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It is difficult for traditional therapies to further improve the prognosis of hepatocellular carcinoma (LIHC), and immunotherapy is
considered to be a promising approach to overcome this dilemma. However, only a minority of patients benefit from
immunotherapy, which greatly limits its application. Therefore, it is particularly urgent to elucidate the specific regulatory
mechanism of tumor immunity so as to provide a new direction for immunotherapy. NOP2/Sun RNA methyltransferase 3
(NSUN3) is a protein with RNA binding and methyltransferase activity, which has been shown to be involved in the
occurrence and development of a variety of tumors. At present, the relationship between NSUN3 and immune implication in
LIHC has not been reported. In this study, we first revealed that NSUN3 expression is upregulated in LIHC and that patients
with high NSUN3 expression have a poor prognosis through multiple databases. Pathway enrichment analysis demonstrated
that NSUN3 may be participated in cell adhesion and cell matrix remodeling. Next, we obtained a set of genes coexpressed
with NSUN3 (NCGs). Further LASSO regression was performed based on NCGs, and a risk score model was constructed,
which proved to have good predictive power. In addition, Cox regression analysis revealed that the risk score of NCGs model
was an independent risk factor for LIHC patients. Moreover, we established a nomogram based on the NCGs-related model,
which was verified to have a good predictive ability for the prognosis of LIHC. Furthermore, we investigated the relationship
between NCGs-related model and immune implication. The results implied that our model was closely related to immune
score, immune cell infiltration, immunotherapy response, and multiple immune checkpoints. Finally, the pathway enrichment
analysis of NCGs-related model showed that the model may be involved in the regulation of various immune pathways. In
conclusion, our study revealed a novel role of NSUN3 in LIHC. The NSUN3-based prognostic model may be a promising
biomarker for inspecting the prognosis and immunotherapy response of LIHC.

1. Introduction

Liver hepatocellular carcinoma (LIHC) is a highly lethal
malignancy originating from the digestive system and one
of the leading causes of cancer-related deaths worldwide
[1]. Global cancer epidemiological statistics in 2020 show
that there are about one million new cases of liver cancer,

most of which are LIHC [2]. Various risk factors are known
to predispose to the development of liver cancer, including
chronic hepatitis virus infection, aflatoxin B, and alcoholism
[3, 4]. Currently, surgical resection is still the preferred treat-
ment option for LIHC. Unfortunately, the overall recurrence
rate of LIHC remains high, with a 5-year survival rate of less
than 50% [5]. In addition to classic surgical resection, other

Hindawi
Mediators of Inflammation
Volume 2023, Article ID 6645476, 16 pages
https://doi.org/10.1155/2023/6645476

https://orcid.org/0009-0000-5291-5649
https://orcid.org/0009-0005-4934-5944
https://orcid.org/0009-0006-8783-8456
https://orcid.org/0009-0004-1720-762X
https://orcid.org/0009-0009-5252-8820
https://orcid.org/0009-0004-7367-1179
https://orcid.org/0009-0004-6479-6121
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6645476


A
CC

. T
um

or
 (n

 =
 7

9)
BL

CA
. T

um
or

 (n
 =

 4
08

)
BL

CA
. N

or
m

al
 (n

 =
 1

9)
BR

CA
. T

um
or

 (n
 =

 1
09

3)
BR

CA
. N

or
m

al
 (n

 =
 1

12
)

BR
CA

–B
as

al
.T

um
or

 (n
 =

 1
90

)
BR

CA
–H

er
2.

 T
um

or
 (n

 =
 8

2)
BR

CA
–L

um
A

. T
um

or
 (n

 =
 5

64
)

BR
CA

–L
um

B.
 T

um
or

 (n
 =

 2
17

)
CE

SC
. T

um
or

 (n
 =

 3
04

)
CE

SC
. N

or
m

al
 (n

 =
 3

)
CH

O
L.

 T
um

or
 (n

 =
 3

6)
CH

O
L.

 N
or

m
al

 (n
 =

 9
)

CO
A

D
. T

um
or

 (n
 =

 4
57

)
CO

A
D

. N
or

m
al

 (n
 =

 4
1)

D
LB

C.
 T

um
or

 (n
 =

 4
8)

ES
CA

. T
um

or
 (n

 =
 1

84
)

ES
CA

. N
or

m
al

 (n
 =

 1
1)

G
BM

. T
um

or
 (n

 =
 1

53
)

G
BM

. N
or

m
al

 (n
 =

 5
)

H
N

SC
. T

um
or

 (n
 =

 5
20

)
H

N
SC

.N
or

m
al

 (n
 =

 4
4)

H
N

SC
–H

PV
+.

 T
um

or
 (n

 =
 9

7)
H

N
SC

–H
PV

–.
 T

um
or

 (n
 =

 4
21

)
KI

CH
. T

um
or

 (n
 =

 6
6)

KI
CH

. N
or

m
al

 (n
 =

 2
5)

KI
RC

. T
um

or
 (n

 =
 5

33
)

KI
RC

. N
or

m
al

 (n
 =

 7
2)

KI
RP

. T
um

or
 (n

 =
 2

90
)

KI
RP

. N
or

m
al

 (n
 =

 3
2)

LA
M

L.
 T

um
or

 (n
 =

 1
73

)
LG

G
. T

um
or

 (n
 =

 5
16

)
LI

H
C.

 T
um

or
 (n

 =
 3

71
)

LI
H

C.
 N

or
m

al
 (n

 =
 5

0)
LU

A
D

. T
um

or
 (n

 =
 5

15
)

LU
A

D
. N

or
m

al
 (n

 =
 5

9)
LU

SC
. T

um
or

 (n
 =

 5
01

)
LU

SC
. N

or
m

al
 (n

 =
 5

1)
M

ES
O

. T
um

or
 (n

 =
 8

7)
O

V
. T

um
or

 (n
 =

 3
03

)
PA

A
D

. T
um

or
 (n

 =
 1

78
)

PA
A

D
. N

or
m

al
 (n

 =
 4

)
PC

PG
. T

um
or

 (n
 =

 1
79

)
PC

PG
. N

or
m

al
 (n

 =
 3

)
PR

A
D

. T
um

or
 (n

 =
 4

97
)

PR
A

D
. N

or
m

al
 (n

 =
 5

2)
RE

A
D

. T
um

or
 (n

 =
 1

66
)

RE
A

D
. N

or
m

al
 (n

 =
 1

0)
SA

RC
. T

um
or

 (n
 =

 2
59

)
SK

CM
. T

um
or

 (n
 =

 1
03

)
SK

CM
. M

et
as

ta
sis

 (n
 =

 3
68

)
ST

A
D

. T
um

or
 (n

 =
 4

15
)

ST
A

D
. N

or
m

al
 (n

 =
 3

5)
TG

CT
. T

um
or

 (n
 =

 1
50

)
TH

CA
. T

um
or

 (n
 =

 5
01

)
TH

CA
. N

or
m

al
 (n

 =
 5

9)
TH

YM
. T

um
or

 (n
 =

 1
20

)
U

CE
C.

 T
um

or
 (n

 =
 5

45
)

U
CE

C.
 N

or
m

al
 (n

 =
 3

5)
U

CS
. T

um
or

 (n
 =

 5
7)

U
V

M
. T

um
or

 (n
 =

 8
0)

6

4

2

0

N
SU

N
3 

ex
pr

es
sio

n 
le

ve
l (

Lo
g2

 T
PM

) ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎

(a)

⁎⁎⁎

0

1

2

3

4

Normal Tumor

N
SU

N
3

Normal
Tumor

Type

LIHC

(b)

1.00

0.75

0.50

0.25

0.00
0 3 6 9

O
ve

ra
ll 

su
rv

iv
al

Time (years)

0 3 6 9

Time (years)

p < 0.001

Number at risk
117
253

18
72

6
20

0
4

High
Low

N
SU

N
3

NSUN3
High
Low

(c)

p < 0.001

1.00

0.75

0.50

0.25

0.00
0 3 6 9

Pr
og

re
ss

-fr
ee

 su
rv

iv
al

Time (years)

0 3 6 9

Time (years)

Number at risk
104
266

8
43

1
9

0
2

High
Low

N
SU

N
3

GPR65
High
Low

(d)

6 8 10
0

10

20

30

z–score

Category
Biological process
Cellular component
Molecular function

–L
og

 (a
dj

 p
–v

al
ue

)

Threshold

GO:0007156

GO: 0007156

GO:0098742

GO: 0098742
GO:0045229 GO: 0045229

GO:0097060
GO: 0097060

GO:0062023
GO: 0062023

GO:0015267

GO: 0015267

GO:0009897
GO: 0009897

GO:0022836 GO: 0022836GO:0045211

GO: 0045211

GO:0042101
GO: 0042101

GO:0005178

GO: 0005178

ID Description
homophilic cell adhesion via plasma membrane adhesion molocules

cell–cell adhesion via plasma–membrane adhesion molecules
external encapsulating structure organization

T cell receptor complex
synaptic membrane

collagen–containing extracellular matrix
postsynaptic membrane

external side of plasma membrane
gated channel activity

integrin binding
channel activity

(e)

Figure 1: Continued.
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Figure 2: Continued.
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can analyze immune cells by identifying and counting spe-
cific genes in them [15].

2.4. Evaluation of the Correlation between Risk Scores and
Immune Profiles. In this study, we applied IPS, TIDE, and
ESTIMATE to analyze the correlation of risk score and
immune profile. The immunophenoscore (IPS) is a method
for predicting response to immune checkpoints by quantify-
ing tumor immunogenicity. The method incorporates multi-
ple parameters, such as immunomodulators, effector cells,
and suppressor cells, by weighted quantification of these
components, resulting in a final IPS score [16]. ESTIMATE
(Estimation of Stromal and Immune cells in Malignant
Tumor Tissues using Expression Data) is a novel algorithm
to infer tumor tissue components from unique characteristic
genes in tumor tissue transcriptional data. In this study, we
conducted the ESTIMATE algorithm to analyze the correla-
tion of immune and stromal scores with risk scores [17].
Tumor immune dysfunction and rejection (TIDE) is a pre-
dictor of patient response to immune checkpoint inhibitors.
Patients with low TIDE scores may be more responsive to
immunotherapy, whereas patients with high TIDE scores
may respond less to immunotherapy [18].

2.5. Statistics. In this study, R software (4.2.2) was applied for
calculation and statistical analysis. p < 0:05 was considered
statistically significant.

3. Results

3.1. NSUN3 Is Highly Expressed and Associated with Poor
Prognosis in LIHC. We first analyzed the mRNA expression
levels of NSUN3 in pan-cancer via the TIMER database, and

the result showed that NSUN3 was significantly upregulated
in LIHC (Figure 1(a)). Next, we further explored the expres-
sion of NSUN3 in TCGA-LIHC and found that it was signif-
icantly elevated in tumor tissues (Figure 1(b)). In addition,
we performed survival analysis based on NSUN3 expression,
and the results demonstrated that NSUN3 was closely asso-
ciated with poor prognosis (Figures 1(c) and 1(d)). More-
over, we applied GO and KEGG enrichment analyses to
preliminarily explore the potential role and mechanism of
NSUN3 in LIHC. GO analysis showed that the function of
NSUN3 was mainly enriched in extracellular matrix remod-
eling (Figure 1(e)), and KEGG pathway analysis revealed
that NSUN3 was enriched in cell adhesion, extracellular
matrix remodeling, and focal adhesion junctions
(Figure 1(f)). These pathways obtained above suggested that
NSUN3 plays an important role in the regulation of LIHC
immune function.

3.2. Coexpression Gene Analysis of NSUN3. The previous
data strongly suggested a strong correlation between NSUN3
levels and prognosis, we intended to investigate the coex-
pressed genes of NSUN3 in LIHC. We analyzed the coex-
pressed gene network of NSUN3 by 3 LIHC datasets
(GSE76427, GSE109211, and TCGA), and the correlation
coefficient was set at 0.2 (p < 0:05). We presented the top
10 most correlated genes in these three datasets in
Figures 2(a)–2(c). Next, the upset plot was applied to inter-
sect the coexpressed genes of the three datasets, and 20 coex-
pressed genes were obtained finally (Figure 2(d)).

3.3. Construction of a Model Based on NSUN3 Expression
Levels in LIHC. We previously obtained a gene set with 20
genes coexpressed with NSUN3. Next, we performed LASSO
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Figure 2: Analysis of NSUN3 coexpressed genes (NCGs). (a–c) Coexpressed genes of NSUN3 in different transcriptome datasets
(GSE76427, GSE109211, and TCGA-LIHC cohorts). (d) Intersection of NSUN3 coexpressed genes obtained from different datasets.
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Figure 3: Continued.
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regression analysis to screen this gene set and obtained 6
coexpression genes with associated NSUN3 (NCGs). Fur-
thermore, based on the obtained 6 genes, we constructed a
risk prognostic model based on NSUN3 coexpressed genes
in LIHC and randomly divided the LIHC cohort in TCGA
into two cohorts at a ratio of 7 : 3, namely, training cohort
and validation cohort queues. As shown in Figures 3(a)
and 3(b), we risk scored and ranked these patients and found
consistent changes in mortality and risk scores among
patients. In addition, we further verified that there were sig-
nificant prognostic differences between high- and low-risk
patients in this model (Figures 3(c) and 3(d)). Finally, we
evaluated the predictive power of the training and validation
cohorts by ROC curves. The AUC of the training cohort at
years 1, 3, and 5 was 0.749, 0.662, and 0.603, respectively;
the AUC of the validation cohort at years 1, 3, and 5 was
0.720, 0.693, and 0.579, respectively (Figures 3(e) and 3(f)).
These data strongly indicated that the model has good pre-
dictive performance.

3.4. Construction and Verification of Nomogram Based on
Predictive Model. We first performed univariate and multi-
variate analyses on the risk model, and the results both
showed that the HR values of the risk score of the model
were 1.969 and 1.871, respectively (Figures 4(a) and 4(b)).
Next, we constructed a nomogram integrating the prognos-
tic model and its multiple clinical features, including gender,
age, histological grade, and pathological stage (Figure 4(c)).
Meanwhile, we verified the accuracy of the nomogram, and
the results showed that the nomogram had accurate predic-
tive capacity (Figure 4(d)). Interestingly, the accuracy of the
risk model that we further evaluated by the C index also

demonstrated good performance in the assessment of LIHC
prognosis (Figure 4(e)).

3.5. Correlation between NCG-Related Model Risk Scores and
Immune Microenvironment in LIHC. Immune cells in the
tumor immune microenvironment (TIM) induce immune
escape by interacting with tumor cells [13]. To clarify their
complex relationship, we applied the ESTIMATE algorithm
to analyze the TIM of LIHC and observed the differences
in matrix score, immune score, and comprehensive score
between the high-risk group and the low-risk group, respec-
tively. The results demonstrated that the TME score of the
low-risk group was significantly higher than in the high-
risk cohort (Figure 5(a)). Next, we investigated the infiltra-
tion abundance of 21 immune cells in high- and low-risk
patients by the CIBORESORT algorithm, and the results
showed that the infiltration abundance of M0 macrophage
cells in the low-risk group was higher than that in the
high-risk group (Figure 5(b)). In addition, we further
explored the correlation between 6 NCGs genes and 21 types
of immune cells, the results revealed that AGPS was posi-
tively correlated with M0 macrophages but negatively corre-
lated with gamma delta T cells and CD8 T cells; CCDC50
was negatively correlated with activated NK cells and γδT
cells; NSUN3 was negatively correlated with Treg cells and
γδT cells; SLC38A6 was negatively correlated with naive B
cells and memory resident CD4+ T cells; TFDP2 was nega-
tively correlated with M1 macrophages; ZNF691 was nega-
tively correlated with Treg cells (Figure 5(c)).

3.6. Risk Scores for NCGs-Related Models Predict
Immunotherapy Response. Immune checkpoints play a key
role in the regulation of immune cell function and are
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Figure 3: Construction and validation of a prognostic model based on NCGs. (a) Distribution of survival status (upper) and risk scores
(lower) for the training datasets. (b) Distribution of survival status (upper) and risk scores (lower) for the validation datasets. (c, d) The
Kaplan-Meier curves of overall survival for the high- and low-risk groups in the training and validation datasets. (e, f) Time-dependent
receiver operating characteristic curves for the risk score in the training and validation datasets.
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Figure 5: Analysis of the TIM of LIHC via risk scores of NCGs-related model. (a) Correlation between high and low NCGs risk score and
TME score. (b) Correlation between high and low NCGs risk scores and 21 types of immune cell infiltration. (c) Correlation between
NSUN3 coexpressed genes and immune cell infiltration.
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important predictors for assessing immunotherapy
response. Therefore, in the present study, we first analyzed
the correlation between 11 immune checkpoints and risk
scores of NCGs-related models, and the results showed that
the risk scores of the NCGs-related models were strongly

associated with most immune checkpoints (Figure 6(a)),
except for KLRD1 and IAPP. As shown in Figure 6(b), we
further explored the differences of 8 immune checkpoints
in high- and low-risk cohorts, and the results revealed that
PD-L1 and TIM-3 were significantly higher in high-risk
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Figure 6: Risk scores from NCGs-related model predict LIHC response to immunotherapy. (a) Correlation of NCGs risk score with
multiple immune checkpoints. (b) Differences in expression of multiple immune checkpoints in the high- and low-risk groups. (c) In the
case of CTLA4 negative but PD1 positive, the high-risk group had lower IPS. (d) In the case of CTLA4 positive but PD1 negative, the
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have lower TIDE scores.
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cohorts than in low-risk cohorts. Furthermore, given the
strong correlation between the risk score of the NCG-
related model and immune checkpoints, we explored
whether the risk score of this model could predict the
response of LIHC patients to treatment with ICIs. In addi-
tion, IPS and TIDE have been widely used to assess tumor
response to immunotherapy in recent years. The results of
our analysis demonstrated that in the low-risk score group,
PD1-positive and CTLA4-negative patients had significantly
higher IPS; interestingly, high-risk patients had significantly
lower IPS scores in CTLA-positive and PD1-negative
patients (Figures 6(c)–6(e)). Finally, the results of the TIDE

algorithm implied that the low-risk group had higher
immune dysfunction than the high-risk group, while the
immune exclusion was lower than that of the high-risk
group (Figures 6(f) and 6(g)).

3.7. Enrichment Analysis of NCGs-Related Model. Our previ-
ous studies revealed that risk stratification of NCGs-related
models in LIHC is closely related to cell infiltration. To
explore the underlying mechanism, we performed pathway
enrichment analysis on high- and low-risk cohorts of the
NCGs-related risk scoring model by the KEGG and HALL-
MARK gene sets. The results of gene set enrichment analysis
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Figure 7: Enrichment analysis of NCG-related model. (a) KEGG pathway enrichment analysis based on the risk score of NCG-related
model. (b) HALLMARKER enrichment analysis based on the risk score of NCG-related model. (c) Correlation analysis between NCGs
and KEGG enrichment pathway. (d) Correlation analysis between NCGs and Hallmark enrichment pathway.
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showed that cell cycle-related pathways were significantly
enriched NCGs-related models (Figures 7(a) and 7(b)).
Next, we further analyzed the correlation of each NCGs with
the enrichment pathway. The results revealed that in the
KEGG gene set, multiple signaling pathways were positively
correlated with NCGs, such as WNT, VEGF, TGF-β, and
NOTCH signaling pathways. In the HALLMARK gene set,
multiple signaling pathways were positively correlated with
NCGs, such as unfolded protein pathway, KRAS, and angio-
genesis (Figures 7(c) and 7(d)).

4. Discussion

The occurrence and development of tumors is a multistep
process that is regulated by gene network [19]. Immune
response is a special situation of inflammatory reactions
[20]. The maintenance of normal immune function can
effectively eliminate tumors. However, tumors in progress
are often accompanied by immune evasion, which in turn
induces the distant metastasis of the tumor [21]. Therefore,
it is critical to clarify the specific mechanism of tumor
immune function to the treatment of malignant tumors. In
this study, we first discovered that NSUN3 upregulation
was related to poor prognosis in LIHC. Then, by multiple
database LIHC cohorts, we constructed a prognostic model
based on NSUN3 coexpression genes and confirmed its
accuracy and effectiveness. More importantly, we further
explored the value of the model. We found that the risk
score of NSUN3-related model is related to immune profile
and can instruct the choice of immunotherapy.

The prognostic model based on various functional genes
has become a hot spot in guiding the prognosis of tumor.
Ruan et al. analyzed the expression of ZEB1-AS1 in colorec-
tal cancer and found that its high expression was positively
associated with poor prognosis. Furthermore, a prognostic
model based on ZEB1-AS1 coexpression gene was con-
structed. The ROC curve areas of the model in the training
cohort were 0.650, 0.706, and 0.706, respectively, and in
the validation cohort were 0.705, 0.592, and 0.753, respec-
tively [22]. Li et al. revealed that AHCYL1 acts as an onco-
gene in colorectal cancer. A prognostic model based on
AhCYL1-related genes was constructed. To further explore
the effectiveness of the model, the results showed that the
areas of the ROC curves of the 1, 3, and 5 years in the train-
ing cohort were 0.665, 0.634, and 0.695, and the areas of the
ROC curves of the 1, 3, and 5 years in the validation cohort
were 0.691, 0.754, and 0.726, respectively [23]. In the present
study, we constructed the prognostic model of NUSN3-
related genes, and the areas under the ROC curve of 1, 3,
and 5 years in the training cohort were 0.749, 0.662, and
0.603, while the areas under the ROC curve of 1, 3, and 5
years in the validation cohort were 0.720, 0.693, and 0.597.
This result indicated that the predictive power of our con-
structed model is not weaker than that of other previous
studies.

The prediction of immunotherapy therapy has always
been difficult for immunotherapy [24]. The development of
models that accurately predict the response to immunother-
apy has been a goal we have pursued. In this study, we con-

structed a prognostic model based on NSUN3-related genes.
The level of risk scores of this model shows different
responses to immunotherapy. The results further revealed
that NSUN3 participated in regulating LIHC immune pro-
file. The data of this study mainly derived from the public
database and lacked corresponding clinical evidence sup-
port, which requires us to be validated in our follow-up
studies.

In conclusion, this study demonstrated a novel role for
NSUN3 in regulating the immune implication of LIHC.
The development of targeted NSUN3 drugs may be a prom-
ising research direction for the treatment of LIHC.
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