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Due to the considerable heterogeneity of head and neck squamous cell carcinoma (HNSCC), individuals with comparable TNM
stages who receive the same treatment strategy have varying prognostic outcomes. In HNSCC, immunotherapy is developing
quickly and has shown effective. We want to develop an immune-related gene (IRG) prognostic model to forecast the prognosis
and response to immunotherapy of patients. In order to analyze differential expression in normal and malignant tissues, we first
identified IRGs that were differently expressed. Weighted gene coexpression network analysis (WGCNA) was used to identify
modules that were highly related, and univariate and multivariate Cox regression analyses were also used to create a predictive
model for IRGs that included nine IRGs. WGCNA identified the four most noteworthy related modules. Patients in the model’s
low-risk category had a better chance of survival. The IRGs prognostic model was also proved to be an independent prognostic
predictor, and the model was also substantially linked with a number of clinical characteristics. The low-risk group was associated
with immune-related pathways, a low incidence of gene mutation, a high level of M1 macrophage infiltration, regulatory T cells,
CD8 T cells, and B cells, active immunity, and larger benefits from immune checkpoint inhibitors (ICIs) therapy. The high-risk
group, on the other hand, had suppressive immunity, high levels of NK and CD4 T-cell infiltration, high gene mutation rates, and
decreased benefits from ICI therapy. As a result of our research, a predictive model for IRGs that can reliably predict a patient’s
prognosis and their response to both conventional and immunotherapy has been created.

1. Introduction

Head and neck cancer ranks as the 6th most prevalent malig-
nancy worldwide, with an annual incidence of 930,000 cases
and 470,000 deaths [1]. Head and neck squamous cell carci-
noma (HNSCC) is the majority of head and neck cancer, and
the major risk factors for the development of HNSCC include
tobacco, alcohol consumption, and human papillomavirus
infection [1]. The main reasons for death in advanced

HNSCC patients are local recurrence, remote metastasis,
and therapeutic failure owing to resistance to routine chemo-
therapy [2]. In the last years, immune checkpoint inhibitors
(ICIs) are regarded as revolutionary agents in medicinal ther-
apy for malignant tumors, especially for HNSCC [3].

Cancer immunotherapy operates on the basis that the
host’s immune system may get activated by the cancer cells,
which identifies and eliminates them [4]. While immune
checkpoints can prevent overwhelming inflammatory
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responses and the progression of autoimmunity, they can as
well be operated as amechanism of tumor immune evasion [5].
ICIs reactivate immune responses against cancer by blocking
immune checkpoint pathways, including antiprogrammed
death-1, antiprogrammed death-1 ligand, and anticytotoxic
T-lymphocyte-associated protein 4 antibodies [5]. Neverthe-
less, the main restriction of this treatment is the poor patient
response rate. Only a small percentage of HNSCC patients
respond to immunotherapy, and the responses seen are usually
durable and profound, butmany others showwidespread resis-
tance to immunotherapy [6]. Therefore, novel therapeuticmar-
kers demand to urgent study to identify the ideal subgroup of
HNSCC for immunotherapy.

In the research, we attempted to construct a prognostic
signature for HNSCC that can predict the efficacy of routine
therapy and immunotherapy. First, we assessed immune-
related genes (IRGs) of HNSCC and identified survival-
associated differentially expressed IRGs in significantly relevant
modules by weighted gene coexpression network analysis
(WGCNA) to develop an IRGs prognostic model. We then
estimated its predictive value among HNSCC patients, exam-
ined the immune profile of the prognostic model, and charac-
terized it with gene mutation, N6-methyladenosine (m6A)
mRNA stats, tumor immune dysfunction and exclusion
(TIDE) score, tumor inflammation signature (TIS) score, and
chemotherapeutic efficacy. Conclusively, the IRGs prognostic
model was a prospective prognostic signature for precise pre-
diction of patient prognosis and reaction to traditional treat-
ment and immunotherapy.

2. Materials and Methods

2.1. Preparation of Data. The RNA-seq data and clinicopatho-
logical features of HNSCC samples (The Cancer Genome Atlas
(TCGA)-HNSCC and GSE65858) were procured from the
TCGA (http://portal.gdc.cancer.gov) and gene expression
omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) [7]. The
gene transfer format files with gene names and the transcript
annotation of the genome available were obtained in the
Ensemble database (http://asia.ensembl.org) [8]. A dataset of
recognized IRGs was acquired in the InnateDB (http://www.
innatedb.com) databases and the ImmPort database (http://
www.immport.org) [9]. The somatic mutation data of HNSCC
patients were retrieved from the TCGA.

2.2. Identification of Significantly Relevant Modules with
WGCNA. Differential expression analysis (|log2FC|> 0.585,
false discovery rate (FDR) <0.05) was utilized to recognize
differentially expressed IRGs. The gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analy-
ses were employed to analyze these differentially expressed
IRGs (P value<0.05) [10].

After that, significantly relevant modules were obtained
using WGCNA. First, a similarity matrix that calculates Pear-
son’s correlation coefficient between two genes was constructed
in light of expression data. Second, an adjacency matrix with a
network type of sign was acquired based on the similarity
matrix by selecting five as the soft threshold and further con-
verted to a topological matrix with the topological overlap

measure, which was used to depict the degree of association
between genes. Then, genes were grouped at a distance of
1-TOM, and genemodules were recognized using the dynamic
hybrid tree-cut algorithm. Lastly, nine modules were deter-
mined based on a minimal cluster size of 25, a correlation
coefficient greater than 0.9, and a merging threshold function
of 0.25. These modules (the green, pink, brown, and red mod-
ules) were recognized as significantly relevant modules.

Finally, to show as many protein interactions as possible
in the different modules, the protein–protein interaction net-
works (PPI) of these IRGs in significantly relevant modules
were retrieved, respectively, from STRING (http://string-db.
org) and were visualized separately by Cytoscape 3.8.2 soft-
ware (minimum required interaction score >0.2) [11]. And
these IRGs in significantly relevant modules were analyzed
individually by GO and KEGG (P-value<0.05).

2.3. Development and Evaluation of Prognostic Model.
Univariate Cox regression and Kaplan–Meier (KM) analysis
were carried out to identify the association of these IRGs in
significantly relevant modules with survival, and twenty IRGs
with P<0:05 were determined to be survival-associated IRGs.
These survival-related IRGs were utilized by multivariate Cox
regression analysis to construct an IRGs prognostic model
with nine IRGs. The specific risk score for each patient was
calculated, and the risk score formula was as follows:

∑
k

i¼1
1√iSi: ð1Þ

We used KM survival analysis to evaluate the prognostic
ability of themodel in the TCGA andGEO cohorts. Chi-squared
test was applied to investigate the association between the prog-
nostic model and clinical characteristics. Wilcoxon signed-rank
test was carried out to compute the risk score differences among
distinct groups of clinical features. Univariate and multivariate
Cox analyses were utilized to verify that the signature was an
independent predictor of clinical prognosis. Finally, decision
curve analysis (DCA) was employed to assess the net benefit
of five markers for clinical decision-making, and a nomogram
integrating prognostic signatures was built to predict the survival
rates of patients.

2.4. Exploration of Molecular and Immunological Characteristics
and ICIs Therapeutics. Gene set enrichment analysis (GSEA)
based on the KEGG and HALLMARK genes was applied to
identify the signaling pathways in different groups (P<0:05
and FDR <0.25). The gene mutation analysis was used to
identify the quantity and quality of gene mutations among the
signature subgroups. Wilcoxon signed-rank test was employed
to investigate differences in expression levels of m6A-related
genes in different groups.

To analyze the immune characteristics of this model, the
relative proportion of immune cells was computed using
CIBERSORT (http://cibersort.stanford.edu/) [12]. Single-sample
GSEA (ssGSEA) was applied to identify differences of immune
function between different groups. Survival status was compared
with the immune cell proportions and immune function

2 Mediators of Inflammation

http://portal.gdc.cancer.gov
http://portal.gdc.cancer.gov
http://portal.gdc.cancer.gov
http://portal.gdc.cancer.gov
http://www.ncbi.nlm.nih.gov/geo/
http://asia.ensembl.org
http://www.innatedb.com
http://www.innatedb.com
http://www.immport.org
http://www.immport.org
http://string-db.org
http://string-db.org
http://string-db.org
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/


between different groups. And we carried out Wilcoxon signed-
rank test to explore the expression level of ICIs-relatedmolecules
among different groups.

TIDE score was obtained from TIDE (http://tide.dfci.ha
rvard.edu/), and TIS score was computed based on the expres-
sion of the 18 genes [13, 14]. Then, the time-dependent
receiver-operating characteristic (ROC) curve analyses were
performed to acquire the area under the curve (AUC) and
compare the prognostic value among the model, TIDE, and
TIS. To evaluate the sensitivity of chemotherapy in the IRGs
prognostic model, Wilcoxon signed-rank test was used to
compare the difference in the half inhibitory concentration
(IC50) among the prognostic model subgroups.

3. Results

3.1. Identification of Significantly Related Modules. By per-
forming differential expression analysis and intersecting
these genes with identified IRGs, 920 differentially expressed
IRGs were extracted, of which 726 were upregulated and 194
were downregulated (Supplementary 1). In total, 920 IRGs
were enriched in various GO and KEGG terms (details in
Supplementary 2), and the first 30 GO and KEGG terms are
presented in Supplementary 1 (Figures S1B and S1C). Nine
significantly related modules were recognized byWGCNA on
the basis of the scale-free network (Supplementary 3). PPI was
constructed separately, and GO and KEGG were conducted
respectively on the genes of the green, pink, brown, and red
modules (Supplementary 4).

3.2. Development of IRGs Prognostic Index. To construct an
IRGs prognostic model, 20 survival-associated IRGs were
extracted in accordance with these genes of significantly rel-
evant modules (the green, pink, brown, and red modules),
shown in Figure 1(a) and Supplementary 5. Among 20
survival-associated IRGs, nine IRGs were identified via mul-
tivariate Cox regression analysis, thereby establishing the
prognostic model (Figure 1(b)). Although some genes had
P-values greater than 0.05 in the multivariate Cox regression
analysis, these genes still had some prognostic value. On the
basis of the respective median risk score, 249 patients were
assigned to the high-risk group and 250 patients to the low-
risk group in TCGA, 143 patients to the high-risk group, and
127 patients to the low-risk group in GEO.

3.3. Estimation of the Risk Assessment Signature. KM analysis
demonstrated that survival rates were remarkably lower in
high-risk HNSCC patients (Figures 1(c) and 1(d)). Besides,
the risk score distribution for HNSCC patients is presented in
Figures 1(e) and 1(f), indicating that the clinical prognosis of
patients in the high-risk group was generally worse. Based on
a set of χ2 tests, the strip chart (Figure 2(a)) and consequent
scatter diagrams show that risk scores are strongly related to
clinico-pathological characteristics of HNSCC patients,
including pathological stage (Figure 2(b)), clinical stage
(Figure 2(c)), T stage (Figure 2(d)) and N stage (Figure 2(e)).
Univariate and multivariate Cox regression analysis validated
that the model was an independent prognostic risk factor
(Figures 2(f) and 2(g), details in Supplementary 6). The result

of DCA indicated that the prognostic model was more precise
than other conventional clinico-pathological characteristics
(Figure 3(a)). The nomogram combining the IRGs prognostic
model and clinico-pathological characteristics was dependable
and sensitive for survival prediction of HNSCC patients
(Figure 3(b)).

3.4. Investigation of Molecular Characteristics. Genes in the
low-risk group were largely enriched in cell adhesion mole-
cules, chemokines, and immune-related pathways, whereas
genes in the high-risk group were majorly enriched in focal
adhesion (Figures 4(a) and 4(b), details in Supplementary 7).
The results of gene mutation analysis displayed that more
genes were mutated in the high-risk group (Figures 4(c) and
4(d)). The commonest type of mutation was the missense
variant mutations, followed by nonsense mutation and mul-
tiple mutations of a gene. The top 10 genes having the greatest
mutation rate were TP53, TTN, FAT1, CDKN2A, MUC16,
CSMD3, PIK3CA, NOTCH1, SYNE1, and LRP1B. Mutations
in the TP53, TTN, CDKN2A, and NOTCH1 genes were more
frequent among the high-risk group, whereas mutations in the
NSD1 and FLG genes were more prevalent among the other
group. Comparing m6A-related mRNAs in different groups
revealed that the expression levels of YTHDC2, YTHDF1,
ALKBH5, IGFBP2, and FTO (P<0:001), RBM15B, VIRMA,
YTHDC1, and HNRNPC (P<0:01), and HNRNPA2B1
(P<0:05) were statistically different (Figure 4(e)).

3.5. Evaluation of Immunological Characteristics. Based on
CIBERSORT, we found that NK-cell resting, eosinophil, T-
cell CD4+ naive, mast cell resting, M0 macrophage were
more plentiful in the high-risk group, and T-cell follicular
helper, T-cell CD8+, mast cell activated, regulatory T-cell, B-
cell naive, B-cell plasma, B-cell memory, myeloid dendritic
cell resting, monocyte, M1 macrophage were more plentiful
in the low-risk group (Figures 5(a) and 5(b), details in
Supplementary 8). The vast majority of immune functions
were statistically different among distinct groups, except for
antigen-presenting cell coinhibition, macrophages, major
histocompatibility complex class I, response to type I
Interferon, and parainflammation (Figure 6(a)). The
relationship between immune cell proportions and immune
function and survival status was analyzed (Supplementary 9
and Supplementary 10). We also explored whether the model
was associated with ICIs and found statistically significant
differences in the expression of CTLA-4, PDCD1, LAG3,
TIGIT, BTLA, and others in different groups (Figure 6(b)).

3.6. Exploration of ICIs Therapeutics. To estimate the under-
lying clinical efficacy of immunotherapy of the prognostic
model, TIDE was used to evaluate this, and lower TIDE
prediction scores indicated a higher likelihood of patients
benefiting from treatment with ICIs, as represented by a
lower potential for immune evasion. In our results, no statis-
tical differences in TIDE scores were found between distinct
groups, but TIDE scores were low in both groups, indicating
that both groups were able to benefit better from treatment
with ICIs (Figure 7(a)). In addition, we found that the low-
risk group had a higher microsatellite instability (MSI) score
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HSP90AA1    0.004        1.459 (1.124–1.892)
HSP90AB1    0.005        1.490 (1.128–1.967)
NLRX1     0.047        0.809 (0.656–0.998)
SPINK5     0.003        0.886 (0.818–0.959)
FAM3B     0.040        0.872 (0.765–0.994)
PDGFA         <0.001        1.498 (1.212–1.853)
SLURP1          0.034        0.938 (0.884–0.995)
STC2             <0.001        1.365 (1.183–1.574)          
PSMA7           0.038        1.434 (1.020–2.014)
CTSG              0.005        0.737 (0.597–0.912) 
DES                  0.026        1.056 (1.006–1.109)
SEMA3G         0.025        0.696 (0.506–0.956)
AVPR2             0.001        0.257 (0.114–0.582)
DEFB1             0.005        0.897 (0.833–0.967)
LTF     0.036        0.925 (0.860–0.995)
DMBT1           0.019        0.841 (0.727–0.972)
CCL28             0.048        0.782 (0.613–0.998)
SCGB3A1       0.030        0.909 (0.834–0.991)
TNFRSF19      0.040         0.832 (0.698–0.991)          
PLAU            <0.001        1.267 (1.112–1.444) 
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FIGURE 1: Prognostic analysis of distinct prognostic signature groups: (a) univariate Cox analysis of 20 IRGs; (b) multivariate Cox regression
analysis of nine IRGs; (c and d) Kaplan–Meier survival analysis; (e and f ) risk scores and survival outcome.
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FIGURE 2: Continued.
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and T-cell dysfunction score, whereas the high-risk group
had a higher T-cell exclusion score. The AUC of the ROC
analysis for 3-year survival prediction showed that the model
was more accurate than TIDE and MSI. The AUC values for
the 1-, 2-, and 3-year ROC curves in the IRGs prognostic
model were all high, indicating that the model had superior
sensitivity and specificity for survival prediction (Figure 7(b)).
Beyond ICIs blocking therapy, we found that the IC50 of
docetaxel, gemcitabine, and methotrexate were statistically
different among different groups; while the difference in
IC50 for cisplatin and paclitaxel was minimal (Figure 7(c)).

3.7. Role of PDGFA in HNSC Progression. To clarify the role of
PDGFA in HNSC progression, we found by analyzing the
TCGA database that: PDGFA expression levels showed a
significant positive correlation with TGF-β by Figure 8(a).
Correspondingly, we found that PDGFA expression levels
were significantly higher in the tissues of HNSC patients with
higher epithelial-mesenchymal transition (EMT) viability
compared to those with lower EMT viability (Figure 8(b)).

The above data suggest that the aberrant expression of
PDGFA expression levels in HNSC may promote distal
metastasis of HNSC by promoting EMT and thereby.
Further, we performed a knockdown of PDGFA in HNSC
and verified the knockdown efficiency by the western blot
(WB) (Figure 8(c)). Based on this, we found by transwell
assay that: PDGFA knockdown could significantly inhibit the
metastatic potential of HNSC cells in vitro (Figure 8(d)). The
current first-line treatment regimen of HNSC is still dominated
by radiotherapy, and the activation of EMT is closely associated
with chemoresistance, according to which we speculate that the
abnormal expression of PDGFA may confer chemoresistant
properties to HNSC cells. To test our conjecture, we
performed 5-Fu treatment in control and PDGFA cells and
detected the apoptosis rate by flow assay, and found that:
PDGFA knockdown could significantly promote apoptosis
induced by 5-Fu treatment, i.e., PDGFA could enhance
HNSC for chemotherapy accordingly (Figure 8(e)).
In addition, we found that PDGFA expression levels were
significantly elevated in HNSC compared to normal tissues
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FIGURE 2: Assessment of clinical characteristics for the model: (a–e) the relationship between the model and traditional clinical characteristics;
(f and g) univariate and multivariate Cox analysis of the model and traditional clinical characteristics. ∗P<0:05, ∗∗P<0:01, ∗∗∗P<0:001.
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(Figure 8(f)). And the abnormally elevated level of its expression
predicted poor prognosis of patients (Figures 8(g)–8(i)).

4. Discussion

ICIs therapeutics have been demonstrated to be an accurate
and safe therapy for relapsed or refractory HNSCC patients
[15, 16]. As the general response rate to treatment with ICIs
remains low, it is crucial to ascertain those patients who
could profit most from those treatments [17, 18]. Over the
past few years, although there have been many evaluations of
various prognostic signatures for HNSCC, we remain with-
out identifying a validated biomarker for predicting immu-
notherapy and immune system response. We emphasize the
necessity of identifying the optimal treatment population
and prognostic genes for response to immunotherapy.

WGCNA is a virtual approach to finding modules of
strongly correlated genes, modules, and external sample charac-
teristics and can help recognize potential IRGs or therapeutic
targets [19, 20]. WGCNA was used to identify nine IRGs, and
the IRGs prognostic model was developed based on TCGA. The
model has been shown to be an effective IRGs for HNSCC, with
better survival in patients with the low-risk group.

Various studies have indicated that a variety of immune-
related biomarkers are related to the outcome of patients
with various malignancies, particularly HNSCC [21–23].
Wang et al. [24] set up a nine IRGs signature to analyze
the tumor microenvironment and indicate the prognosis
for HNSCC. She et al. [25] identified 27 IRGs and established
a signature that offers a thorough overview of the immune
microenvironment and prognosis of HNSCC. In this study,
some of the IRGs that have been recognized during modeling
play an important role in the malignant phenotype of different
cancer types, especially HNSCC.Humphries et al. reported that
CTSG was highly expressed in HNSCC tissues in contrast to
paraneoplastic tissues and affected cancer progression and
metastasis by activating and inhibiting a large network of pro-
tein hydrolytic interactions [25]. Yang et al. found that STC2
facilitates HNSCC proliferation and metastasis by modulating
the G1/S cell cycle transition [25]. Zhang et al. [26] demon-
strated that the re-expression of LTF could impair the malig-
nancy of HNSCC cells. In summary, the IRGs prognostic
model we developed in the study was a novel model that could
recognize new biomarkers to be further studied.

The results of GSEA showed that the low-risk group was
enriched in cell adhesionmolecules, chemokines, and immune-
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related pathways, whereas the high-risk group was enriched in
focal adhesion, which implied that the low-risk group was
characterized by immune activation and suppression of tumor
progression. The gene mutations of the high- and low-risk
groups showed that the most prevalent type of mutation was
themissense variant mutation, next to nonsensemutations and

multiple mutations of a gene, as mentioned previously [26].
TP53 mutation was the most frequent mutation between dif-
ferent groups (73% vs. 52%). The majority of HNSCC patients
(about 70%) have the TP53 mutation, while the incidence of
this genetic change varies according to the head and neck area
[27]. Furthermore, TP53 mutation is related to more invasive
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disease and poorer patient prognosis inHNSCC [27]. Thus, the
low-risk group with low TP53 mutations had a better progno-
sis, in agreement with our results. DNA methylation is a form
of chemical modification of DNA that can alter genetic expres-
sion without altering the DNA sequence [28, 29]. Methylation-
related genes in HNSCC have been extensively studied in
recent years [30, 31]. In this study, some m6A-related genes
not only differed significantly different among different groups
but also correlated with the prognosis of various malignancies,
such as FTO, ALKBH5, YTHDF1, and YTHDC2, in agreement
with our results [32–35]. In addition, we found that abnormal
expression of PDGFA expression levels in HNSCmay promote
distal metastasis of HNSC by promoting EMT and thus HNSC.

A comprehensive understanding of the immunological
landscape can help find new ways to treat HNSCC. CD4+ T
cells and NK cells were more prevalent in the high-risk group,
whereas CD8+ T cells, M1 macrophages, regulatory T cells,
and B cells were more common in the low-risk group. A large
number of researches have indicated that CD4+ T cells are
related to poor prognosis [32–35]. Conversely, the high den-
sity of CD8+ T cells and M1 macrophages are indicative of a
good prognosis [36–39]. These research findings are in accor-
dance with ours. However, regulatory T cells and B cells were
negatively related to the prognosis of patients in some
researches, while others indicated the opposite [40–42].
Similarly, the results of the immune function analysis showed
that the low-risk group had more immune activities, which
predicted a better prognosis for the low-risk group. Further-
more, our results indicated that the low-risk group was posi-
tively associated with the expression of most ICIs, including
CTLA-4, PDCD1, LAG3, TIGIT, and BTLA, suggesting that
patients in the low-risk group might be able to benefit more
from ICI therapy.

TIDE has been developed based on two different mechan-
isms of tumor immune escape: T-cell dysfunction in cytotoxic
T lymphocytes (CTL)-high tumors and T-cell exclusion in
CTL-low tumors [43]. In our study, there was no significant
difference in TIDE scores between different risk groups, but
both their TIDE scores were low. The high-risk group had a
higher T-cell exclusion score and lower T-cell dysfunction
score, and higher MSI score, which indicated that these
patients had higher levels of T-cell exclusion. On the contrary,
the low-risk group had a higher T-cell dysfunction score, MSI
score, and lower T-cell exclusion score than the high-risk
group, which demonstrated that these patients had higher
levels of T-cell dysfunction and more MSI. Some researches
have demonstrated the prevalence of MSI in HNSCC, and the
highmutational burden caused byMSImakes the tumor immu-
nogenic and sensitive to anti-PD1 therapy [44, 45]. TIS, an 18
gene signature developed by NanoString Technologies, has
been verified in HNSCC clinical trials (KEYNOTE-012 and
KEYNOTE-055) using single-agent pembrolizumab treatment,
demonstrating a positive association with response and survival
[16, 46]. In the research, the predictive value of the prognostic
model was higher than that of TIDE and TIS, and the model
consisted of only nine genes and was, therefore, easier to detect
than TIDE and TIS. Our findings indicated that the IC50 of
docetaxel, gemcitabine, and methotrexate were statistically

different between different groups, whereas the difference in
IC50 for cisplatin and paclitaxel was little.

However, the current study has several shortcomings and
limitations. First, though external validation has been carried
out to verify the predictive power of the model, the exact
molecular mechanisms of the nine IRGs have not been
explored in the present study. Second, our total sample size is
relatively small, and the normal to tumor sample counts are
nonproportional. Third, the results may be biased as themajor-
ity of samples from TCGA are nonmetastatic. Therefore, in
order to further examine and validate our model, we want to
recollect more clinical samples, increase the size of our sample,
and carefully follow-up on our results.

5. Conclusion

In summary, this study demonstrated that a promising IRGs
prognosticmodelmight facilitate the differentiation of immune
and molecular features, forecast patient prognosis, and aid in
distinguishing those who could benefit from antitumor immu-
notherapy for HNSCC.

Data Availability

Publicly available datasets were analyzed in this study; these
can be found in TCGA (https://portal.gdc.cancer.gov/) and
GEO (http://www.ncbi.nlm.nih.gov/geo/).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

YY, YF, and QL drafted the manuscript. CC, CX, and CF
designed the figures and tables. JY performed data analysis.
YY and JY revised the manuscript. All authors contributed to
the article and approved the submitted version. YY, YF, and
QL contributed equally to this work.

Acknowledgments

We are very appreciative of the raw data provided by TCGA
and the GEO database.

Supplementary Materials

Supplementary 1. Determination of differentially expressed
IRGs in HNSCC.

Supplementary 2. The details of GO and KEGG enrichment
analysis.

Supplementary 3. Identification of modules by the WGCNA
analysis.

Supplementary 4. Analysis of genes in significantly relevant
modules.

Supplementary 5. Kaplan–Meier survival curves of twenty
survival-associated IRGs (P<0:05).

Mediators of Inflammation 15

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
https://downloads.hindawi.com/journals/mi/2023/6680731.f1.pdf
https://downloads.hindawi.com/journals/mi/2023/6680731.f2.pdf
https://downloads.hindawi.com/journals/mi/2023/6680731.f3.pdf
https://downloads.hindawi.com/journals/mi/2023/6680731.f4.pdf
https://downloads.hindawi.com/journals/mi/2023/6680731.f5.pdf


Supplementary 6. The detailed values of univariate and mul-
tivariate Cox regression analysis.

Supplementary 7. The GSEA in different groups.

Supplementary 8. The relative proportion of various immune
cells by CIBERSORT.

Supplementary 9. Kaplan–Meier survival curves of immune
cell proportion (P<0:05).

Supplementary 10. Kaplan–Meier survival curves of immune
function (P<0:05).

References

[1] H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics
2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” CA: A Cancer
Journal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021.

[2] S. Marur and A. A. Forastiere, “Head and neck squamous cell
carcinoma: update on epidemiology, diagnosis, and treat-
ment,” Mayo Clinic Proceedings, vol. 91, no. 3, pp. 386–396,
2016.

[3] J. D. Cramer, B. Burtness, Q. T. Le, and R. L. Ferris, “The
changing therapeutic landscape of head and neck cancer,”
Nature Reviews Clinical Oncology, vol. 16, pp. 669–683, 2019.

[4] R. L. Ferris, “Immunology and immunotherapy of head and
neck cancer,” Journal of Clinical Oncology, vol. 33, no. 29,
pp. 3293–3304, 2015.

[5] A. G. Ramsay, “Immune checkpoint blockade immunother-
apy to activate anti-tumour T-cell immunity,” British Journal
of Haematology, vol. 162, no. 3, pp. 313–325, 2013.

[6] J. Moskovitz, J. Moy, and R. L. Ferris, “Immunotherapy for
head and neck squamous cell carcinoma,” Current Oncology
Reports, vol. 20, Article ID 22, 2018.

[7] G. Wichmann, M. Rosolowski, K. Krohn et al., “The role of
HPV RNA transcription, immune response-related gene
expression and disruptive TP53 mutations in diagnostic and
prognostic profiling of head and neck cancer,” International
Journal of Cancer, vol. 137, no. 12, pp. 2846–2857, 2015.

[8] F. Cunningham, J. E. Allen, J. Allen et al., “Ensembl 2022,”
Nucleic Acids Research, vol. 50, no. D1, pp. D988–D995, 2022.

[9] K. Breuer, A. K. Foroushani, M. R. Laird et al., “InnateDB:
systems biology of innate immunity and beyond—recent
updates and continuing curation,” Nucleic Acids Research,
vol. 41, no. D1, pp. D1228–D1233, 2013.

[10] G. Yu, L.-G. Wang, Y. Han, and Q.-Y. He, “clusterProfiler: an
R package for comparing biological themes among gene
clusters,” OMICS: A Journal of Integrative Biology, vol. 16,
no. 5, pp. 284–287, 2012.

[11] D. Szklarczyk, A. L. Gable, K. C. Nastou et al., “The STRING
database in 2021: customizable protein–protein networks, and
functional characterization of user-uploaded gene/measure-
ment sets,” Nucleic Acids Research, vol. 49, no. D1, pp. D605–
D612, 2021.

[12] C. B. Steen, C. L. Liu, A. A. Alizadeh, and A. M. Newman,
“Profiling cell type abundance and expression in bulk tissues
with CIBERSORTx,” in Stem Cell Transcriptional Networks,
B. Kidder, Ed., vol. 2117 of Methods in Molecular Biology,
pp. 135–157, Humana, New York, NY, 2020.

[13] D. Damotte, S. Warren, J. Arrondeau et al., “The tumor
inflammation signature (TIS) is associated with anti-PD-1
treatment benefit in the CERTIM pan-cancer cohort,” Journal
of Translational Medicine, vol. 17, Article ID 357, 2019.

[14] J. Fu, K. Li, W. Zhang et al., “Large-scale public data reuse to
model immunotherapy response and resistance,” Genome
Medicine, vol. 12, Article ID 21, 2020.

[15] E. E. W. Cohen, D. Soulières, C. Le Tourneau et al.,
“Pembrolizumab versus methotrexate, docetaxel, or cetuximab
for recurrent or metastatic head-and-neck squamous cell
carcinoma (KEYNOTE-040): a randomised, open-label, phase
3 study,” The Lancet, vol. 393, no. 10167, pp. 156–167, 2019.

[16] T. Y. Seiwert, B. Burtness, R. Mehra et al., “Safety and clinical
activity of pembrolizumab for treatment of recurrent or
metastatic squamous cell carcinoma of the head and neck
(KEYNOTE-012): an open-label, multicentre, phase 1b trial,”
The Lancet Oncology, vol. 17, no. 7, pp. 956–965, 2016.

[17] Y. Chen, Z.-Y. Li, G.-Q. Zhou, and Y. Sun, “An immune-
related gene prognostic index for head and neck squamous cell
carcinoma,” Clinical Cancer Research, vol. 27, no. 1, pp. 330–
341, 2021.

[18] K. Du, J. Zou, B. Wang et al., “A metabolism-related gene
prognostic index bridging metabolic signatures and antitumor
immune cycling in head and neck squamous cell carcinoma,”
Frontiers in Immunology, vol. 13, Article ID 857934, 2022.

[19] T. Krüger, “Editorial change at statistical applications in
genetics and molecular biology,” Statistical Applications in
Genetics and Molecular Biology, vol. 17, no. 4, Article ID
20180046, 2018.

[20] H. Wang, X. Wu, and Y. Chen, “Stromal-immune score-based
gene signature: a prognosis stratification tool in gastric cancer,”
Frontiers in Oncology, vol. 9, Article ID 1212, 2019.

[21] W. Hong, L. Liang, Y. Gu et al., “Immune-related lncRNA to
construct novel signature and predict the immune landscape of
human hepatocellular carcinoma,” Molecular Therapy Nucleic
Acids, vol. 22, pp. 937–947, 2020.

[22] J. Yin, X. Li, C. Lv et al., “Immune-related lncRNA signature
for predicting the immune landscape of head and neck
squamous cell carcinoma,” Frontiers in Molecular Biosciences,
vol. 8, Article ID 689224, 2021.

[23] Y. Lv, S.-Y. Lin, F.-F. Hu et al., “Landscape of cancer diagnostic
biomarkers from specifically expressed genes,” Briefings in
Bioinformatics, vol. 21, no. 6, pp. 2175–2184, 2020.

[24] Z. Wang, H. Yuan, J. Huang et al., “Prognostic value of
immune-related genes and immune cell infiltration analysis in
the tumor microenvironment of head and neck squamous cell
carcinoma,” Head & Neck, vol. 43, no. 1, pp. 182–197, 2021.

[25] Y. She, X. Kong, Y. Ge et al., “Immune-related gene signature
for predicting the prognosis of head and neck squamous cell
carcinoma,” Cancer Cell International, vol. 20, Article ID 22,
2020.

[26] J. Zhang, T. Ling, H. Wu, and K. Wang, “Re-expression of
Lactotransferrin, a candidate tumor suppressor inactivated by
promoter hypermethylation, impairs the malignance of oral
squamous cell carcinoma cells,” Journal of Oral Pathology &
Medicine, vol. 44, no. 8, pp. 578–584, 2015.

[27] G. Zhou, Z. Liu, and J. N. Myers, “TP53mutations in head and
neck squamous cell carcinoma and their impact on disease
progression and treatment response,” Journal of Cellular
Biochemistry, vol. 117, no. 12, pp. 2682–2692, 2016.

[28] A. L. Mattei, N. Bailly, and A. Meissner, “DNA methylation: a
historical perspective,” Trends in Genetics, vol. 38, no. 7,
pp. 676–707, 2022.

[29] M. Kulis and M. Esteller, “DNA methylation and cancer,”
Advances in Genetics, vol. 70, pp. 27–56, 2010.

[30] S. Virani, E. Light, L. A. Peterson et al., “Stability of methylation
markers in head and neck squamous cell carcinoma,” Head &
Neck, vol. 38, no. S1, pp. E1325–E1331, 2016.

16 Mediators of Inflammation

https://downloads.hindawi.com/journals/mi/2023/6680731.f6.pdf
https://downloads.hindawi.com/journals/mi/2023/6680731.f7.pdf
https://downloads.hindawi.com/journals/mi/2023/6680731.f8.pdf
https://downloads.hindawi.com/journals/mi/2023/6680731.f9.pdf
https://downloads.hindawi.com/journals/mi/2023/6680731.f10.pdf


[31] C. Zhou, M. Ye, S. Ni et al., “DNAmethylation biomarkers for
head and neck squamous cell carcinoma,” Epigenetics, vol. 13,
no. 4, pp. 398–409, 2018.

[32] X. Zhao, Y. Chen, Q. Mao et al., “Overexpression of YTHDF1
is associated with poor prognosis in patients with hepatocel-
lular carcinoma,” Cancer Biomarkers, vol. 21, no. 4, pp. 859–
868, 2018.

[33] S. Sun, Q. Han, M. Liang, Q. Zhang, J. Zhang, and J. Cao,
“Downregulation of m6 A reader YTHDC2 promotes tumor
progression and predicts poor prognosis in non-small cell lung
cancer,” Thoracic Cancer, vol. 11, no. 11, pp. 3269–3279, 2020.

[34] A. Strick, F. von Hagen, L. Gundert et al., “The N6

-methyladenosine (m6 A) erasers alkylation repair homologue
5 (ALKBH5) and fat mass and obesity-associated protein
(FTO) are prognostic biomarkers in patients with clear cell
renal carcinoma,” BJU International, vol. 125, no. 4, pp. 617–
624, 2020.

[35] Y. Nagaki, S.Motoyama, T. Yamaguchi et al., “m6 A demethylase
ALKBH5 promotes proliferation of esophageal squamous cell
carcinoma associated with poor prognosis,” Genes to Cells,
vol. 25, no. 8, pp. 547–561, 2020.

[36] G. Bindea, B. Mlecnik, M. Tosolini et al., “Spatiotemporal
dynamics of intratumoral immune cells reveal the immune
landscape in human cancer,” Immunity, vol. 39, no. 4,
pp. 782–795, 2013.

[37] W. H. Fridman, L. Zitvogel, C. Sautès–Fridman, and
G. Kroemer, “The immune contexture in cancer prognosis
and treatment,” Nature Reviews Clinical Oncology, vol. 14,
pp. 717–734, 2017.

[38] A. J. Gentles, A. M. Newman, C. L. Liu et al., “The prognostic
landscape of genes and infiltrating immune cells across human
cancers,” Nature Medicine, vol. 21, pp. 938–945, 2015.

[39] D. H. Josephs, H. J. Bax, and S. N. Karagiannis, “Tumour-
associated macrophage polarisation and re-education with
immunotherapy,” Frontiers in Bioscience (Elite Ed), vol. 7,
no. 2, pp. 334–351, 2015.

[40] A. Sarvaria, J. A. Madrigal, and A. Saudemont, “B cell
regulation in cancer and anti-tumor immunity,” Cellular &
Molecular Immunology, vol. 14, pp. 662–674, 2017.

[41] P. Tsou, H. Katayama, E. J. Ostrin, and S. M. Hanash, “The
emerging role of B cells in tumor immunity,” Cancer Research,
vol. 76, no. 19, pp. 5597–5601, 2016.

[42] D. Wolf, S. Sopper, A. Pircher, G. Gastl, and A. M.Wolf, “Treg
(s) in cancer: friends or foe?” Journal of Cellular Physiology,
vol. 230, no. 11, pp. 2598–2605, 2015.

[43] P. Jiang, S. Gu, D. Pan et al., “Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response,”
Nature Medicine, vol. 24, pp. 1550–1558, 2018.

[44] J. C. Dudley, M.-T. Lin, D. T. Le, and J. R. Eshleman,
“Microsatellite instability as a biomarker for PD-1 blockade,”
Clinical Cancer Research, vol. 22, no. 4, pp. 813–820, 2016.

[45] R. Mandal, R. M. Samstein, K.-W. Lee et al., “Genetic diversity
of tumors with mismatch repair deficiency influences anti-PD-
1 immunotherapy response,” Science, vol. 364, no. 6439,
pp. 485–491, 2019.

[46] W. J. Ho and R. Mehra, “Pembrolizumab for the treatment of
head and neck squamous cell cancer,” Expert Opinion on
Biological Therapy, vol. 19, no. 9, pp. 879–885, 2019.

Mediators of Inflammation 17




