%) 329 (92.68%) 137 (92.57%) 1

Yes 37 (7.36%) 26 (7.32%) 11 (7.43%)

Pharmaceutical therapy
No 301 (59.84%) 212 (59.72%) 89 (60.14%) 1

Yes 202 (40.16%) 143 (40.28%) 59 (39.86%)

Pathological stage

Stage I 91 (18.09%) 61 (17.18%) 30 (20.27%) 0.7053

Stage II 180 (35.79%) 129 (36.34%) 51 (34.46%)

Stage III 155 (30.82%) 113 (31.83%) 42 (28.38%)

Stage IV 77 (15.31%) 52 (14.65%) 25 (16.89%)

Stage T

T1 17 (3.38%) 12 (3.38%) 5 (3.38%) 0.0901

T2 92 (18.29%) 60 (16.9%) 32 (21.62%)

T3 343 (68.19%) 253 (71.27%) 90 (60.81%)

T4 50 (9.94%) 30 (8.45%) 20 (13.51%)

Tis 1 (0.2%) 0 (0%) 1 (0.68%)

Stage M

M0 377 (74.95%) 267 (75.21%) 110 (74.32%) 0.7588

M1 77 (15.31%) 52 (14.65%) 25 (16.89%)

Mx 49 (9.74%) 36 (10.14%) 13 (8.78%)

Stage N

N0 283 (56.26%) 200 (56.34%) 83 (56.08%) 0.7087

N1 126 (25.05%) 86 (24.23%) 40 (27.03%)

N2 92 (18.29%) 67 (18.87%) 25 (16.89%)

Nx 2 (0.4%) 2 (0.56%) 0 (0%)

Status
Alive 403 (80.12%) 284 (80%) 119 (80.41%) 1

Dead 100 (19.88%) 71 (20%) 29 (19.59%)

No: the patient have not receive the treatment; Tis: carcinoma in situ; Mx: unknown M stage; Nx: unknown N stage.
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was superior to the clinicopathological features, indicating
that this model could better predict the prognosis of CRC
patients (Figure 4(a)).

3.3. Construction of Nomogram and Calibration in CRC
Patients. As shown in Figure 4(b), the calibration curves of a
nomogram revealed good accordance between the predicted
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Figure 1: Identification of m5CRlncRNAs. (a) A Sankey plot for the network of m5C genes and associated m5CRlncRNAs. (b) Heatmap for
correlation between 17 m5C genes and 8 m5CRlncRNAs.
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Figure 2: Construction of a risk signature for m5CRlncRNAs. (a, b) The LASSO regression algorithm to screen candidate m5CRlncRNAs.
(c) Multivariate Cox regression analysis to develop a risk model. (d) Kaplan-Meier curves. (e) The 1-, 3-, and 5-year ROC curves of the entire
set. (f) The 5-year ROC curves of the model and clinical characteristics.
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Figure 3: Validation of a risk signature. (a) Kaplan-Meier curves grouped by age, gender, clinical stage, T, N, or M. (b) PCA comparison on
the basis of entire gene profiles, m5C genes, lncRNAs, and m5CRlncRNAs in TCGA entire set.
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1-, 3-, and 5-year OS rates and actual observations. And
the nomogram was established to demonstrate the superior
predictive power of m5C compared to clinical features
(Figure 4(c)).

3.4. Functional Enrichment Analysis. The GO analysis
(Figure 5(a)) showed that the terms were mainly enriched
in the signaling receptor activator activity and receptor
ligand activity of biological processes (BP), the apical part
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of cell and presynapse of cellular component (CC), and the
epidermis development and skin development of molecular
function (MF) (Supplementary Table 3). The KEGG
analysis showed that the terms were mainly enriched in
hsa04978, hsa04972, hsa04020, hsa00040, hsa05226, and
hsa04390 (Figure 5(b)) (Supplementary Table 4).

3.5. Evaluation of Tumor Immune Microenvironment. To
further explore whether the m5CRlncRNA was related to
the TIME, we assessed the relationship between the
signature and tumor-infiltrating immune cells. Significant
correlations were noted between the abundance of these
tumor-infiltrating immune cells and increased CRC risk
(Figure 6(a)) (Supplementary Table 5). The ssGSEA results
showed that HLA, type I IFN response, and type II IFN
response of patients in the low-risk group were lower
compared to high-risk group (p < 0:05, Figure 6(b)). We
further investigated the immune checkpoints, and the results
revealed significant differences in the distribution of immune
checkpoint-related molecule expression among different
groups. We examined the expression levels of 46 immune
checkpoint genes, 14 of which differed in expression in the
high- and low-risk groups. The immune checkpoints of
TNFRSF15 and HHLA2 in the low-risk group were higher
(p < 0:05) (Figure 6(c)). The above findings might imply that
the low-risk group was more immunologically active and
might be more sensitive to immunotherapy.

3.6. Evaluation of Immunotherapy. On the basis of the
somatic mutational data from TCGA, we calculated the
mutation frequency among different groups. And the muta-
tion frequencies of the different groups were depicted by the

waterfall chart. It found that 223 of 232 (96.12%) CRC sam-
ples in the high-risk group and 219 of 234 (93.59%) CRC
samples in the low-risk group displayed genetic mutations,
and missense mutation was the most common variant clas-
sification. In addition, APC had high genetic alterations
(72%), which was only lower than that of TP53 (60%) in
the high-risk group (Figure 7(a)). APC had the highest
genetic alterations (79%) (Figure 7(b)). Then, we evaluated
the relationship between different groups and immunother-
apy biomarkers. As exhibited in Figures 7(c) and 7(d), we
observed that the high-risk group was more sensitive to
immunotherapy, suggesting that the m5C-based classifier
index may be a predictor of tumor mutation burden and
TIDE. Finally, we used Kaplan-Meier curve analysis of
patient OS based on TMB. As displayed in Figure 7(e), a sig-
nificant difference was observed between patients in the high
TMB and low TMB groups (p < 0:05). We further investi-
gated whether the m5CRlncRNA model could predict OS
outcomes greater than TMB alone. Compared with other
groups, the low-risk group with high TMB had the best
prognosis among those of the other three groups (p < 0:001)
(Figure 7(f)). In summary, the signature of m5CRlncRNA
has greater prognostic implications than that of TMB.

3.7. Selection Potential Antitumor Drugs by m5CRlncRNA
Model. To identify for potential drugs targeting the
m5CRlncRNA model for the treatment of CRC patients,
the pRRophetic algorithm was implemented to assess thera-
peutic efficacy according to the IC50 of each data. In addi-
tion, we noticed that the sensitivity of the two groups
differed significantly for 23 compounds by predicting the
potential therapeutic agents. As shown in Figure 8, we
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detected that the low-risk group was closely connected with
chemotherapeutic agents with higher IC50, suggesting that
low-risk patients were more responsive to chemotherapeutic
drugs.

4. Discussion

Many experts and scholars have concentrated on exploring
the pathogenesis and treatment strategies of CRC in recent
years [23]. Despite the fact that surgery, chemotherapy,

radiotherapy, and targeted therapy were used for CRC
patients, treatment outcomes were poor, and 5-year survival
rates were low [24]. In recent years, research has demon-
strated that cancer patients with different clinical character-
istics and subgroups are likely to have a different prognosis
and response to treatment [25, 26]. Thus, it is vital to inves-
tigate effective and personalized treatment options for the
prognosis and management of CRC.

Firstly, we downloaded the lncRNA data of CRC patients
from TCGA database. According to univariate Cox, LASSO,
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Altered in 223 (96.12%) of 232 samples.
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and multivariate Cox regression analysis, 8 m5CRlncRNAs
(AC093157.1, LINC00513, AC025171.4, AC090948.2,
ZEB1-AS1, AC109449.1, AC009041.3, and LINC02516)
were determined to be significant prognostic factors to
explore the prognostic function in CRC. In recent years,
lncRNAs have been linked to cancer survival and develop-
ment in many studies [27, 28]. And ZEB1-AS1 was found
to be a tumor-related lncRNA prognostic factor in CRC

[29]. In addition, a study revealed that regulation of
LINC00513 lncRNA expression can affect disease suscepti-
bility in systemic lupus erythematosus [30]. Besides, other
lncRNAs were screened for the first time as prognostic
markers for CRC. Based on 8 m5CRlncRNAs, we built a risk
assessment model to further investigate the association
between m5CRlncRNA and CRC. Next, CRC patients were
divided into different risk groups based on median scores,
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and the high-risk group had a lower clinical survival rate.
There were similar results found in the analysis of subgroups
categorized by gender, age, and tumor stage. Additionally,
PCA analysis also supported the grouping ability of m5C.
As part of the present study, we developed a nomogram with
clinical characteristics and m5CRlncRNAs. These results
suggest that OS was shorter in the high-risk group, with bet-
ter concordance between 1-year, 3-year, and 5-year observa-
tion and predicted OS rates.

Furthermore, we investigated the associations between
risk groups and TMB and TIME. The TMB is regarded
as the total number of somatic cell-encoded mutations
that lead to neoantigens being generated that trigger anti-
tumor immunity [31]. A large number of studies have
proven that TMB is a powerful biomarker for predicting
the efficacy of checkpoint inhibitors in cancer [32, 33].
In the high-risk group, TMB appeared to be significantly
higher. Additionally, TIDE is a computational framework
for simulating tumor immune evasion and is usually
applied to forecast the effects of immune checkpoint inhi-
bition therapy [34]. Our results demonstrated that the
low-risk group was predicted to have a superior response
to immunotherapy. To probe the therapeutic potential of
the identified m5CRlncRNAs for CRC patients, we ana-
lyzed their sensitivity to different drugs. And we discov-
ered that the low-risk group was significantly related to
chemotherapeutic agents with higher IC50. Altogether,
the above results help us to further predict the prognosis
of CRC and elucidate the molecular biological mechanism
between m5CRlncRNAs and CRC.

However, there are several issues with the research.
First off, we lack external datasets to validate the predic-
tion accuracy of the risk model since there are not any
lncRNA-related CRC datasets in the Gene Expression
Omnibus (GEO) database. Second, because of the study’s
limited sample size, there could be some bias in the data
analysis. Thirdly, there is no experimental validation of
analytical findings in the research to demonstrate the use
of the risk model in clinical treatment. Therefore, we will
try to verify the validity of the signature utilizing animal
and cellular tests.

Overall, our study did provide not only new insights
into individualized treatment strategies for patients with
CRC but also new ideas for predicting the prognosis of
these patients. In addition, this study might contribute to
further exploring the biological functions of m5C-regulated
lncRNAs.
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